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In spite of its immense difficulties of application, and the aspersions

which have been mistakenly cast upon it, the theory of probabilities,

I repeat, is the noblest, as it will in course of time prove, perhaps

the most fruitful branch of mathematical science. It is the very

guide of life, and hardly can we take a step or make a decision

of any kind without correctly or incorrectly making an estimation

of probabilities.

W. Stanley Jevons

The Principles of Science, 1874





Preface

The purpose of this book is to present the key concepts of Bayesian
inference in an intuitive and attractive fashion. The current treatment
differs with respect to other ‘introductions to Bayesian statistics’ in
five important ways. First and foremost, we have tried to present an
introduction for undergraduate students in the social sciences, not an
introduction geared toward associate professors of mathematics at MIT.
This means that we focus on providing the right intuition, that we
seek to solidify that intuition with concrete examples, and that we try
to limit the number of equations (see also Lindley 1985; 2006). Of
course, the one equation we cannot avoid is Bayes’ theorem. Luckily,
the theorem represents ‘common sense expressed in numbers’, and it
is remarkable how much insight can be gained from just this single
formula.

Contrary to popular belief, this is
probably not Thomas Bayes (c. 1701-
1761). For details, see the discus-
sion by Prof. David R. Bellhouse at
http://www.york.ac.uk/depts/maths/
histstat/bayespic.htm.

The second way in which our book differs from other introductory
treatments of Bayesian inference is that we approach the topic according
to the philosophy of the geophysicist and polymath Sir Harold Jeffreys
(1891-1989). Specifically, Jeffreys showed how the Bayesian paradigm
can support both hypothesis testing (‘is the effect present or absent?’) and
parameter estimation (‘how big is the effect, assuming it is present?’).
In contrast, many Bayesian textbooks fail to provide a coherent and
compelling account of hypothesis testing – in our opinion, this is a
serious omission that betrays a lack of familiarity with how scientists
conduct experiments and interpret results.
The third way in which our treatment differs from most others is

that we emphasize the central role of prediction in scientific learning. It
may be intuitively clear that sound predictions ought to arise from our
knowledge of the world; it is less clear that our knowledge of the world
is adjusted as a function of predictive performance. Yet Bayes’ theorem
tells us that accounts of the world that predicted observed data successfully
enjoy a boost in plausibility, whereas accounts that predicted poorly suffer a
decline.1 1 Repeated throughout this book, this

specific mantra was first presented in
Wagenmakers et al. (2016a) as suggested
by our close colleague Michael Lee
(https://faculty.sites.uci.edu/
mdlee/). Note also that the emphasis on
prediction is common in robotics and
object tracking, where beliefs need to
undergo constant revision according to
changing inputs from the environment.

The fourth way in which this book stands out is in its emphasis on
historical development. Among the heroes of this book are Pierre-
Simon Laplace (1749–1827), Augustus De Morgan (1806–1871), William

http://www.york.ac.uk/depts/maths/histstat/bayespic.htm
http://www.york.ac.uk/depts/maths/histstat/bayespic.htm
https://faculty.sites.uci.edu/mdlee/
https://faculty.sites.uci.edu/mdlee/
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Stanley Jevons (1835–1882), Henri Poincaré (1854–1912), J. B. S. Hal-
dane (1892–1964), Dorothy Maud Wrinch (1894–1976), and of course
Sir Harold Jeffreys (1891–1989). Many chapters provide abundant his-
torical background and extensive quotations. Some students have told
us that long quotations are boring. We heap scorn on this notion. Our
heroes may no longer be around to give a Ted Talk or record a TikTok
video, but their words have lost none of their eloquence, relevance,
and vision. Poincaré advocated a similar approach to the teaching of
mathematics:

“In the edifices built up by our masters, of what use to admire the work
of the mason if we can not comprehend the plan of the architect? (…)

Zoologists maintain that the embryonic development of an animal re-
capitulates in brief the whole history of its ancestors throughout geologic
time. It seems it is the same in the development of minds. The teacher
should make the child go over the path his fathers trod; more rapidly, but
without skipping stations. For this reason, the history of science should
be our first guide.” (Poincaré 1913, pp. 436-437)

The fifth way in which this book is unique is that we take full advan-
tage of JASP, an open-source statistical software program with extensive
support for Bayesian analyses. Available for free at jasp-stats.org,
JASP makes it easy to perform comprehensive Bayesian analyses with
just a few mouse clicks or keystrokes. The current volume, ‘The Theory
of Common Sense’, primarily uses the JASP module Learn Bayes2; the 2 The development of this module

was supported by the APS Fund for
Teaching and Public Understanding of
Psychological Science and the Erasmus+
‘QHELP’ project.

second volume (‘Common Sense in Practice’ – in preparation) will take
full advantage of the many standard Bayesian analyses implemented
in JASP such as the comparison of two proportions, the comparison of
means, hierarchical modeling, meta-analysis, and more.
To keep the concepts separate and the content digestible, we have

chosen to present the material in a sequence of relatively short chapters.
Most chapters include a summary, exercises, and suggested readings.
Occasional interlude chapters provide material that is educational but
not necessary to understand the remaining chapters. Note that this
book is still a living document; the current version will be regularly
updated as new chapters become available. We intend to continually
update the book material, so we welcome any and all suggestions for
improvement.
The goal of this volume is to outline philosophical ideas, sketch key

historical developments, and generally to proceed systematically from
scenarios that are simple to those that are more complex. Specifically,
Part I introduces the Bayesian view on probability, Part II outlines the
Laplacean estimation approach, and Part III provides an overview of
the Jeffreyian hypothesis testing approach, which was explicitly devel-
oped to overcome the limitations of the Laplacean approach.3 Part IV 3 It is ironic that some modern statisti-

cians, unaware of century-old arguments,
unwittingly regress and happily advo-
cate the Laplacean approach over the
Jeffreyian approach.

includes several technical appendices.

jasp-stats.org
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Pragmatic readers looking for a crash course in applied Bayesian
statistics may skip the first volume altogether and proceed directly to
the second volume. The first chapters of the second volume summarize
the key points from the first volume.4 We strongly feel that this is not 4 The second volume is still in prepara-

tion, so this advice is currently not very
practical. Impatient readers may consult
one of the many tutorials on applying
Bayesian statistics (e.g., van Doorn et al.
2021).

just another course on just another topic. In the epigraph to this book,
Jevons called the theory of probabilities “the very guide of life”. To
further underscore the importance of the topic, we cannot improve on
the French genius Pierre-Simon Laplace, who ended his famous 1814
book Essai Philosophique sur les Probabilités in dramatic fashion:

“One sees in this essay that the theory of probabilities is basically only
common sense reduced to a calculus. It makes one estimate accurately
what right-minded people feel by a sort of instinct, often without being
able to give a reason for it. It leaves nothing arbitrary in the choice of
opinions and of making up one’s mind, every time one is able, by this
means, to determine the most advantageous choice. Thereby, it becomes
the most happy supplement to ignorance and to the weakness of the hu-
man mind. If one considers the analytical methods to which this theory
has given rise, the truth of the principles that serve as the groundwork,
the subtle and delicate logic needed to use them in the solution of the
problems, the public-benefit businesses that depend on it, and the exten-
sion that it has received and may still receive from its application to the
most important questions of natural philosophy and the moral sciences;
if one observes also that even in matters which cannot be handled by the
calculus, it gives the best rough estimates to guide us in our judgements,
and that it teaches us to guard ourselves from the illusions which often
mislead us, one will see that there is no science at all more worthy of our
consideration, and that it would be a most useful part of the system of
public education.” (Laplace 1814/1995, pp. 124)

Pierre-Simon Laplace (1749-1827). “On
voit, par cet Essai, que la théorie des
probabilités n’est, au fond, que le bon
sens réduit au calcul; elle fait apprécier
avec exactitude ce que les esprits justes
sentent par une sorte d’instinct, sans
qu’ils puissent souvent s’en rendre
compte.” Posthumous portrait by Jean-
Baptiste Paulin Guérin, 1838.

About the Authors
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www.ejwagenmakers.com
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Synopsis

The subject upon which we now enter must not be regarded as an isolated and
curious branch of speculation. It is the necessary basis of nearly all the
judgments and decisions we make in the prosecution of science, or the conduct
of ordinary affairs.

Jevons, 1874

Chapter Goal
The introduction to this chapter is a
translation from Wagenmakers and
Gronau (2018).

This chapter outlines the Bayesian learning cycle that forms the concep-
tual backbone of the entire paradigm.

The Learning Cycle

There is a Dutch saying “not even a donkey bumps into the same stone
twice”.5 Donkeys learn from experience, and they share this ability 5 In Dutch: “zelfs een ezel stoot zich in

het gemeen niet tweemaal aan dezelfde
steen”. English versions: “once bitten
twice shy”, or “Fool me once, shame on
you. Fool me twice, shame on me.”

to adapt with all known animal species – cats, lizards, spiders…even
single-cellular slime molds are capable of learning. It could hardly be
any other way, of course, for evolution is a ruthless sculptor: organisms
unable to adapt to their environment are doomed to extinction.
But how do organisms learn from their environment? In general,

learning can only occur when there exist multiple rival hypotheses. If
there is only a single hypothesis, this represents a religious belief, an
unshakable conviction that is impervious to any empirical disconfir-
mation whatsoever. To learn, therefore, we must begin with multiple
competing hypotheses, each with its own plausibility. In the Amazon, a
young piranha detects movement in the water, far away; one hypothesis
holds that the movement is triggered by wounded prey, the other holds
that it is caused by a healthy fellow piranha. To find out more, our pi-
ranha swims closer. In this way, the piranha collects new observations,
and these should lead to learning, that is, an adjustment of the relative
plausibility of the competing hypotheses. It is intuitive that hypotheses
increase and decrease in plausibility in proportion to their predictive
success: the ‘prey’ hypothesis predicts a violent thrashing, whereas the
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‘fellow piranha’ hypothesis predicts a more even motion pattern. When
the new observations suggest a violent thrashing, this increases the
plausibility of the ‘prey’ hypothesis and decreases the plausibility of the
‘fellow piranha’ hypothesis.
On the basis of such general considerations, we arrive at the follow-

ing qualitative regularity:

Present knowledge
about the world

= Past knowledge
about the world

× Predictive
updating factor.

This regularity states that the learning process –the adjustment of
knowledge on the basis of observed data– is governed by the predic-
tive adequacy of the rival hypotheses. This common-sense argument is
formalized by what is known as Bayes’ rule or Bayes’ theorem, but for
now we will discuss the rule without invoking the equation.

Figure 1: Bayesian learning can be conceptualized as a cyclical process of updating knowl-
edge in response to prediction errors. The prediction step is deductive, and the updating
step is inductive. For a detailed account, see Jevons (1874/1913, Chapters XI and XII).
Figure available at BayesianSpectacles.org under a CC-BY license.

The learning process is depicted in Figure 1. It is important that the
learning process can continue indefinitely, as long as new data keep
flowing in; the updated (i.e., posterior) knowledge after one cycle of
learning serves as the prior knowledge for the next cycle. This is not
only theoretically elegant, but for a simple organism like our piranha,
who is confronted by a life-long deluge of data, it is also practically

BayesianSpectacles.org
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relevant: after the knowledge has been updated, the old data have done
their job and can safely be forgotten — the only thing the piranha needs
to do is use incoming data to adjust the existing knowledge.

The Knowledge Pump

The Bayesian learning cycle, shown in Figure 1, can be viewed as a
knowledge pump6 with two fundamentally different processes working 6Or an old-fashioned railroad handcar,

now seen mostly in cartoons.in alternation: deduction and induction. The deductive process specifies
how rival hypotheses generate predictions for observed data (see the box
‘The Data-Generating Process’ below). Without such predictions, the
learning process cannot get off the ground. Once the data are in, the
relative adequacy of the predictions can be assessed, and this drives an
inductive process: the adjustment of knowledge in light of experience.
Once the inductive process has finished, the knowledge pump is ready
for its next predict-update cycle.7 7 Some incredibly smart researchers

have argued that scientific reasoning
should be based only on the deductive
process. These researchers were probably
mistaken (e.g., as argued in Jeffreys 1973,
Chapter 1; Jeffreys 1961, pp. 1-8; Jevons
1874/1913).

The Data-Generating Process

One of the key goals of statistical inference is to use observed data
to figure out (‘infer’) the unobserved processes that gave rise to
those data. These unobserved (if you want to sound smart, call them
‘latent’) processes are generally known as a ‘data-generating process’
(DGP). In general, a DGP represents a statement about the world.
Philosophers often prefer the term ‘proposition’, empirical researchers
usually speak of ‘hypotheses’, whereas statisticians postulate ‘models’.
A statistical model can be considered a concrete implementation
of a hypothesis; for instance, a hypothesis could be ‘women play
better chess than men’, and a corresponding statistical model would
stipulate that the average Elo-rating of women exceeds that of men
(after correcting for baseline differences in participation rates).8 A
statistical model is often a composite of several DGPs. For example,
in the model that postulates that women play better chess than men,
the unknown true difference in mean Elo-rating can take on all kinds
of values; it is therefore considered a parameter within the larger
model: an instance of a larger class of DGPs. As we will see, the
distinction between propositions, hypotheses, models, and parameters
is mostly cosmetic: the Bayesian learning process governs the data-
driven change in plausibility regardless of the label applied.

7 See the article ‘Why are (the best)
women so good at chess? Participation
rates and gender differences in intellec-
tual domains’ by Bilalić et al. (2009).

As noted above, and as demonstrated in later chapters, Bayes’ rule
formalizes the learning cycle shown in Figure 1. By doing so, it allows
us to move beyond the data-generating perspective where we postulate
only how underlying causes lead to observed consequences, that is, causes
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→ consequences. Although this forms an essential ingredient of the
learning process, in real life we are confronted with data and wish to
gain knowledge about the underlying process. In other words, we want
to move in the opposite direction and learn from observed consequences
about the underlying causes, that is, causes← consequences. By invert-
ing the causal arrow, Bayes’ rule allows us to reason about the world in
a coherent fashion.9 9More on coherence in Chapter 6.

Exercises

1. Go online and read up on ‘Cromwell’s rule’. How does it connect to
the foregoing argument?

2. The statement on the tile in the margin, “never assert absolutely”, is
attributed to Carneades, Russell, and Lindley. What did Russell say
that warrants his inclusion on the tile?

Adage of the New Academy, a group
of influential Greek philosophers who
believed that we cannot be absolutely cer-
tain of anything. To prevent this insight
from resulting in behavioral paralysis,
concrete action is based on whatever
seems most plausible. For a riveting
account, see Cicero (45BC/1956a) and
Cicero (45BC/1956b). Figure available
at BayesianSpectacles.org under a
CC-BY license.

Chapter Summary

The Bayesian learning cycle consists of a never-ending alternating se-
quence of deductive forecasting and inductive knowledge adjustment.
At each point in time, rival accounts of the world make predictions,
and the adequacy of these predictions in light of the observed data
determines how the plausibility of the rival accounts gets updated:
accounts that predicted the data relatively well enjoy a boost in plausi-
bility, whereas those that predicted the data relatively poorly suffer a
decline.

Want to Know More?

3 Jevons, W. S. (1874/1913). The Principles of Science: A Treatise on
Logic and Scientific Method. London: Macmillan. Timeless classic by a
brilliant author, and freely available online. “In deduction we are engaged in de-

veloping the consequences of a law or
identity. (…) Induction is the exactly
inverse process. Given certain results or
consequences, we are required to discover
the general law from which they flow.”
(Jevons 1874/1913, p. 14)

3 Wagenmakers, E.–J., Dutilh, G., & Sarafoglou, A. (2018). The creativity-
verification cycle in psychological science: New methods to combat old
idols. Perspectives on Psychological Science, 13, 418-427. A historical
perspective on the interplay between deduction and induction.

3 Wagenmakers, E.–J. (2020). Bayesian Thinking for Toddlers. Freely
available at psyarxiv.com/w5vbp/. Dinosaurs courtesy of Viktor
Beekman. Also available in Dutch, German, and Turkish.

3 The predict-update description of the Bayesian learning cycle is com-
mon in the literature on Bayesian filtering, where the environment
is dynamic (e.g., Thrun et al. 2005). For instance, as a robot moves

BayesianSpectacles.org
psyarxiv.com/w5vbp/
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across a room it needs to update its beliefs about its current posi-
tion according to the information coming from its sensors. Another
popular application is the tracking of moving objects such as cars or
rockets. However, the same predict-update mechanism also underlies
learning in static environments, although textbooks rarely emphasize
this aspect. For a clear conceptual introduction to Bayesian filtering,
we recommend the YouTube videos by Cyrill Stachniss.

“Doubt is not a pleasant condition, but
certainty is an absurd one.” – Voltaire.

for Toddlers
Bayesian Thinking

Eric-Jan Wagenmakers
Illustrations by Viktor Beekman

Cover of Bayesian Thinking for Toddlers. “A must-have for toddlers with even a passing
interest in Bayesian knowledge updating and the prequential principle.”





JASP

In order that a scientific method may be of any value, it must satisfy two
conditions. In the first place, it must be possible to apply it in the actual cases to
which it is meant to be relevant. In the second, its arguments must be sound.
The main object of science is to increase knowledge of the world, and if a
method is not applicable to anything in the world it obviously cannot lead to
any knowledge. This principle is very elementary, and it is probably for that
very reason that it is habitually overlooked in theories of scientific knowledge.

Wrinch & Jeffreys, 1921

Chapter Goal

This chapter introduces JASP, an open-source statistical software pro-
gram with an attractive graphical user interface. JASP makes it easy to
conduct comprehensive Bayesian analyses with just a few mouse clicks
or keystrokes. JASP will play an increasingly important role as you
progress through the chapters of this book, and we recommend that
you install JASP, free of charge, from jasp-stats.org.

JASP unlocks Bayesian advantages for
practitioners unwilling to pursue a career
in mathematical statistics.

A Bayesian Mousetrap

At its theoretical core, Bayesian inference is about learning from experi-
ence: accounts of the world that predict new data relatively well enjoy a
boost in plausibility, whereas accounts that predict new data relatively
poorly suffer a decline. This appears perfectly straightforward, and in
the previous chapter we argued that even piranhas learn from experi-
ence and hence engage in some form of Bayesian inference. The idea
that Bayesian inference is easy is reinforced by pithy statements such
as “Bayesian inference is hard in the sense that thinking is hard” (Don
Berry) and “Bayesian statistics is fundamentally boring” (Phil Dawid).
Unfortunately, between Bayesian theory and Bayesian practice, the

gods have placed a healthy dose of mathematical statistics and probabilistic
programming. This does not worry piranhas much because piranhas are
content with a quick-and-dirty form of learning, good enough to help

jasp-stats.org


18

them survive. But when humans apply Bayesian inference to a data
analysis problem, quick-and-dirty ‘intuitive Bayes’ will not suffice –
common sense needs to be translated to numbers, and the reallocation
of plausibility needs to happen with mathematical precision. Doing so is
hard.

Figure available at BayesianSpectacles.
org under a CC-BY license.

Consequently, practitioners with limited quantitative backgrounds
–psychologists, physicians, ecologists, business analysts, neuroscientists–
quickly discover the truth in the Russian proverb that “free cheese can
only be found in a mousetrap”. The ‘cheese’ represents the benefits
that come with every Bayesian analysis: probability can be assigned to
hypotheses and parameters, evidence for and against hypotheses can be
quantified and monitored as the data accumulate, and prior knowledge
can be seamlessly taken into account. The ‘mousetrap’ is that these
Bayesian benefits are available only to those who are willing to pay for
them with sweat and tears. This is off-putting. Most practitioners do
not have the patience to take several courses in mathematical statistics
and probabilistic programming before they can finally implement a
Bayesian t-test to analyze their data. Who can blame them? Instead,
the blame lies with Bayesian statisticians, who as a group have failed
to develop user-friendly software that makes it easy for practitioners to
reap the benefits of Bayesian techniques without first having to pursue a
career in mathematical statistics.

Bayesian Inference Without Tears

To close the gap between Bayesian theory and Bayesian practice, our
group (part of the Psychological Methods Unit at the University of Am-
sterdam) has developed JASP, a cross-platform, open-source statistical
software program with an attractive graphical user interface (GUI).10 10 In honor of the Bayesian pioneer

Sir Harold Jeffreys (1891-1989), JASP
stands for ‘Jeffreys’s Amazing Statistics
Program’. Jeffreys is the hero of this
book, and later chapters will discuss his
statistical vision in detail.

Using JASP, practitioners can conduct Bayesian inference by dragging
and dropping variables of interest into analysis panels, whereupon the
associated statistical output becomes available for inspection. With JASP,
the emphasis can shift from shallow problems of implementation and
computation to deeper problems of specification and interpretation. Free
cheese, and no mousetrap.
JASP is a central component of this book. In ‘Part II: Coherent

Learning, Laplace Style’ and ‘Part III: Coherent Learning, Jeffreys
Style’, we encourage the reader to work with the Learn Bayes module
in JASP.11 Inspired by the Bayesian knowledge pump from Figure 1, the 11 The development of this module

was supported by the APS Fund for
Teaching and Public Understanding
of Psychological Science and by the
Erasmus+ project ‘QHELP’.

Learn Bayes module facilitates an interactive, step-by-step exploration
of the cyclical process of Bayesian learning: specifying prior knowledge,
making predictions, collecting data, assessing predictive success, and
updating to posterior knowledge.

BayesianSpectacles.org
BayesianSpectacles.org
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Screenshot of the JASP website, July 2024.

In the second volume, ‘Common Sense in Practice’ (in preparation)
we turn to a series of popular statistical tools such as the t-test, the A/B
test, the correlation test, and others. With JASP, it is easy to conduct
comprehensive Bayesian analyses for these tests with just a few mouse
clicks. This allows students, teachers, and researchers to focus on the
key concepts: setting up the models and interpreting the results. More
advanced applications will make use of the JAGS module that presents
a JASP GUI for probabilistic programming (Plummer 2003). Another
relevant JASP module is Distributions, which offers students the oppor-
tunity to explore particular distributions and fit them to data.

The JASP Principles

JASP is based on the following collection of interrelated philosophies,
convictions, and principles about science and software:

3 JASP is free. The core functionality of JASP will always be available
for free. We consider it a travesty that, every year, universities around
the world pay hundreds of millions of dollars of public money for
licensing fees so that their employees can execute analyses that –from
a statistical perspective– are trivial.

3 JASP is open-source. The source code for JASP is available on GitHub
at https://github.com/jasp-stats/jasp-desktop/. Currently,

https://github.com/jasp-stats/jasp-desktop/
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the analysis code is based on R and supported by 475 different R pack-
ages12; for its Bayesian analyses, JASP uses close to 40 R packages 12 A full listing is available at https:

//jasp-stats.org/r-package-list/.including BayesFactor (Morey and Rouder 2018), BAS (Clyde et al.
2011, Clyde 2016), abtest (Gronau et al. 2021b), bain (Gu et al. 2019),
stanova (by Henrik Singmann), Bayesrel (Pfadt et al. 2022), conting
(Overstall and King 2014), RoBMA (Maier et al. 2023), RStan (Stan
Development Team 2020), jfa (Derks et al. 2021), and multibridge
(Sarafoglou et al. in press). The graphical user interface is famil-
iar to users of SPSS and has been programmed in C++, html, and
javascript.

3 JASP is statistically inclusive. JASP implements both Bayesian and
frequentist/classical procedures.13 In addition, JASP allows for both 13 Throughout this book, the emphasis

will be firmly on Bayesian methodology.parameter estimation and hypothesis testing. This gives the user the
freedom to choose the method most appropriate for the question at
hand. Moreover, users can check the robustness of their conclusions
by conducting an alternative analysis.

The JASP coat of arms. The left shield shows Sir Ronald Fisher (1890-1962), longtime
proponent of classical statistics and vociferous opponent of Bayesian statistics.

3 JASP has a graphical user interface (GUI). Part of the JASP interface
is familiar to users of IBM’s SPSS: data are available in spreadsheet
format, variables can be dragged and dropped into input fields, and
the results are generated in a separate output panel. An example of
the input and output panels is shown in Figure 2.

3 JASP is designed with the user in mind. The JASP GUI is dynamic
and has immediate feedback, updating its output as the user alters the

https://jasp-stats.org/r-package-list/
https://jasp-stats.org/r-package-list/
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Figure 2: Screenshot of the JASP A/B test for the comparison of two proportions. Analysis options can be set in the left panel, and associ-
ated output is shown in the right panel.

input. In addition, the JASP GUI is based on the principle of pro-
gressive disclosure: initial output is minimalist to avoid overwhelming
the user; if desired, the user can request additional information by
checking boxes. The JASP output was designed to be attractive and
effective: figures are publication-ready and tables are in APA format,
ready to be copy-pasted into a word processor.

3 JASP facilitates transparent statistical reporting. JASP allows users to
save data, input options, and annotated output in a single .jasp file.14

14 This file can be unzipped to explore
the separate elements that together
constitute a .jasp file.

This file can be opened and edited by colleagues and students who
also have JASP installed; in addition, the Open Science Framework
(https://osf.io/) has a JASP previewer that allows anyone to ex-
amine annotated JASP output from within a browser, even without
having JASP installed. This means that students and colleagues can
review JASP output on their tablet or cell phone. As of version 0.17,
the underlying R syntax is visible by clicking the analysis-specific R
icon. At the moment, the R syntax works only within JASP itself,
where it can be used to reproduce analyses and control the GUI. In
the near future, the R syntax produced by JASP will also work in R
Studio.

The JASP previewer allows users to
inspect the output of a .jasp file on the
OSF. The graph shown on the cell phone
displays the Anscombosaurus. Figure
available at https://osf.io/m6bi8/
under a CC-BY license.

3 JASP keeps the interface simple. Many for-profit statistical software
programs now include so many analyses that novice users find it hard

https://osf.io/
https://osf.io/m6bi8/
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to see the forest for the trees. JASP addresses this problem by using
add-on modules, similar to how R users can add complexity by load-
ing R packages. Thus, ‘base JASP’ offers a clean and concise set of
popular analyses. More advanced analyses are available through ded-
icated JASP modules, whose contents can be activated by checking
boxes.

The JASP Ecosystem

There is a growing group of JASP users consisting of students, teachers,
and researchers with widely different levels of statistical expertise. If
you want to stay abreast of the latest JASP developments, or if you wish
to learn more about JASP, we can recommend the following resources:

3 JASP Website. The JASP website jasp-stats.org not only con-
tains the latest version of the program but also offers background
information, supporting materials, and teaching tools.

3 JASP Facebook. The JASP Facebook group JASPStats keeps its mem-
bers up to date about new releases and other important events.

3 JASP Forum. The JASP/BayesFactor Forum at http://forum.
cogsci.nl/ is where you can discuss JASP input and output. You
can also check the earlier topics to see whether your question has
already been addressed.

3 JASP Blog. The JASP blog (https://jasp-stats.org/blog/) fea-
tures tutorial posts on particular statistical analyses, posts announcing
new versions, and posts about new JASP materials.

3 JASP YouTube. The JASP YouTube channel (https://www.youtube.
com/channel/UCSulowI4mXFyBkw3bmp7pXg) contains tutorial videos
about JASP. If you search YouTube you will also find many other
JASP tutorial videos.15 15 A good place to start is the

list provided at https://
jasp-stats.org/2020/02/11/
how-to-use-jasp-jasp-on-youtube/.

3 JASP GitHub. The JASP GitHub page can be used for feature re-
quests and for bug reports (both are considered ‘issues’, https:
//github.com/jasp-stats/jasp-desktop/issues). We pay keen
attention to all suggestions for improvement. Advanced program-
mers can also use the GitHub page to contribute code.

3 JASP Workshop. An excellent way to learn about Bayesian inference
and JASP is to attend our annual two-day summer workshop in
Amsterdam. You can register on the JASP website. We occasionally
accept offers to organize the JASP workshop at other universities or
institutes, either in a one-day or a two-day format.

3 Bayesian Spectacles Blog. The blog at BayesianSpectacles.org
covers all things Bayesian, and often features JASP-related content.

jasp-stats.org
http://forum.cogsci.nl/
http://forum.cogsci.nl/
https://jasp-stats.org/blog/
https://www.youtube.com/channel/UCSulowI4mXFyBkw3bmp7pXg
https://www.youtube.com/channel/UCSulowI4mXFyBkw3bmp7pXg
https://jasp-stats.org/2020/02/11/how-to-use-jasp-jasp-on-youtube/
https://jasp-stats.org/2020/02/11/how-to-use-jasp-jasp-on-youtube/
https://jasp-stats.org/2020/02/11/how-to-use-jasp-jasp-on-youtube/
https://github.com/jasp-stats/jasp-desktop/issues
https://github.com/jasp-stats/jasp-desktop/issues
BayesianSpectacles.org
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A world map showing 328 universities from 71 different countries where we know that teachers are using JASP. The map is not complete,
so if your university is not listed, please let us know at communications@jasp-stats.org. Figure taken from https://jasp-stats.org/
teaching-with-jasp/ on July 23rd, 2024. Not shown: University of Hawaii at Hilo.

The JASP Community

Recently we started the JASP Community, a consortium of institutions of
higher learning that are joining forces to ensure that JASP can continue
to be actively developed in the future. The current list of member insti-
tutions can be found at jasp-stats.org/cooperative-institutional-members.
We hope more institutions will join in the near future. Teachers from
participating institutions enjoy a list of advantages such as enhanced
priority for feature requests, support with transitioning away from
closed-source software, and workshops.

Alternative Statistical Software Packages

There are other statistical software packages whose goals are similar
to those of JASP. As far as inclusion of Bayesian procedures is con-
cerned, JASP is closely aligned with the BayesFactor package in R
(Morey and Rouder 2018). Another set of flexible Bayesian tools is
offered by the popular programs BUGS (e.g., Lunn et al. 2012), JAGS
(Plummer 2003), and Stan (Carpenter et al. 2017).16 Other recently 16We are enthusiastic about these proba-

bilistic programming languages (see, for
instance, Lee and Wagenmakers 2013 and
www.bayesmodels.com). If all students
and researchers were comfortable pro-
gramming in JAGS or Stan, the need for
JASP would be much less acute.

developed statistical packages for Bayesian analyses include blavaan
(Merkle and Rosseel 2018), brms (Bürkner 2017), and Bayesian Regres-
sion (Karabatsos 2017). For classical analyses, we like to single out PSPP

communications@jasp-stats.org
https://jasp-stats.org/teaching-with-jasp/
https://jasp-stats.org/teaching-with-jasp/
jasp-stats.org/ cooperative-institutional-members
www.bayesmodels.com
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(https://en.wikipedia.org/wiki/PSPP) as a worthwhile alternative
to for-profit statistical software such as IBM’s SPSS.

Chapter Summary

Armed with JASP, a comprehensive Bayesian analysis is just a few mouse
clicks away. Several add-on JASP modules (e.g., Learn Bayes, JAGS, and
Distributions) have been developed to accompany this book and enhance
your learning experience.

Want to Know More?
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& Morey, R. D. (2018). Bayesian inference for psychology. Part II:
Example applications with JASP. Psychonomic Bulletin & Review, 25,
58-76.

The contents of the last two articles may suggest that the presence of
classical procedures in JASP is mostly an elaborate ruse to draw in as
many unsuspecting users as possible, with the sole objective of turning
them into Bayesians. We strongly deny this, of course.

Come for the p-value, stay for the posterior? Figure available at BayesianSpectacles.org under a CC-BY license.

BayesianSpectacles.org




Part I

Probability





1 Probability Belongs Wholly to the Mind?

This chapter is based almost entirely on a
blog post for BayesianSpectacles.org:
“The Merovingian, or why probability
belongs wholly to the mind”.

There is no doubt in lightning as to the point it shall strike; in the greatest
storm there is nothing capricious; not a grain of sand lies upon the beach, but
infinite knowledge would account for its lying there; and the course of every
falling leaf is guided by the principles of mechanics which rule the motions of
the heavenly bodies.

Jevons, 1874

Chapter Goal

This chapter makes the case that we are all victims of causality. Conse-
quently, probability belongs wholly to the mind. The scientific verdict
on this matter is still out –perhaps probability belongs only mostly to the
mind– but the main purpose of this chapter is to have some philosophi-
cal fun and get accustomed to the fact that probability quantifies lack of
knowledge.

The Merovingian

Lambert Wilson (1958–), the French
author who played the role of ‘the
Merovingian’ in The Matrix Reloaded and
The Matrix Revolutions. Photo taken by
Georges Biard, available on Wikipedia
under a CC BY-SA 3.0 license.

The famous Matrix trilogy is set in a dystopian future where most of
mankind has been enslaved by a computer network, and the remain-
ing rebels find themselves on the brink of extinction. Just when the
situation seems beyond salvation, a messiah –called Neo– is awakened
and proceeds to free humanity from its silicon overlord. Rather than
turn the other cheek, Neo’s main purpose seems to be the physical
demolition of his digital foes (‘agents’), a task that he engages in with in-
creasing gusto and efficiency. Aside from the jaw-dropping fight scenes,
the Matrix movies also contain numerous references to religious themes
and philosophical dilemmas. One particularly prominent theme is the
concept of free will and the nature of probability.
Consider for instance the dialogue in the second movie, ‘The Matrix

Reloaded’, where Neo and his friends Morpheus and Trinity visit an
old computer program known as the Merovingian (played by Lambert
Wilson) and his wife Persephone. Seated at a long table in an expensive

BayesianSpectacles.org
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restaurant, the Merovingian introduces himself as a “a trafficker of
information”. After a while, the following conversation ensues:

Merovingian: “It is, of course, the way of all things. You see, there
is only one constant, one universal, it is the only real truth: causality.
Action – reaction; cause – and effect.”

Morpheus: “Everything begins with choice.”
Merovingian: “No. Wrong. Choice is an illusion, created between

those with power, and those without. (…) This is the nature of the
universe. We struggle against it, we fight to deny it, but it is of course
pretense, it is a lie. Beneath our poised appearance, the truth is we are
completely out of control. Causality. There is no escape from it, we are
forever slaves to it. Our only hope, our only peace is to understand it, to
understand the ‘why’.” [The Merovingian stands up from the table]

Persephone: “Where are you going?”
Merovingian: “Please, ma cherie, I’ve told you, we are all victims of

causality. I drink too much wine, I must take a piss. Cause and effect.
Au revoir.”1 1Dialogue taken from http:

//www.scottmanning.com/content/
merovingian-matrix-reloaded-transcript/.

The philosophical position advocated by the Merovingian is known
as determinism, the idea that nothing in the universe is capricious or
random, but that everything is ultimately governed by cause-effect re-
lations embodied in physical laws. In other words, everything that hap-
pens, happens for a reason, even though that reason (the Merovingian’s
‘why’) may be unknown to an ignorant observer. In a deterministic
universe, the past establishes the future without fail: for instance, the
fact that you are reading these words right now was already in the stars
millions of years ago, as no other world is possible other than the one
that we currently inhabit.
One does not need to believe in a fully deterministic universe in or-

der to embrace the Bayesian view on probability.2 Yet, the Bayesian 2 Indeed, the Bayesian hero of this book,
Sir Harold Jeffreys, rejected determinism.view is certainly consistent with the idea of a deterministic universe, be-

cause ‘probability’ in the Bayesian sense refers to a lack of information;
complete certainty of knowledge is indicated by a probability of 0 or
1, with intermediate values specifying different degrees of belief. For
Bayesians, ‘probability’ and ‘plausibility’ mean the same thing.
Determinism was quite popular among Bayesian pioneers hundreds

of years ago. For instance, Pierre-Simon Laplace proposed a particu-
larly strong version of determinism – namely that a hypothetical being
with a sufficiently high intelligence (a ’demon’) could, from complete
knowledge of the present, perfectly predict the future and perfectly re-
construct the past. The idea of determinism was also popular among
philosophers in antiquity; for instance, the following fragment by Mar-
cus Tullius Cicero anticipates Laplace’s demon by almost 2,000 years:

http://www.scottmanning.com/content/merovingian-matrix-reloaded-transcript/
http://www.scottmanning.com/content/merovingian-matrix-reloaded-transcript/
http://www.scottmanning.com/content/merovingian-matrix-reloaded-transcript/
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“Since, then, everything happens by fate (as will be shown elsewhere) if
there could be any mortal who could observe with his mind the inter-
connection of all causes, nothing indeed would escape him. For he who
knows the causes of things that are to be necessarily knows all the things
that are going to be. But since no one but God could do this, what is left
for man is that he should be aware of future things in advance by certain
signs which make clear what will follow. For the things which are going
to be do not come into existence suddenly, but the passage of time is like
the unwinding of a rope, producing nothing new but unfolding what
was there at first.” (Cicero, de Divinatione I, lvi; part of Quintus Cicero’s
defense of divination)

Want of Art

William Stanley Jevons is mostly known for his groundbreaking work
in the mathematical study of economics. In addition, Jevons was a
prominent logician, and his 1874 book ‘The Principles of Science: A
Treatise on Logic and Scientific Method’ stands as an enduring witness
to his brilliance as a scientist and as a writer.

W. Stanley Jevons (1835-1882) at age
23. Copyright owned by the National
Portrait Gallery, London, under a CC-BY-
ND license.

Jevons’ view on probability and statistical inference was influenced by
Augustus De Morgan, who in turn was influenced by Laplace. Although
many great scientists have enthusiastically advocated determinism, few
have done so as eloquently as Jevons. Chapter 10 of the ‘Principles’ is
devoted to the theory of probability. Jevons starts the chapter with a
fragment that we are reprinting here in full:

“The subject upon which we now enter must not be regarded as an iso-
lated and curious branch of speculation. It is the necessary basis of the
judgments we make in the prosecution of science, or the decisions we
come to in the conduct of ordinary affairs. As Butler truly said, ‘Proba-
bility is the very guide of life.’ Had the science of numbers been studied
for no other purpose, it must have been developed for the calculation
of probabilities. All our inferences concerning the future are merely
probable, and a due appreciation of the degree of probability depends
upon a comprehension of the principles of the subject. I am convinced
that it is impossible to expound the methods of induction in a sound
manner, without resting them upon the theory of probability. Perfect
knowledge alone can give certainty, and in nature perfect knowledge
would be infinite knowledge, which is clearly beyond our capacities. We
have, therefore, to content ourselves with partial knowledge knowledge
mingled with ignorance, producing doubt.

The logic piano: a mechanical computer
designed by Jevons in 1866 to solve
problems in logic. Inv. 18230. ©History
of Science Museum, University of
Oxford. Usage granted until 2031.

A great difficulty in this subject consists in acquiring a precise notion
of the matter treated. What is it that we number, and measure, and
calculate in the theory of probabilities? Is it belief, or opinion, or doubt,
or knowledge, or chance, or necessity, or want of art? Does probability
exist in the things which are probable, or in the mind which regards them
as such? The etymology of the name lends us no assistance: for, curiously
enough, probable is ultimately the same word as provable, a good instance
of one word becoming differentiated to two opposite meanings.
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Chance cannot be the subject of the theory, because there is really
no such thing as chance3, regarded as producing and governing events. 3 EWDM: The same sentiment was

expressed by De Moivre (1718/1756, p.
253): “Chance (…) can neither be defined
nor understood”.

The word chance signifies falling, and the notion of falling is continually
used as a simile to express uncertainty, because we can seldom predict
how a die, a coin, or a leaf will fall, or when a bullet will hit the mark.
But everyone sees, after a little reflection, that it is in our knowledge
the deficiency lies, not in the certainty of nature’s laws. There is no
doubt in lightning as to the point it shall strike; in the greatest storm
there is nothing capricious; not a grain of sand lies upon the beach, but
infinite knowledge would account for its lying there; and the course of
every falling leaf is guided by the principles of mechanics which rule the
motions of the heavenly bodies.

Chance then exists not in nature, and cannot coexist with knowledge;
it is merely an expression, as Laplace remarked, for our ignorance of the
causes in action, and our consequent inability to predict the result, or to
bring it about infallibly. In nature the happening of an event has been
pre-determined from the first fashioning of the universe. Probability
belongs wholly to the mind.” (Jevons 1874/1913, pp. 197-198)

“There is no result in nature without
a cause; understand the cause and you
will have no need of the experiment.”
(Leonardo da Vinci)

An Interview with Einstein
In the 1920s, Nazi propagandist and Mussolini-admirer George
Viereck managed to secure an interview with Albert Einstein. This
interview was published in 1929 in The Saturday Evening Post under
the title “What Life Means to Einstein”. From the perspective of de-
terminism, two of Einstein’s statements stand out. First, when asked
whom he felt was to blame for the downfall of Germany in World
War I, Einstein concludes his answer as follows: “In a sense, we can
hold no one responsible. I am a determinist. As such, I do not be-
lieve in free will.” Second, later in the interview there is the following
exchange:
Einstein: “I am happy because I want nothing from anyone. I do not
care for money. Decorations, titles or distinctions mean nothing to
me. I do not crave praise. The only thing that gives me pleasure,
apart from my work, my violin and my sailboat, is the appreciation of
my fellow workers.”
Viereck: “Your modesty does you credit.”
Einstein: “No. I claim credit for nothing. Everything is determined,
the beginning as well as the end, by forces over which we have no
control. It is determined for the insect as well as for the star. Human
beings, vegetables or cosmic dust, we all dance to a mysterious tune,
intoned in the distance by an invisible player.”
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A Deterministic View on Life

Many people believe that the future is partly in their own hands. We
can usually choose freely whether to watch TV, or read a book, or go to
the movies; we decide where to go on vacation, what to eat, whom to
marry, and so on. There appears to be no external authority who com-
mands us in such decisions, big and small; in this sense we can do what
we want. This ‘free will’ perspective suggests that many possible futures
remain open to us, and that we are in control of our own destiny, at
least to some degree.4 4 A figure that represents this per-

spective and formed the inspiration
for this section is available at https:
//twitter.com/waitbutwhy/status/
1367871165319049221/photo/1.

The fact that we can do what we want, however, does not present
a compelling argument against determinism. Yes, we may watch TV
because we feel like it – but where did that feeling come from? A deter-
minist believes that ‘free will’ is merely an illusion. You may experience
the desire to do something and then do it, but that desire itself is the
inevitable result of a myriad causal factors that were set in motion since
the beginning of time. As summarized by Schopenhauer: “You can do
what you will: but at each given moment of your life you can will only
one determined thing and by no means anything other than this one.”5 5 See the section ‘Want to Know More’

for details on Schopenhauer’s perspective.This deterministic perspective on life is visualized in Figure 1.1. The
white lighting bolt running from top to bottom represents your life
path, from which no deviation whatsoever is possible. The black light-
ning bolts in the top panel represent alternative life paths that you now
know were always closed to you. It is not just that these alternative real-
ities did not happen; they could never have happened. For instance, it
would be tempting to think “had I not folded my hand but called her
bluff instead then I would have won the poker tournament”; instead,
the correct deterministic thought is “I now know that I did not call her
bluff, and did not win the poker tournament”. The purple lighting
bolts in the bottom panel represent alternative life paths that you do
not yet know will never materialize. It is tempting to think “If I partici-
pate in this lottery and I’m lucky, I may win the jackpot”; a determinist
would correct this to “I do not yet know whether or not I will win the
lottery. However, this is not an eventuality or a matter of luck – it is a
certainty, but one of which I will only become aware after the fact.”
An apt analogy is presented by Schopenhauer: “(…) we ought to

regard events as they occur with the same eye as the print that we read,
knowing full well that it stood there before we read it.” When in the
middle of a book, you know how the story started but you are still
unsure about how it will end – but it can end in only one way, just as it
started in only one way. For a determinist, the difference between what
lies in the past and what lies in the future can therefore be attributed
solely to a difference in knowledge.

https://twitter.com/waitbutwhy/status/1367871165319049221/photo/1
https://twitter.com/waitbutwhy/status/1367871165319049221/photo/1
https://twitter.com/waitbutwhy/status/1367871165319049221/photo/1
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Figure 1.1: Figure available at BayesianSpectacles.org under a CC-BY license.

BayesianSpectacles.org
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A Quantum Fly in the Deterministic Ointment

Readers with a background in physics may believe that hard-core deter-
minists have gone the way of the dinosaur, with the theory of quantum
mechanics providing the trigger for a mass extinction event. For in-
stance, Hacking (1990, p. 1) remarks “The most decisive conceptual
event of twentieth century physics has been the discovery that the
world is not deterministic. Causality, long the bastion of metaphysics,
was toppled, or at least tilted: the past does not determine exactly what
happens next.”
Specifically, the orthodox ‘Copenhagen’ interpretation of quantum

mechanics holds that chance is inherent to nature, and that the behavior
of the tiniest particles is fundamentally unpredictable. There exists no
hidden deterministic structure that would allow us to calculate, say,
the exact moment when a particular radioactive atom decays. The very
fabric of our universe is capricious, and this is quite contrary to what
most researchers believed in Jevons’ time.6 6 But it is remarkably consistent with the

physical universe postulated by the Greek
philosopher Epicurus (341-270 BC), who
believed that all matter was composed of
atoms, and that these atoms sometimes
behaved capriciously. Throughout
history, Epicurus and his followers were
widely ridiculed for propagating such
absurdities.

Although the Copenhagen interpretation dominates the literature
and the textbooks, there has always been opposition. The pragmatic
attitude of many physicists towards discussions on the meaning of
quantum mechanics is perhaps best summed up by the statement “shut
up and calculate”, that is, “stop philosophizing about the meaning of
quantum uncertainty and make better use of your time by deriving the
predictions for the next quantum experiment or application”. The societal impact of quantum mechan-

ics is immense. Tegmark and Wheeler
(2001, p. 69) state that “today an es-
timated 30 percent of the U.S. gross
national product is based on inventions
made possible by quantum mechanics,
from semiconductors in computer chips
to lasers in compact-disc players, mag-
netic resonance imaging in hospitals, and
much more.”

“And yet…there are just too many loose ends in the conventional descrip-
tion of the quantum world. Phenomena that seem to make no sense.
Assumptions that contradict themselves. Explanations that don’t explain.
And underneath it all is an uncomfortable truth, swept under the car-
pet with undue haste because it’s deeply embarrassing: the ‘shut up and
calculate’ brigade don’t really understand it either.” (Stewart 2019, p.
226)

In fact, there exist deterministic accounts of quantum phenomena
(e.g., the de Broglie-Bohm pilot wave theory, or Hugh Everett III’s Many-
Worlds Interpretation) that provide an alternative to the Copenhagen
interpretation. The relative popularity of the various interpretations has
been assessed by polls at least six times, usually among physicists attend-
ing conferences on quantum mechanics. The Copenhagen interpreta-
tion was preferred by 13/48 (27%) respondents in Tegmark (1997); by
8/90 (9%) respondents in Tegmark and Wheeler (2001); by 14/33 (42%)
respondents in Schlosshauer et al. (2013); by 2/18 (11%) respondents in
Sommer (2013); by 3/76 (4%) respondents in Norsen and Nelson (2013);
and by 59/149 (39%) respondents in Sivasundaram and Nielsen (2016).
Overall, the Copenhagen interpretation was preferred by 99/414 (24%)
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respondents. The opinion on the matter does not appear settled, and
poll-to-poll differences are substantial.
In conclusion, despite the onslaught from quantum mechanics, de-

terminism is still alive. In the Netherlands, one of its most prominent
advocates is the physics Nobel laureate Gerard ’t Hooft (2016).7 In the 7 See also the YouTube videos by the

physicist Sabine Hossenfelder, whose
preferred account is known as superdeter-
minism. “I know it is somewhat boring
coming from a German, but I think Ein-
stein was right about quantum mechan-
ics. Call me crazy if you want, but for
me it is obvious that superdeterminism
is the correct explanation for our obser-
vations. I just hope I’ll live long enough
to see that all those men who said oth-
erwise will be really embarrassed.”
https://youtu.be/ytyjgIyegDI

words of Cicero (45BC/1956b, I, vi), “Surely such wide diversity of
opinion among men of the greatest learning on a matter of the highest
moment must affect even those who think that they possess certain
knowledge with a feeling of doubt.”

Exercises

1. Based on the literature, what do you believe is the most compelling
argument against determinism?

2. Why doesn’t it matter for the Bayesian learning process whether or
not the universe is deterministic?

3. In the section ‘Want to know more?’ below, read the summary of
Schopenhauer’s essay on free will. Suppose that the Copenhagen
interpretation of quantum mechanics is correct. Does this salvage the
concept of free will?

Chapter Summary

For a determinist, probability is nothing but a reflection of our knowl-
edge, a number that quantifies our degree of reasonable belief, our
certainty, or the intensity of our conviction. “Every phenomenon, however minute,

has a cause; and a mind infinitely pow-
erful, infinitely well-informed about
the laws of nature, could have foreseen
it from the beginning of the centuries.
If such a mind existed, we could not
play with it at any game of chance; we
should always lose. In fact for it the word
chance would not have any meaning, or
rather there would be no chance. It is
because of our weakness and our igno-
rance that the word has a meaning for
us. And, even without going beyond our
feeble humanity, what is chance for the
ignorant is not chance for the scientist.
Chance is only the measure of our ig-
norance. Fortuitous phenomena are, by
definition, those whose laws we do not
know.” (Poincaré 1913, p. 395)

Want to Know More?

3 Barrett, L., & Connell, M. (2005). Jevons and the Logic ‘Piano’.
The Rutherford Journal, 1, http://rutherfordjournal.org/
article010103.html. Provides a brief account of Jevons’ role in
the development of logic. More details on the logic piano can be
found in Jevons (1874/1913, pp. 123-131), Jevons (1870a), and Jevons
(1870b).

3 Cicero, M. T. (45 BC/1956). Academica. (H. Rackham, Trans.) Lon-
don: William Heinemann LTD. All of Cicero’s work is highly recom-
mended.

3 Cicero, M. T. (45 BC/1956). de Natura Deorum. (H. Rackham,
Trans.) London: William Heinemann LTD. All of Cicero’s work is
highly recommended, but this is perhaps our favorite.

https://youtu.be/ytyjgIyegDI
http://rutherfordjournal.org/article010103.html
http://rutherfordjournal.org/article010103.html
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Statement by W. Stanley Jevons in The Principles of Science, 1874. Figure available at
BayesianSpectacles.org under a CC-BY license.

3 Cicero, M. T. (44 BC/1923). de Devinatione. (W. A. Falconer, Trans.)
London: Harvard University Press. Did we mention that all of Cicero’s
work is highly recommended?

3 Diaconis, P., & Skyrms, B. (2018). Ten Great Ideas About Chance.
Princeton: Princeton University Press. “Consider tossing a coin just
once. The thumb hits the coin; the coin spins upward and is caught
in the hand. It is clear that if the thumb hits the coin in the same
place with the same force, the coin will land with the same side up.
Coin tossing is physics, not random! To demonstrate this, we had the
physics department build us a coin-tossing machine. The coin starts
out on a spring, the spring is released, the coin spins upward and
lands in a cup (…) Because the forces are controlled, the coin always
lands with the same side up. This is viscerally quite disturbing (even
to the two of us). Magicians and crooked gamblers (including one of
your authors) have the same ability.” (pp. 10-11).

BayesianSpectacles.org
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3 Galavotti, M. C. (2005). Philosophical Introduction to Probability.
Stanford: CSLI Publications. This highly recommended book pro-
vides a good overview of the main interpretations of probability.

3 Earman, J. (1986). A Primer on Determinism. Dordrecht: Reidel. One
of my colleagues, Louise, saw me read this book and asked ‘so what
is it about?’ ‘Well,’ I answered, ‘the author of this book investigates
the claim that, millions of years ago, it was already 100% certain
that you were going to ask me this very question at this particular
time.’ Louise immediately replied ‘oh, so this book is just nonsense.’
Despite Louise’s negative first impression, the Earman book is the
reference work on determinism, and will remain so for a long time
to come. Unfortunately, the matter is complicated and a good un-
derstanding of the relevant concepts requires knowledge of classical
physics, general relativity, and quantum theory.

Theoretical physicist Dr. Sabine Hossen-
felder (1976-), photographed in 2017.
Hossenfelder is also a philosopher of
science and author of several popular
science books. In 2023, her YouTube
channel has 728,000 subscribers.

3 Gigerenzer, G., Swijtink, Z., Porter, T., Daston, L., Beatty, J., &
Krüger, L. (1989). The Empire of Chance. Cambridge: Cambridge
University Press.

3 Hacking, I. (1990). The Taming of Chance. Cambridge: Cambridge
University Press.

3 Hossenfelder, S. (2022). Existential Physics: A Scientist’s Guide to
Life’s Biggest Questions. Viking.

“However, if you know one thing about quantum mechanics, it’s
that its physical interpretation has remained highly controversial.
In 1964, more than half a century after the theory was established,
Richard Feynman told his students, “I can safely say that nobody
understands quantum mechanics.” After another half century, in 2019,
the physicist Sean Carroll wrote that “even physicists don’t understand
quantum mechanics.” (…) if you don’t believe the measurement
update [the inherently probabilistic collapse of the wave function –
EWDM] is fundamentally correct, that’s currently a scientifically valid
position to hold. I myself think it’s likely the measurement update will
one day be replaced by a physical process in an underlying theory, and
it might come out to be both deterministic and time-reversable again.”
(pp. 16-17)

Portrait of W. Stanley Jevons (1835-1882)
at age 42, by G. F. Stodart.

3 Jevons, W. S. (1874/1913). The Principles of Science: A Treatise on
Logic and Scientific Method. London: MacMillan. Timeless classic by
a brilliant author, and freely available online.

3 Laplace, P.–S. (1814/1902/1995). [A] Philosophical Essay on Proba-
bilities. A surprisingly accessible essay by one of the most brilliant
minds of all time. The French first edition, Essai Philosophique sur
les Probabilités, was published in 1814; the 1902 English translation
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by Truscott and Emory leaves something to be desired; the 1995 En-
glish translation by Andrew I. Dale is superb, and also presents an
appendix with useful notes that put the work in a modern perspec-
tive.

3 Schabas, M. (1990). A World Ruled by Number: William Stanley
Jevons and the Rise of Mathematical Economics. Princeton: Princeton
University Press. A monograph on Jevons, reviewed by Zabell (1992).
Other monographs include Peart (1996), Maas (2005), and Mossel-
mans (2007). Notable articles on Jevons include Jevons and Jevons
(1934), Keynes (1936), and Robertson (1951).

German philosopher Arthur Schopen-
hauer (1788-1860) photographed one year
before his death, by J. Schäfer. “Under
presupposition of free will each human
action would be an inexplicable miracle –
an effect without cause.” (Schopenhauer
2009, p. 66)

3 Schopenhauer, A. (2009). The Two Fundamental Problems of Ethics.
Cambridge: Cambridge University Press. The original German edition
dates from 1841 and is entitled Die Beiden Grundprobleme der Ethik.
In the first treatise, Schopenhauer considers the idea of free will, and
concludes that it is an illusion. Specifically, Schopenhauer argues that
“You can do what you will: but at each given moment of your life
you can will only one determined thing and by no means anything
other than this one.” (p. 48). This argument is based on determin-
ism: “The law of causality stands firm a priori as the universal rule
to which all real objects in the external world without exception are
subordinated.” (p. 50) Schopenhauer then explains that the exact
nature of causality becomes more difficult to grasp when the systems
under study become increasingly complex; however, this does not
mean that causality is suddenly absent: “So, throughout this ever
increasing heterogeneity, incommensurability and unintelligibility of
the relation between cause and effect, has the necessity it presupposes
also decreased at all? In no way, not in the slightest. As necessarily
as the rolling ball sets the one at rest in motion, so too must the Ley-
den flask discharge itself when touched by the other hand, so must
arsenic kill any living thing, so must the seed grain that was stored
dry and showed no alteration through millennia germinate, grow
and develop into a plant as soon as it is placed in the appropriate soil
and exposed to the influences of air, light, heat and moisture. The

The Schopenhauer paper also features
some less compelling fragments. For
instance, Schopenhauer claims that “we
can stretch and considerably heighten our
mental powers through wine or opium”
(p. 53). Even more unsettling is that
Schopenhauer tries to bolster the case for
determinism by suggesting that people
can foretell the future: “If we do not as-
sume the strict necessity of all happening
by way of a causal chain that links all
events without distinction, and instead
let it be interrupted in countless places by
an absolute freedom, then all foreseeing of
the future, in dreams, in clairvoyant som-
nambulism, and in second sight, becomes
quite objectively and thus absolutely im-
possible, and so unthinkable – because
then there is simply no objectively real
future with the barest possibility of being
foreseen, in contrast with the present
situation where we doubt merely its
subjective conditions and hence its sub-
jective possibility. And even this doubt
can no longer be accommodated among
the well-informed these days, now that
countless testimonies, from the most
credible quarters, have confirmed such
anticipations of the future.” (pp. 79-80)

cause is more complicated, the effect more heterogeneous, but the
necessity with which it occurs is not one hair’s breadth smaller.” (p.
59) After some deeper reflections, Schopenhauer then concludes “It
is definitely neither metaphor nor hyperbole, but a quite dry and
literal truth, that just as a ball cannot start into motion on a billiard
table until it receives an impact, no more can a human being stand
up from his chair until a motive draws or drives him away: but then
his standing up is as necessary and inevitable as the ball’s rolling after
the impact.” (p. 65) Indeed, “Under presupposition of free will each
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human action would be an inexplicable miracle – an effect without
cause. (p. 66)
It then follows that “Everything that happens, from the greatest to the

smallest, happens necessarily. Whatever happens, necessarily happens.
Whoever is alarmed at these propositions still has some things to
learn and others to unlearn: but after that he will recognize that they
are the most abundant source of comfort and relief. – Our deeds are
truly no first beginning, and so in them nothing really new attains
existence: rather through what we do, we merely come to experience what
we are.” (p. 79) And “Wishing that some incident had not happened
is a foolish self-torment: for it means wishing something absolutely
impossible, and is as irrational as the wish that the sun should rise
in the West. Because every happening, great or small, occurs strictly
necessarily, it is totally vain to reflect on how trivial and accidental
were the causes that brought about that incident and how very easily
they could have been different. For this is illusory, in that they all
occurred with just as strict a necessity and had their effect with just
as much power as those in consequence of which the sun rises in the
East. Rather we ought to regard events as they occur with the same
eye as the print that we read, knowing full well that it stood there
before we read it.”

3 Stigler, S. M. (1999). Statistics on the Table: The History of Statisti-
cal Concepts and Methods. Cambridge, MA: Harvard University Press.
Chapters 3 and 4 of this riveting book center on the contribution of
Jevons to statistics. “Probability, which necessarily implies

uncertainty, is a consequence of our igno-
rance. To an omniscient Being there can
be none. Why, for instance, if we throw
up a shilling, are we uncertain whether
it will turn up head or tail? Because the
shilling passes, in the interval, through
a series of states which our knowledge
is unable to predict or to follow. If we
knew the exact position and state of
motion of the coin as it leaves our hand,
the exact value of the final impulse it re-
ceives, the laws of its motion as affected
by the resistance of the air and gravity,
and finally the nature of the ground at
the exact spot where it falls, and the laws
regulating the collision between the two
substances, we could predict as certainly
the result of the toss as we can which
letter of the alphabet will be drawn
after twenty-five have been taken and
examined. The probability, or amount of
conviction accorded to any fact or state-
ment, is thus essentially subjective, and
varies with the degree of knowledge of
the mind to which the fact is presented”
(Crofton 1885, p. 768)

3 Tegmark, M., & Wheeler, J. A. (2001). 100 years of quantum mys-
teries. Scientific American, 284, 68-75. A historical overview of
quantum mechanics and a positive evaluation of the Many-Worlds
Interpretation (main problem: “The bizarreness of the idea”). For
longer treatments critical of the Copenhagen dominance see Kumar
(2009) and Becker (2018). A clear classical description is in Feynman
(1965/1992).
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William Stanley Jevons and the Poor

Jevons’s accomplishments in science are impressive. Robertson (1951,
p. 247) states that “Within his theoretical framework, he moved
incisively to the solution of problems in the real world in a way that
no one before him had been able to do. If this does not constitute
a claim to consideration as the founder of econometric method, I do
not know what does.” In this book, we will cite Jevons often and at
length, as his writings on probability are clear, poetic, and compelling.
However, the modern reader is likely to raise an eyebrow when it
comes to Jevons’s strong opposition to state support for the poor.
As summarized by Keynes (1936, p. 544):

“On the side of morals and sentiment Jevons was, and always re-
mained, an impassioned individualist. There is a very odd early
address of his, delivered to the Manchester Statistical Society in
1869, in which he deplores free hospitals and medical charities of all
kinds, which he regarded as undermining the character of the poor
(which he seems to have preferred to, and deemed independent of,
their health). “I feel bound,” he said, “to call in question the policy
of the whole of our medical charities, including all free public infir-
maries, dispensaries, hospitals, and a large part of the vast amount
of private charity. What I mean is that the whole of these charities
nourish in the poorest classes a contented sense of dependence on
the richer classes for those ordinary requirements of life which they
ought to be led to provide for themselves.”.”
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William Stanley Jevons: A Burning Sense of Vocation

William Stanley Jevons (1835–1882) is primarily known for pioneer-
ing the mathematical treatment of economics. Based on carefully
collected sets of observations, Jevons would model and predict the
fluctuations of various economic indices including the price of gold
and of wheat. In his first book, The Coal Question, Jevons suggested
that an increasing demand on coal would exhaust the mines, re-
sulting in dire economic consequences for the British Empire. This
concern for a depletion of natural resources extended to Jevons’s
personal life: not only did he collect a vast number of books on eco-
nomics, but he also hoarded thin brown packing paper, to such a
degree that “even today, more than fifty years after his death, his
children have not used up the stock he left behind him.” (Keynes
1936, p. 523)

In the The Theory of Political Economy, Jevons put in mathemat-
ical form the idea of prospective utility based on the anticipation of
pleasure and pain, that is, “If laborious action be regarded as having
a positive value on account of its pecuniary reward and a negative
value on account of the toilsome feelings which accompany it, the
action will be carried on only so long as the individual contemplates a
preponderating amount of satisfaction.” (Robertson 1951, p. 237) In
The Principles of Science: A Treatise on Logic and Scientific Method,
“Jevons reduced logical inference to a simple but complete system,
and defined the inductive or scientific method, showing its unity in all
sciences, and the fundamental importance of the theory of probabil-
ity.” (Jevons and Jevons 1934, p. 232)

In The Power of Numerical Discrimination, Jevons describes the
first experiment on what is now known as ‘subitizing’, the mind’s
ability to “comprehend and count” small numbers “by an instanta-
neous and apparently single act of mental attention.” (Jevons 1871,
p. 281) Jevons “had genius and divine intuition and a burning sense
of vocation” (Keynes 1936, p. 545), but his frenzy of academic activ-
ity was unfortunately cut short at the age of 46:

“Jevons was drowned while bathing on the south coast of England
in August 1882, the shock of the cold water proving too much for
his enfeebled health. He was a few weeks short of forty-seven years
of age. He left a wife who had been a constant companion and help
in his work, and three small children, too young to understand its
nature.” (Jevons and Jevons 1934, p. 231)



2 Epistemic and Aleatory Uncertainty

PROBABILITY DOES NOT EXIST

Bruno de Finetti, 1974, ‘Theory of Probability’.

Chapter Goal

Probability is a notoriously ambiguous concept, and this chapter aims
to clarify the difference between two of its Bayesian interpretations.
According to the first interpretation, probability refers to a degree of
reasonable belief, an intensity of conviction about the truth of some
proposition (e.g., what is the probability that Julius Caesar, upon cross-
ing the Rubicon, truly uttered the phrase “alea iacta est”? What is the
probability that Italy will win the next Eurovision song contest? What
is the probability that the 100th digit in the decimal expansion of π is
even?). According to the second interpretation, probability (or better:
chance) refers to the possible realization of a particular event given a
data-generating process about which nothing more can be learned (e.g.,
what is the chance that a fair coin lands heads three times in a row?).1 1We regard the so-called frequentist

definition of probability a historical
accident; it is briefly mentioned at
the end of this chapter, together with
references to relevant background
material.

Epistemic Uncertainty

In Bayesian inference, probability is generally understood to refer to a
degree of reasonable belief (e.g., Jeffreys 1931). Complete confidence in
the truth of a proposition is characterized by a probability of 1, a value
that can be assigned to tautologies such as 3 = 3; complete confidence
in the falsity of a proposition is characterized by a probability of 0, a
value that may be assigned to propositions that have been irrevocably
disproved (e.g., ‘all swans are white’; ‘all Fermat numbers are prime’).
Probabilities in between 0 and 1 represent a graded scale of intensity of
conviction, or degree of belief. In this epistemic2 interpretation, probability 2 From the Greek word for ‘knowledge’.

is synonymous with plausibility.
Because probability refers to a state of uncertain knowledge, it is the

property of an observer, not the property of an object. This is consis-
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tent with the deterministic idea, outlined in the previous chapter, that
probability is a reflection of our ignorance, and hence that ‘probability
is wholly in the mind’. Consequently, early Bayesians had no trouble
accepting that probability is defined by the person making the plausi-
bility assessment, and that different people may have radically different
probabilities for the same scenario:

Augustus De Morgan (1806-1871), an
early proponent of Bayesian inference
and the work of Pierre-Simon Laplace.

“(…) carry two men to a room in which are two boxes, one small and
ribbed with steel, the other large and roughly put together. Let these
men have come from the two most opposite points of the earth in man-
ners and customs, yet they will immediately, when asked, point out which
is the larger of the two boxes: if they are both sane, disagreement will be
impossible. Now produce a piece of gold, and ask which of the two boxes
is filled with that substance. One has seen gold, and knows its value, and
also that it is rarely collected in large quantities, or placed in insecure
receptacles. He would say that most likely the smaller box, if either, is
full of gold. Or he may think that the question and circumstances are so
extraordinary, that the former would not have been put unless this case
had been a departure from ordinary rules, and may therefore pronounce
for the larger box. In either case it is clear that the probability or improb-
ability is the consequence of a state of his own mind, or of an impression
existing in himself, in a sense which cannot be, in any view of the case,
applied to the extension of the two boxes. If the other man knew nothing
of gold, he would not be able to bring his mind to either of the preceding
conclusions, in preference to the other. What we mean, then, by an event
being probable or improbable, is this; that with regard to that event the
mind of the spectator is in a state of disposition either to doubt or believe
its happening; which evidently depends in no way upon the event itself,
but upon the whole train of previous ideas and associations which the
mind of the spectator possesses upon such circumstances as he thinks sim-
ilar. Therefore it is wrong to speak of any thing being probable or improbable in
itself. The same thing may be really probable to one person and improbable to
another. And thus men may be justified in drawing different conclusions upon
the same subject. [italics ours]” (De Morgan 1849, p. 394)

Bruno de Finetti (1906–1985), the
Bayesian statistician who promoted the
idea that probability is always subjective.
The 1979 photo is available at http:
//www.brunodefinetti.it and has
been reproduced with permission from
Fulvia de Finetti.

Almost a century later, the mantra ‘all probability is inherently sub-
jective’ resurfaced in the work by Bayesian statisticians such as Frank
Ramsey, Jimmy Savage, Dennis Lindley, and Bruno de Finetti. For in-
stance, in the preface to his famous monograph Theory of Probability,
de Finetti argued explicitly that probability does not have an objective
meaning:

“The abandonment of superstitious beliefs about the existence of Phlo-
giston, the Cosmic Ether, Absolute Space and Time,…, or Fairies and
Witches, was an essential step along the road to scientific thinking. Proba-
bility, too, if regarded as something endowed with some kind of objective
existence, is no less a misleading misconception, an illusory attempt to
exteriorize or materialize our true probabilistic beliefs.” (de Finetti 1974,
p. x)

Instead, probability is a property of the observer:

http://www.brunodefinetti.it
http://www.brunodefinetti.it
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“Probabilistic reasoning—always to be understood as subjective—merely
stems from our being uncertain about something. It makes no difference
whether the uncertainty relates to an unforseeable future, or to an un-
noticed past, or to a past doubtfully reported or forgotten; it may even
relate to something more or less knowable (by means of a computation, a
logical deduction, etc.) but for which we are not willing or able to make
the effort; and so on.” (de Finetti 1974, pp. x-xi)

‘Probabilis’: Possessed of Verisimilitude
The word probability derives from the Latin probare, ‘to try’, which
survives in the modern Italian ‘provare’, the English ‘to probe’ and
the Germanic ‘proberen/probieren’. The Latin ‘probabilis’ was Ci-
cero’s translation of the Greek ’pithanos’ (persuasive). In Cicero’s
main works, ‘probabilis’ is synonymous with ‘veri similia’ (e.g., Cicero
45BC/1956a, Frag. 19; II, x, xxxi; see Glucker 1995 for a detailed
treatment). The concept was proposed earlier by the skeptic philoso-
pher Carneades, whose key ideas were as follows:
(I) The wise man withholds assent. “(…) what is so ill-considered or
so unworthy of the dignity and seriousness proper to a philosopher
as to hold an opinion that is not true, or to maintain with unhesi-
tating certainty a proposition not based on adequate examination,
comprehension and knowledge?” (Cicero 45BC/1956b, I,i)
(II) Even the perceptual information that enters our senses cannot be
relied upon as veridical, as is demonstrated by visual illusions and the
like. “What can be bigger than the sun, which the mathematicians
declare to be nineteen times the size of the earth? How tiny it looks
to us!” (Cicero 45BC/1956a, II, xxvi)
(III) In theory, the wise man never assents. In practice, when con-
crete decisions need to be taken, he is guided by probability, because
some propositions are more truth-like than others. “Thus the wise
man will make use of whatever apparently probable presentation he
encounters, if nothing presents itself that is contrary to that proba-
bility, and his whole plan of life will be charted out in this manner.”
(Cicero 45BC/1956a, II, xxxi)

In Cicero’s use, probability or verisimilitude has an epistemic inter-
pretation, as it refers to the judgment of the wise man in deciding to
go on a voyage, sow a crop, marry a wife, beget a family, and so on
(Cicero 45BC/1956a, II, xxxiv; see also Popper 1972, p. 404). For
the wise man, “Probability is the very guide of life” (a popular loose
translation of Cicero 45BC/1956b, I, v, 12; see also Jevons’ epigraph
that starts this book).
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Aleatory Uncertainty

In 49 BC, Julius Caesar led his legion
across the border river Rubicon in the
direction of Rome, thereby prompting a
civil war. Caesar is said to have marked
this irreversible and monumental deci-
sion with the words “alea iacta est” (the
die is cast; in modern Italian, “Il dado
è tratto”). The photo shows a bust of
Caesar, mounted on a bridge across the
Rubicon, overlooking the Adriatic sea.

Although the Bayesian position is strongly associated with the epistemic
interpretation of probability, Bayesians also use an aleatory interpreta-
tion (from the Latin word ‘alea’, which means ‘die’). The aleatory inter-
pretation comes into play when we consider a series of similar events in
which there is a generally accepted limit on our knowledge. Standard
examples include tosses of a coin, throws of a die, and drawings from a
deck of cards or from an urn filled with marbles. Concretely, suppose
we are about to toss a fair coin. The probability that it lands heads is not
a random event – it is governed by the laws of physics and determined
by factors such as the rate of spin, the initial velocity, and air resistance
(Diaconis et al. 2007, Diaconis and Skyrms 2018). Nevertheless, when
asked “what is the probability that a fair coin will land heads on the
next toss?” it is assumed that these determining factors are beyond
reach, and that, given this lack of knowledge, the degree of belief that
a fair coin will come up heads corresponds to a probability of .50, irre-
spective of the outcomes of previous tosses. Note that, in the Bayesian
interpretation, the aleatory probability still refers to a degree of belief;
it is not, for instance, defined as a hypothetical limit on a frequency of
occurrence.
Geophysicist and Bayesian statistician Sir Harold Jeffreys gave a pithy

definition of chance. If, given a particular state of the world, “(…)
the probability of an event is the same at every trial, no matter what
may have happened at previous trials, we say that the probability is a
chance”3 (Jeffreys 1973, p. 46; see also Jeffreys 1936a, p. 356; Jeffreys 3 Jeffreys adds: “the term was used in this

sense by N. R. Campbell and revived by
M. S. Bartlett.”

1961, pp. 51-52).
In statistical jargon, the irreducible unpredictability associated with

aleatory processes is called sampling variability. In terms of the Bayesian
learning cycle shown in Figure 1 (p. 12), it refers to the deductive predic-
tion of data from a specific state of the world. To illustrate, Figure 2.1
shows the predicted number of heads when a fair coin is tossed ten
times. The chance is small that a fair coin would land heads ten times
in a row (i.e., 1/210 = 1/1024); the chance is almost 0.25 that a fair coin
shows 5 heads out of 10 tosses.

Epistemic and Aleatory Uncertainty in Practice

In practical application, both epistemic and aleatory uncertainty
play a role: there are both unknowns and unknowables. Consider for
instance the following scenario:

“In October 2009, the Dutch newspaper Trouw reported on research
conducted by H. Trompetter, a student from the Radboud University
in the city of Nijmegen. For her undergraduate thesis, Trompetter had
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Figure 2.1: Aleatory uncertainty demonstrated for the scenario where a fair coin will be
tossed ten times. The Number of successes on the x-axis refers to the number of times the
coin is predicted to land heads. Figure from the JASP module Learn Bayes.

The Unknown and the Unknowables
“There are things that I am uncertain about simply because I lack
knowledge, and in principle my uncertainty might be reduced by
gathering more information. Others are subject to random variability,
which is unpredictable no matter how much information I might get;
these are the unknowables. The two kinds of uncertainty have been
debated by philosophers, who have given them the names epistemic
uncertainty (due to lack of knowledge) and aleatory uncertainty (due
to randomness).” (O’Hagan 2004, p. 132)

interviewed 121 older adults living in nursing homes. Out of these 121
older adults, 24 (about 20%) indicated that they had at some point been
bullied by their fellow residents. Trompetter rejected the suggestion that
her study may have been too small to draw reliable conclusions: “If I
had talked to more people, the result would have changed by one or two
percent at the most.” (Lee and Wagenmakers 2013, p. 47)

Let’s keep things simple and assume that the nursing homes in the
Netherlands are comparable with respect to the occurrence of bullying
– that is, we assume that, as far as bullying is concerned, the nursing
homes are statistically exchangeable. Next, based on Trompetter’s data,
let’s predict the number of older adults who report being bullied if
we were to survey a different nursing home with, say, 100 older adults.
Given that we know the true underlying chance to be .20 (the pro-
portion in the Trompetter data), the prediction is determined solely
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by sampling variability, that is, all that matters for the prediction is
aleatory uncertainty. The aleatory predictions are shown in Figure 2.2
as the peaked histogram. For these purely aleatory predictions, there is
a summed probability of 95% that the number of bullied older adults
will fall in the range from 13 to 28; also, the probability that the num-
ber of bullied older adults will fall between 18 and 22 (‘two percent at
the most’ difference from Trompetter’s 20%) equals .47. Clearly, if we
know that the true chance is .20 and we survey 100 older adults, the
result cannot be predicted with much accuracy.
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Figure 2.2: Predictions from the Trompetter scenario described in the main text. The
‘aleatory’ curve is based on the assumption that older adults from nursing homes have a
.20 chance of reporting being bullied. The ‘epistemic + aleatory’ curve respects the fact
that the true chance is not known exactly, and therefore allows other chances than .20 to
play a role; consequently, the predictions become more spread out (i.e., more uncertain).
The Predicted number of bullied elderly on the x-axis refers to the predicted number of
bullied elderly from a nursing home of 100 inhabitants. Figure from the JASP module
Learn Bayes.

The preceding analysis is seriously incomplete, however, as it assumes
that an ‘unknown’ factor (i.e., the proportion of older adults in the
Netherlands who report being bullied) was actually known exactly,
and equals .20, the proportion of bullied older adults in Trompetter’s
relatively small sample. But based on Trompetter’s observations (i.e.,
24 bullied older adults out of 121) we are still uncertain about the true
proportion of bullied elderly in the population – in particular, values
such as .18 and .23 cannot be ruled out based on the initial sample. In
other words, after learning about Trompetter’s findings there remains
considerable epistemic uncertainty about the true proportion in the
population, and by ignoring this uncertainty (as was done in the above
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analysis) the predictions are overconfident. Realistic predictions need to
consider not only sampling variability given a true state of the world,
but also epistemic uncertainty, the fact that we do not exactly know
the true state of the world (e.g., Aitchison and Dunsmore 1975). The
broader histogram in Figure 2.2 shows the predictions based on the
combination of epistemic and aleatory uncertainty.4 4 The epistemic uncertainty was quan-

tified in a standard Bayesian manner.
to be discussed later in more detail. To
appease the impatient reader: the epis-
temic posterior uncertainty was obtained
by updating a flat prior distribution
with Trompetter’s observations (i.e., 24
bullied older adults out of 121).

The predictions that include epistemic uncertainty are now more
spread out than they were before. For the predictions that make up the
‘Epistemic + Aleatory’ histogram, there is a summed probability of 95%
that the number of bullied older adults will fall in the range from 11 to
32 (for aleatory-only this was 13 to 28); the probability that the number
of bullied older adults will fall between 18 and 22 now equals .36 (for
aleatory-only this was .47).
In sum, predictions about to-be-observed data should respect epis-

temic uncertainty; predictions that only involve aleatory uncertainty
(‘sampling variability’) will falsely suggest that the future is more pre-
dictable than it really is.

Exercises

1. Borel wrote: “Indeed in all rigor, a judgment enunciated by Peter at
a given time has a determinate probability, but the same judgment
enunciated by him at a different time doesn’t necessarily have the
same probability, even if during the interval between these two
times, he has received no external information.” (Borel 1964, p. 51).
How can this be?

2. In the Trompetter example, we assumed that the nursing homes
were exchangeable in terms of bullying. (1) Is this a plausible assump-
tion? How may it be violated? (2) What would happen to our predic-
tions if we drop the assumption of exchangeability?

3. What would have had to happen in the Trompetter example to re-
duce the epistemic uncertainty that was involved in the prediction?

4. What would have had to happen in the Trompetter example to re-
duce the aleatory uncertainty involved in the prediction concerning
the proportion of bullied elderly?

5. In antiquity, Carneades’ idea that probability is the practical guide
to life did not go unchallenged. As mentioned in Franklin (2015, p.
200), “Carneades has given no adequate reason why those appear-
ances that are like the truth are in fact reliable guides for action.”.
Provide a response to this critique.

6. Does it make sense to speak of “the probability that the 10,000th

figure in the digital expansion of Euler’s number e is a 5”?
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7. On Monday, September 7th 2020, one of us (EJ) was tested for
COVID-19. Among those who are tested, about 3% receive a ‘positive’
outcome (i.e., the test detects the presence of COVID-19). Among
those who receive a positive test outcome, about 75% really have
COVID-19. It took 48 hours before EJ learned about the test out-
come. On Tuesday, September 8th 2020, what would have been a
reasonable estimate of the probability that EJ has COVID-19 (a) ac-
cording to the doctor who administered the test (b) according to EJ
(who has knowledge –albeit incomplete– of his own behavior and
the people he interacted with in the past week) (c) according to an
epidemiologists with knowledge about the prevalence of COVID-19
in Hilversum, where EJ lives?

Chapter Summary

In the Bayesian framework, probability is defined as a degree of reason-
able belief.5 When the belief concerns an ‘unknown’, that is, a propo- 5 Some Bayesian statisticians disagree, but

immediately struggle to explain what
would then be an acceptable alternative
definition.

sition about which more can be learned, then the probability is called
epistemic. Epistemic probabilities can be attached to unique events. For
instance, one may assign a probability to the proposition that 100 years
from now, The Netherlands will be largely underwater. Epistemic prob-
abilities can also be attached to historic events. For instance, one may
assign a probability to the proposition that the biologist Haldane spied
for Stalin. But beliefs can also concern ‘unknowables’; in repeated trials
of observations (e.g., coin tosses, dice throws), the relevant knowledge
to differentiate individual trial outcomes is often unavailable. When,
given a particular state of the world, the probability of an outcome is
the same for all trials, irrespective of what outcomes materialized previ-
ously, then that probability is called a chance (Jeffreys 1961, pp. 51-52).
For instance, given that the state of the world is ‘the coin is fair’, the
probability (chance) that the coin will land heads on the next toss is
.50, irrespective of how many times it has landed heads in previous
tosses. Chances reflect aleatory uncertainty, which gives rise to sampling
variability. When the goal is to predict future events, both epistemic
uncertainty and aleatory uncertainty have to be taken into account si-
multaneously. Ignoring epistemic uncertainty leads to predictions that
are overconfident.

Want to Know More?

3 Clayton, A. (2021). Bernoulli’s Fallacy: Statistical Illogic and the Crisis
of Modern Science. New York: Columbia University Press. “Consider
this, instead, a piece of wartime propaganda, designed to be printed
on leaflets and dropped from planes over enemy territory to win the
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Probability and the Feeling of the Mind

“Probability is the feeling of the mind, not the inherent property of
a set of circumstances. (…) Say that the question is, whether a red
or a green ball shall be drawn, and suppose that A feels certain that
all the balls are red, B, that all are green, while C knows nothing
whatever about the matter. We have here, then, in reference to the
drawing of a red ball, absolute certainty for or against, with absolute
indifference, in three different persons, coming under different previ-
ous impressions. And thus we see that the real probabilities may be
different to different persons. The abomination called intolerance,
in most cases in which it is accompanied by sincerity, arises from
inability to see this distinction. (…) In the mean time, we bring it
forward as not the least of the advantages of this study, that it has
a tendency constantly to keep before the mind considerations nec-
essarily corrective of one of the most fearful taints of our intellect.”
(De Morgan 1838, pp. 7-8)

hearts and minds of those who may as yet be uncommitted to one
side or the other. My goal with this book is not to broker a peace
treaty; my goal is to win the war.” (p. xv)

3 de Finetti, B. (1974). Theory of Probability. New York: John Wiley
& Sons. “More recently the subjectivist view has been seen as the
best that is currently available and de Finetti appreciated as the great
genius of probability.” (Lindley 2000, p. 336)

3 Eagle, A. (Ed.) (2011). Philosophy of Probability: Contemporary
Readings. New York: Routledge. Includes a series of famous essays on
probability, including Frank Ramsey’s 1926 “Truth and Probability”.

3 Jeffreys, H. (1961). Theory of Probability (3rd edn.). Oxford, UK:
Oxford University Press. The best book on statistical inference of all
time, and by a landslide.

3 Kyburg Jr., H. E., & Smokler, H. E. (Eds; 1964). Studies in Subjec-
tive Probability. New York: Wiley. A great collection of foundational
papers on epistemic/subjective probability, including translated con-
tributions from Borel and from de Finetti.

3 Lindley, D. V. (1985). Making Decisions (2nd edn.). London: Wiley.
Simple, straightforward, and compelling. A must-read.

3 Lindley, D. V. (2006). Understanding Uncertainty. Hoboken: Wiley.
If every student had to read this book, the world would be a better
place.

3 O’Hagan, A. (2004). Dicing with the unknown. Significance, 1, 132-
133. A wonderful paper.
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3 Świątkowski, W., & Carrier, A. (2020). There is nothing magical about
Bayesian statistics: An introduction to epistemic probabilities in data
analysis for psychology starters. Basic and Applied Social Psychology,
42, 387-412. An accessible introduction to epistemic probabilities and
Bayesian inference.

Probability of Effects and Probability of Causes

“It often happens that instead of trying to guess an event, by means
of a more or less imperfect knowledge of the law, the events may
be known and we want to find the law; or that instead of deducing
effects from causes, we wish to deduce the causes from the effects.
These are the problems called probability of causes, the most interest-
ing from the point of view of their scientific applications.

I play écarté with a gentleman I know to be perfectly honest. He
is about to deal. What is the probability of his turning up the king?
It is 1/8. This is a problem of the probability of effects.

I play with a gentleman whom I do not know. He has dealt ten
times, and he has turned up the king six times. What is the prob-
ability that he is a sharper? This is a problem in the probability of
causes.

It may be said that this is the essential problem of the experimen-
tal method. I have observed n values of x and the corresponding
values of y. I have found that the ratio of the latter to the former is
practically constant. There is the event, what is the cause?

Is it probable that there is a general law according to which y
would be proportional to x, and that the small divergencies are due
to errors of observation? This is a type of question that one is ever
asking, and which we unconsciously solve whenever we are engaged
in scientific work.” (Poincaré 1913, p. 160; italics in original)
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Afterthought: The Frequentist Definition of Probability

Instead of defining probability as degree of reasonable belief, some
philosophers have proposed to define it as the limiting proportion of
occurrence. For instance, the probability that a fair coin lands heads
on the next throw is .50 because, in the limit of tossing the coin very
often, the coin will land heads in 50% of the cases.

This is a Bayesian book and so we will not discuss the frequentist
definition in detail. Wrinch and Jeffreys (1919, p. 731) summarized
their early examination as follows: “It is shown that the attempt to
give a definition of probability in terms of frequency is unsuccessful.”
Indeed, Harold Jeffreys considered the non-frequentist definition a
cornerstone of his Bayesian theory of scientific learning: “The essence
of the present theory is that no probability, direct, prior, or posterior,
is simply a frequency. The fundamental idea is that of a reasonable
degree of belief (…)” (Jeffreys 1961, p. 401)

Jeffreys’s concrete objections to the frequency definition can be
found in Theory of Probability, Chapter VII, “Frequency definitions
and direct methods”. Jeffreys appears exasperated that his critique
of the frequency definitions were generally ignored (see also Jeffreys
1936a):

“Adherents of frequency definitions of probability have naturally ob-
jected to the whole system. But they carefully avoided mentioning
my criticisms of frequency definitions, which any competent math-
ematician can see to be unanswerable. In this way they contrive to
present me as an intruder into a field where everything was already
satisfactory. I speak from experience in saying that students have
no difficulty in following my system if they have not already spent
several years in trying to convince themselves that they understand
frequency theories.” (Jeffreys 1961, viii)

One common objection to the frequentist definition, also men-
tioned by Jeffreys, is that it is unable to assign probabilities to
unique events, and essentially deals only with aleatory uncertainty,
severely restricting the application domain:

“Probability is a purely epistemological notion. For something over
one hundred years, however, people have tried to define probability
in terms of some notion of limiting frequency in an infinite series.
There are two objections to this. First, even if such a definition
could be given, the epistemological problem would be completely
untouched. Secondly, even if the limiting frequency in an infinite
series was known, we could draw no conclusions whatever about any
finite set without some further principle, which cannot be contained
in either pure logic or experience; and all applications in practice
are to finite sets.” (Jeffreys 1955, p. 283; see also Jeffreys 1973, pp.
193-197)

In the frequentist interpretation, then, probability cannot be “the
very guide of life”. We suggest that a serious study of the frequentist
definition of probability ought to begin with a serious study of Jef-
freys’s critique of the concept (see also Clayton 2021, Jaynes 2003).





3 The Rules of Probability

[with Quentin F. Gronau]

There may seem to be an intricacy in this subject which may prove distasteful to
some readers; but this intricacy is essential to the subject at hand.

Jevons, 1874

Chapter Goal
“Without [the calculus of probabilities]
science would be impossible, without
it we could neither discover a law nor
apply it. Have we the right, for instance,
to enunciate Newton’s law? Without
doubt, numerous observations are in
accord with it; but is not this a simple
effect of chance? Besides how do we
know whether this law, true for so many
centuries, will still be true next year? To
this objection, you will find nothing to
reply, except: ‘That is very improbable.’ ”
(Poincaré 1913, p. 157)

The Bayesian reasoning process is governed by the laws of probabil-
ity theory. Here we provide a brief and intuitive account of the most
important concepts.

Terminology and Axioms

We have a sample space Ω (‘omega’) of possible outcomes. Outcomes
and their combinations form ‘events’. Toss a die once: the sample space
consists of the possible number of pips that may be observed (i.e., 1,
2, 3, 4, 5, or 6). An example event is “the pips are even in number”.
Although the interpretation of probability remains the topic of consid-
erable debate (e.g., Galavotti 2005), the warring parties1 agree that for 1Mostly Bayesians, who view probability

as a degree of belief, and frequentists,
who view probability as the limit of a
proportion.

something to be a probability, it needs to adhere to three basic rules
–the Kolmogorov axioms– from which all others can be derived:

◦ Probabilities are not negative.

◦ Some outcome always happens.

◦ For mutually exclusive (‘disjoint’) events, probability adds.

Thus, for the probability that either event A or event B will occur (and
only one may occur), we have p(A∪B) = p(A)+p(B). A Venn diagram2 2 Venn had a distinctly negative opinion

on Bayesian inference. Nonetheless,
his diagrams are useful for obtaining
an intuitive idea of the structure of a
probabilistic problem.

is shown in Figure 3.1.
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Figure 3.1: The probability for disjoint (i.e., mutually exclusive) events is their sum. The
symbol ‘∪’ stands for ‘union’, the probability of A or B. The symbol ‘Ω’ represents the
sample space of all possible winners. Figure available at BayesianSpectacles.org under
a CC-BY license.

The Sum Rule

According to the sum rule, the probability of events A or B is given by
the sum of their individual probabilities minus the probability of A and
B (i.e, p(A ∩B)):

p(A ∪B) = p(A) + p(B)− p(A ∩B).

The Venn diagram in Figure 3.2 clarifies that the intersection (i.e., A
and B) is subtracted because it would otherwise be counted twice. Note
that when the events do not have any overlap, we obtain the third Kol-
mogorov axiom as a special case. Also note that the ‘or’ in A ∪ B is
inclusive: at stake is the summed probability for event A happening and
B not happening, for event B happening and A not happening, and for
both A and B happening.

The Multiplication Rule

According to the multiplication rule, the probability of both independent
events A and B arising is given by multiplying their individual probabili-
ties:

p(A ∩B) = p(A)× p(B).

When two fair dice are thrown, the probability that the first die will
show six pips is 1/6, and the probability that the second die will show six

BayesianSpectacles.org
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Figure 3.2: Venn diagrams provide an intuition for the sum rule, which states that p(A ∪ B) = p(A) + p(B) − p(A ∩ B). Subtracting the
intersecting area p(A ∩ B) (i.e., A and B) is needed to prevent that area from being counted twice. In this specific example, the probability
that a randomly chosen European is either Dutch (i.e., NL) or a fan of Ajax is the sum of the individual probabilities minus the probability
of a person being both Dutch and an Ajax fan. Figure available at BayesianSpectacles.org under a CC-BY license.

pips is 1/6; according to the multiplication rule, the probability that both
will show six pips is 1/6 × 1/6 = 1/36. Often, however, the constituent
events are not independent, and this brings us to the next section.

Conditional Probability

The rule of conditional probability states that the probability of A condi-
tional on B holding true equals the intersection (i.e., A and B) normalized
to the probability of B:

p(A | B) =
p(A ∩B)

p(B)
.

The vertical stroke symbol ‘|’ is usually read as ‘given that’.3 3 This notation was first proposed by
our Bayesian hero Sir Harold Jeffreys
(Jeffreys 1931, p.15; Jeffreys 1939, p.25).
For details see the post “The man who
rewrote conditional probability” on
BayesianSpectacles.org.

The intuition for this rule can be obtained by considering another
Venn diagram, shown in Figure 3.2. Suppose we wish to learn, from
the information provided, the probability that a randomly selected
European is Dutch, given that we are told they are an Ajax fan. The

BayesianSpectacles.org
BayesianSpectacles.org
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probability of interest involves p(Ajax fan ∩ NL). But this intersection
of events has probability 0.00577, and clearly that is much too low.
This probability would be correct if we were sampling randomly from
the population of Europeans – in other words, if we blindly threw a
dart onto the entire Venn diagram. But we know that our person is an
Ajax fan; hence, our relevant universe Ω has reduced to the red oval
in Figure 3.2. In other words, we are interested in the probability that
a randomly thrown dart lands in the intersection area, given that we
already know it landed in the red oval area — what we need, therefore,
is the proportion of the red oval that is brownish. To obtain the desired
result, we apply the definition of conditional probability and obtain4: 4 As a mnemonic, note that the vertical

stroke symbol ‘|’ for ‘given that’ was
originally written as the slanted stroke
symbol ‘/’ that is now exclusively used
to represent ‘divided by’. Thus, when
you see p(NL |Ajax fan) you immediately
know that the definition involves a
division by p(Ajax fan).

p(NL | Ajax fan) = p(Ajax fan ∩NL)
p(Ajax fan)

=
0.00577

0.010
= 0.577.

The rule of conditional probability can also be written like this:

p(A ∩B) = p(A | B)× p(B).

This way of writing the rule is consistent with another intuition, one
that is provided by a tree diagram. Figure 3.3 shown an example. The
tree progresses from left to right; the first branching factor is according
to whether a randomly selected person is an Ajax fan or not, and the
second branching factor is according to nationality.5 Importantly, the 5 The tree invites a temporal interpreta-

tion, but that is not necessary and the
tree may just as will be constructed the
other way around, with nationality as the
first branching factor.

second branch is conditional on what happened in the first branch, and
this is why tree diagrams automatically encode conditional probabili-
ties. For instance, the top path first leads to the selection of an Ajax fan;
then, given that an Ajax fan was selected, there is a particular probabil-
ity that this person is also Dutch. As indicated in the tree diagram, this
probability is 0.577 – the same conditional probability that we already
calculated above. A little reflection reveals that the top path of the tree
diagram tells us everything we need to know to arrive at the rule for
conditional probability: the probability of being an Ajax fan and Dutch
is the probability of going up in both branches: first, with probability
0.010, we go up to select our Ajax fan; then, with probability 0.577, we
go up once more to select a Dutch person, given that we find ourselves
among the branches that only contain Ajax fans. In other words, we
have:

p(Ajax fan ∩NL) = p(Ajax fan)× p(NL | Ajax fan),

which is the definition of conditional probability.
Note that if p(NL |Ajax fan) were equal to p(NL) (i.e., whether or

not one has selected an Ajax fan leaves unaltered the probability of
having selected a Dutch person), we recover the multiplication law for
independent events.
Bayesians such as Harold Jeffreys, Ed Jaynes, and Dennis Lindley

have argued that all probability assignments are conditional, in the
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Figure 3.3: Tree diagrams help provide an intuition for the law of conditional probability and the law of total probability. See text for
details. Figure available at BayesianSpectacles.org under a CC-BY license.

sense that they are conditional on background knowledge K. For in-
stance, Wrinch and Jeffreys (1921, p. 381) wrote: “Now it appears cer-
tain that no probability is ever determined from experience alone. It
is always influenced to some extent by the knowledge we had before
the experience.” To make this explicit, we should really write p(A |K)

instead of p(A); however, it is unusual and cumbersome to pay tribute
to K in every equation, and we will not do so here.6 Nevertheless, it is 6Harold Jeffreys often conditioned his

probability statements on background
knowledge or history ‘H’; for current-
day readers this can be confusing, as
nowadays ‘H’ stands for ‘hypothesis’.

important to realize that all probability assignments occur against the
backdrop of an existing knowledge base.

Marginal Probability

The law of total probability establishes how the overall (‘marginal’)
probability for an event can be computed from conditional probabilities
involving an exhaustive partition of the sample space. Before we show
the equation, consider again the tree diagram in Figure 3.3. Suppose we
wish to derive, from the information given in the tree, the probability
of selecting a Dutch person, p(NL). This number is not shown in the
tree directly, because the first branch involves the probability of select-
ing an Ajax fan, which is not something we are interested in. For the
question at hand, whether or not someone is an Ajax fan is a nuisance

BayesianSpectacles.org
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Defining the Probable by the Probable

“Has probability been defined? Can it even be defined? And if it can
not, how dare we reason about it? The definition, it will be said, is
very simple: the probability of an event is the ratio of the number of
cases favorable to this event to the total number of possible cases.

A simple example will show how incomplete this definition is.
I throw two dice. What is the probability that one of the two at
least turns up a six? Each die can turn up in six different ways; the
number of possible cases is 6 × 6 = 36; the number of favorable
cases is 11; the probability is 11/36.

That is the correct solution. But could I not just as well say:
The points which turn up on the two dice can form 6 × 7/2 = 21

different combinations? Among these combinations 6 are favorable;
the probability is 6/21.

Now why is the first method of enumerating the possible cases
more legitimate than the second? In any case it is not our definition
that tells us. We are therefore obliged to complete this definition by
saying ‘…to the total number of possible cases provided these cases
are equally probable.’ So, therefore, we are reduced to defining the
probable by the probable.” (Poincaré 1913, pp. 155-156)

factor. How do we get rid of it? Well, we observe that there are two
paths in the tree diagram that result in the selection of a Dutch person.
The first path involves ‘Ajax fan’ and then ‘NL’, for a probability of
0.010 × 0.577 = 0.00577; the second path involves ‘not Ajax fan’ and
then ‘NL’, for a probability of 0.990 × 0.017 = 0.01683. Adding these
two probabilities provides the marginal or overall probability of select-
ing a Dutch person: 0.00577 + 0.01683 = 0.0226. What we have done,
in fact, is to compute a weighted average between the result within
the group of Ajax fans (with a corresponding probability of 0.577) and
within the group of not Ajax fans (with a corresponding probability of
0.017); the averaging weights are provided by the probability of being
an Ajax fan. That this is required can be intuited from the tree diagram,
and also from imagining that the probability of finding an Ajax fan is
zero; in that case, only the lower of the two ‘NL’ paths is relevant, and
p(NL |no Ajax fan) is equal to p(NL).
When the nuisance factor B can take on two values (e.g., Ajax fan

vs. no Ajax fan; winning vs losing; left or right, etc.) the law of total
probability can be written as follows:

p(A) = p(A | B1)× p(B1) + p(A | B2)× p(B2).

When the nuisance factor can take on many values (e.g., day of the
year), say n of them, we simplify notation by using Euler’s summation
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sign Σ:

p(A) =

n∑
i=1

p(A | Bi)× p(Bi),

indicating that the partition runs from B1 to Bn. Although n may be
large, the principle remains the same: the marginal probability is ob-
tained by simply summing over the weighted conditional distributions.7 7 The events Bi that are conditioned on

must be exhaustive and exclusive.However, we have to face one more complication: sometimes, the
number of partitions n is infinite. For instance, imagine you are playing
an online game and the software spawns a synthetic opponent i with
strength Si. This strength Si is determined by drawing a value from
a continuous distribution – say a bell-shaped distribution with mean
100 and standard deviation 15, like the population distribution of IQ.
So sometimes your opponent will be very weak, sometimes very strong,
but most of the time your opponent will be average. Suppose that when
we know Si, we know your chances of beating the opponent – in other
words, we know the conditional probabilities p(win |Si). But now the
question is, without yet knowing what specific opponent you are going
to face, what are your chances of winning the next game? The law of
total probability appears to tell us that we should compute

p(win) =
n∑

i=1

p(win | Si)× p(Si),

but we cannot do this, because under a continuous distribution, the
probability p(Si) of drawing any specific value Si is…zero.8 As shown 8 For more details see the YouTube

channel ‘3Blue1Brown’, episode “Why
“probability of 0” does not mean “impos-
sible” | Probabilities of probabilities, part
2”.

in the right panel of Figure 3.4, ‘probability’ in a continuous distribu-
tion is defined as the area under the curve, that is, the probability that
a value falls between a and b is the area of the continuous distribution
in the interval from a to b. As the interval narrows, the probability
decreases, until, when the interval is zero, it vanishes entirely.
The standard solution to this dilemma is to switch from summing

(which is defined for discrete quantities) to integration (which is defined
for continuous quantities). The equation then becomes:

p(win) =
∫
S

p(win | S)× p(S) dS,

where p(S) indicates the continuous distribution from which particular
Si are drawn. The symbols of integration are explained in Figure 3.5
(Thompson 1910). Whenever the integral cannot be solved analytically,
one may resort to numerical approximations. One of these approxima-
tions is particularly straightforward: we draw a large number of Si from
distribution p(S), and for each we compute p(win | Si), which we then
average to obtain the desired result.9 9 By increasing the number of draws the

analytical result can be approximated to
any desired degree of accuracy.The concept of marginal probability is of fundamental importance

for Bayesian inference. Whenever an analysis is complicated by the pres-
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Figure 3.4: Discrete and continuous probability distributions. Left panel: In a discrete distribution, probability is the mass assigned to each
point, as indicated by its height. Right panel: In a continuous distribution, probability is the area under the curve. The height of the curve
does have meaning, but only relative to another height. Code from http://shinyapps.org/apps/RGraphCompendium.

ence of a nuisance factor that exerts an influence but is not of immedi-
ate interest, the law of total probability dictates how this nuisance factor
may be ‘averaged out’. To drive this intuition home we now consider a
geometric interpretation.

Excursion: A Geometric Interpretation of Marginal
Probability

Roger and Zita are going to play a tennis match. Without wind, they
are equally matched; but Roger is a relatively good wind player, so when
it is windy the probability of Roger winning increases to 0.70. The
probability that it will be windy is 0.60. A tree diagram is shown in
Figure 3.6.
Given the information from the tree diagram, what is the probability
that Roger wins the match? To answer this question, we need to remove
the wind factor and compute a weighted average – in statistics lingo, we
need to marginalize across the wind factor.10 From the tree diagram, we 10 The term ‘marginalize’ originates from

the analysis of contingency tables, where
the row sums are presented in the table
margin.

can see that two paths lead to Roger winning. The first path is ‘wind’
→ ‘Roger wins’ that has probability .60 × .70 = .42; the second path

http://shinyapps.org/apps/RGraphCompendium
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Figure 3.5: The first chapter of S. P. Thompson’s 1910 classic work ‘Calculus Made Easy’ explains how to interpret the symbols of integra-
tion.

is ‘no wind’→ ‘Roger wins’ that has probability .40 × .50 = .20. The
total probability that Roger wins is the sum across these two paths, so
.42 + .20 = .62. As in the Ajax example, we have effectively applied the
law of total probability to remove the wind factor, as follows:

p(Roger wins) = p(Roger wins | wind) × p(wind)

+ p(Roger wins | no wind) × p(no wind).

Instead of using a tree diagram, we can also display the information
by plotting the probability that Roger wins against the probability that
it is windy, creating a Venn diagram with four non-overlapping areas,
as shown in Figure 3.7 In this figure, the area of the left square (i.e.,
‘wind’ and ‘Roger wins’) is .60 × .70 = .42, equalling the probability
for the first path in the tree diagram. The area of the right square (i.e.,
‘no wind’ and ‘Roger wins’) is .40 × .50 = .20, the same as the second
path in the tree diagram. The marginal probability of Roger winning
therefore equals the summed area of the two squares, that is, the area
for Roger winning under the curve across the wind factor. Because the
x-axis ranges from 0 to 1, this total area equals the average height of the
curve.
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Figure 3.6: Tree diagram for a tennis match. When there is no wind, Roger and Zita are equally matched; when it is windy, how-
ever, Roger’s chances of winning increase. What is the marginal probability of Roger winning the match? Figure available at
BayesianSpectacles.org under a CC-BY license.

This geometric interpretation of marginal probability makes it clear
that it is a weighted average across the nuisance variable (in this case,
the wind factor). For instance, if the probability of it being windy in-
creases from .60 to .80, the area under the curve becomes larger, as the
left square has greater height than the right square. From the geometric
interpretation it is also apparent that the marginal probability always
falls in between the highest probability for the factor of interest (i.e.,
the probability of Roger winning when it is windy, which is .70) and the
lowest probability for the factor of interest (i.e., the probability of Roger
winning when it is not windy, which is .50).
The tennis example can be generalized by differentiating between

multiple wind strengths (e.g., not windy, a little windy, windy, very
windy, and stormy), each associated with a different probability of
Roger winning. The Venn diagram would then consist of multiple
squares, one for each wind condition. The marginal probability of
Roger winning would still be the area under the curve across the wind
factor. If the wind factor becomes a continuous variable the curve
changes smoothly instead of abruptly.
Marginal probability is not just important in soccer and tennis, but it

also plays a key role in Bayes’ rule, to which we now turn.

BayesianSpectacles.org
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Figure 3.7: Geometric interpretation of marginal probability. The probability that Roger
wins the match is the sum of the two grey squares, or the area under the ‘Roger wins’
curve. Because the x-axis ranges from 0 to 1, this equals the average height of the curve,
which is indicated by the blue horizontal line.

Bayes’ Rule

A simple consequence of the definition of conditional probability,
Bayes’ rule shows how we can move from p(B |A) to p(A |B), and thus
move from a purely deductive system that makes only predictions (i.e.,
p(data | state of the world)) to a system that can also achieve induction
(i.e., p(state of the world | data)). In other words, Bayes’ rule inverts the
causal arrow from causes→ consequences (i.e., p(consequences | causes)) to
consequences→ causes (i.e., p(causes | consequences)).11 11 This is the reason why, until the 1950s,

‘Bayesian inference’ was referred to as
‘inverse probability’.

Deriving Bayes’ rule is straightforward. We have already seen the
definition of conditional probability:

p(A ∩B) = p(A | B)× p(B).

Switching labels A and B yields another valid version:

p(B ∩A) = p(B | A)× p(A).
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The conjunction of events is symmetric (i.e., the probability of A and B
is the same as the probability of B and A):

p(A ∩B) = p(B ∩A),

and it follows that

p(A | B)× p(B) = p(B | A)× p(A).

Dividing both sides by p(B) then yields Bayes’ rule:

p(A | B) =
p(B | A)× p(A)

p(B)
.

Bayes’ rule is extremely powerful, as becomes clearer when we re-
place the abstract symbol ‘A’ with ‘θ’ (‘theta’)12 and ‘B’ with ‘data’: 12 The Greek letter θ refers to an un-

known aspect of the world that we wish
to learn about. Keep in mind that for
a statistician, “the world” means “my
mathematical abstraction of a microscopi-
cally small part of the world”.

p(θ | data) = p(data | θ)× p(θ)
p(data)

.

We now move p(θ) in front and behold, here is the equation that has
changed the world (McGrayne 2011), the rule that formalizes the predic-
tive principle of learning from experience:

p(θ | data)︸ ︷︷ ︸
Posterior beliefs
about the world

= p(θ)︸︷︷︸
Prior beliefs

about the world

× p(data | θ)
p(data)︸ ︷︷ ︸
Predictive

updating factor

. (3.1)

The equation states that the change from prior to posterior beliefs about
the world ‘theta’ is driven by a predictive updating factor. This factor
quantifies the relative predictive adequacy of a particular value of θ by
comparing its predictive performance to the predictive performance
averaged across all values of θ, that is, p(data). Thus, values of θ that
predict better than average enjoy a boost in plausibility, whereas values
of θ that predict worse than average suffer a decline (Wagenmakers
et al. 2016a). But we are getting well ahead of ourselves. For now, note
the following aspects about Bayes’ rule (Equation 3.1):

If accepted as true, this statement
by Evans (2015) rules out all non-
Bayesian methods of inference as
far as the quantification of evidence
is concerned. Figure available at
BayesianSpectacles.org under a
CC-BY license.

◦ Posterior belief about the world is explicitly a conditional probability –
it conditions on the observed data.

◦ Prior belief about the world is also a conditional probability, be it in
disguise – prior belief conditions on background knowledge K (as
does the posterior belief; Lindley 2006, pp. 43-44). Here we leave
this dependence implicit.

◦ The denominator in the predictive updating factor, p(data), is a
marginal probability, commonly known as marginal likelihood, that
involves a weighted average or integral across the different values of

BayesianSpectacles.org
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θ following the law of total probability: p(data) =
∫
p(data | θ)p(θ) dθ.

The integration (or sum, in case θ is discrete) reveals that in order
to learn about which state of the world is most plausible, we need
to start out by postulating multiple rival states, each of which must
make predictions and have a prior plausibility.

◦ The predictive updating factor quantifies the change in belief brought
about by the data, and it is also known as the ‘strength of the evi-
dence’.13 13 For details see Evans (2015) and Etz

and Wagenmakers (2017).
◦ When prior beliefs are relatively weak (i.e., the claim at hand is rel-
atively implausible a priori), the predictive updating factor needs to
produce evidence that is relatively compelling in order for the poste-
rior beliefs to be appreciable. This quantifies the adage ‘extraordinary
claims require extraordinary evidence’.

Probability
or risk

=

p + q

Odds p : q

= p /

:

p p

p q

q

Figure 3.8: Comparison of probability and odds by C. M. G. Lee. Figure available on
Wikipedia under a CC BY-SA 4.0 license.

Odds Form of Bayes’ Rule

The above version of Bayes’ rule is in probability form. We can also
entertain an odds form. Start by considering a specific value, say, θ1.
The probability form of Bayes’ rule yields:

p(θ1 | data) = p(θ1)×
p(data | θ1)
p(data)

.

For a rival value, θ2, Bayes’ rule yields:

p(θ2 | data) = p(θ2)×
p(data | θ2)
p(data)

.

The odds form of Bayes’ rule can be obtained by dividing the above two
expressions, with the following result:
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From Probability to Odds and Back Again

Uncertainty about an event or a proposition A can be quantified by
probability, p(A), but it can just as well be quantified by the odds,
which is defined as the probability of the event occurring, p(A),
divided by the probability of the event not occurring, p(¬A):

o(A) =
p(A)

p(¬A)
=

p(A)

1− p(A)
.

Note that when p(A) = 1/2, o(A) = 1, so that an odds of 1 indi-
cates that an event is just as likely to occur as not. Also note that
probabilities range from 0 to 1 but odds range from 0 to infinity.
This makes odds better suited to represent extreme probabilities.
For instance, p(A) = .999 yields an odds of o(A) = 999, whereas
p(B) = .999999 yields o(B) = 999, 999 – the probabilities are close
to 1 and therefore differ only little, but the odds differ a lot. How-
ever, one complication with the odds scale is that it is not symmetric.
When p(A) = .999 then o(A) = 999; but p(¬A) = .001 yields
o(¬A) = 1/999 ≈ .001. In other words, astronomically high odds are
well separated (999 is very different from 999, 999), but astronomi-
cally low odds are pushed up against the bound of 0. The scale can
be made symmetric by using the logarithm of the odds:

lo(A) = log
p(A)

p(¬A)
.

The log odds scale is symmetric: lo(A) = −lo(¬A); for instance,
p(A) = .999 gives lo(A) ≈ 3 whereas p(¬A) = .001 gives
lo(¬A) ≈ −3, that is, high probabilities have the same distance
from the point of equivalence as low probabilities (for details see
Chapter 23). Finally, when we have the odds we can transform back
to probabilities as follows:

p(A) =
o(A)

o(A) + 1
.

For example, when o(A) = 2 (“the odds are two to one”) then
p(A) = 2/3; when o(A) = 999 then p(A) = 999/1000 = .999.
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p(θ1 | data)
p(θ2 | data)︸ ︷︷ ︸
Posterior odds

=
p(θ1)

p(θ2)︸ ︷︷ ︸
Prior odds

× p(data | θ1)
p(data | θ2)︸ ︷︷ ︸

Evidence

. (3.2)

Suppose the evidence is 6; this means that θ1 predicted the observed
data six times better than θ2. In other words, the observed data were six
times more likely to occur under θ1 than under θ2. Suppose the prior
odds are 1/3, that is, θ2 is a priori three times more plausible than θ1.14 14 Such considerations may flow, for

instance, from an analysis of previous
data.

Updating the prior odds with the evidence yields a posterior odds of
1/3 × 6 = 2 in favor of θ1 over θ2. As the example in the next section
will demonstrate, the odds form is often more convenient to work with,
especially from the perspective of human intuition.

Example: The Inevitable Base Rate Fallacy

No book on probability is complete without an example on the base
rate fallacy.15 The fallacy concerns the fact that the outcome of a test 15 This example is based on the

BayesianSpectacles.org blog post
“The single most prevalent misinter-
pretation of Bayes’ rule”. See also the
YouTube video “The medical test para-
dox: Can redesigning Bayes rule help?”
from ‘3Blue1Brown’.

with fantastic operating characteristics may actually provide a deeply
misleading impression of the true state of affairs. It is often suggested
that the Bayesian solution is too complicated for mere mortals to wrap
their heads around. Indeed, the Bayesian solution is complicated when
it is presented as a single step, in its probability form. Break it down into
its component steps, in its odds form, and the process becomes much
simpler.
Consider the same problem as is mentioned on the Wikipedia page

for the base rate fallacy16: 16 https://en.m.wikipedia.org/wiki/
Base_rate_fallacy, as accessed on
September 6th, 2021“A group of police officers have breathalyzers displaying false drunk-

enness in 5% of the cases in which the driver is sober. However, the
breathalyzers never fail to detect a truly drunk person. One in a thousand
drivers is driving drunk. Suppose the police officers then stop a driver at
random to administer a breathalyzer test. It indicates that the driver is
drunk. We assume you do not know anything else about them. How high
is the probability they really are drunk? Many would answer as high as
95%, but the correct probability is about 2%.”

“all the sciences would be only uncon-
scious applications of the calculus of
probabilities. To condemn this calcu-
lus would be to condemn the whole of
science.” (Poincaré 1913, p. 157)

In the first step of our Bayesian odds-form analysis of this problem,
we take stock of our prior information: “one in a thousand drivers is
driving drunk”. This means that p(drunk) = 1/1000 and p(sober) =
999/1000. So, before we see any data, the prior odds in favor of some-
one being sober instead of drunk are p(sober)/p(drunk) = 999. In the
second step we consider the evidence that is provided by the data. We
know that the breathalyzer test is positive. The probability of this hap-
pening for drunk drivers is 1, and for sober drivers it is .05. The evi-
dence in favor of the driver being drunk rather than sober is therefore:
p(test positive | drunk)/p(test positive | sober) = 1/.05 = 20.

BayesianSpectacles.org
 https://en.m.wikipedia.org/wiki/Base_rate_fallacy
 https://en.m.wikipedia.org/wiki/Base_rate_fallacy
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In the third step we combine our prior information (i.e., odds
of 999 in favor of the driver being sober) with the evidence from
the test (i.e., an updating factor of 20 in favor of the driver be-
ing drunk17) in order to arrive at the posterior odds, that is, 17 This is the same as an updating factor

of 1/20 in favor of the driver being sober;
although this interpretation may be more
intuitive for this specific calculation, it
is generally easier to interpret ratios that
are larger than 1.

p(sober | test positive)/p(drunk | test positive). The odds for the
driver being sober were 999 prior to the test result; the test result, how-
ever, is positive and this requires a downward adjustment by a factor
of 20, so that the posterior odds for the driver being sober have been
reduced to 999/20 = 49.95.
These steps are intuitive but they can be formalized by applying

Equation 3.2 as follows:

p(sober | test positive)
p(drunk | test positive)︸ ︷︷ ︸

Posterior uncertainty
about the driver

=
p(sober)
p(drunk)︸ ︷︷ ︸

Prior uncertainty
about the driver

× p(test positive | sober)
p(test positive | drunk)︸ ︷︷ ︸

Evidence
from the test

.

In the final step, we transform the posterior odds of 49.95 for the
driver being sober to a posterior probability: p(sober | test positive) =
49.95/(49.95 + 1) ≈ 0.98. This means that even after a positive breath-
alyzer test outcome, the probability that a given driver is drunk is still
only about 2%.
The standard Bayesian solution to the base rate fallacy involves

the law of total probability in order to compute p(positive test) as
p(positive test | drunk)p(drunk) + p(positive test | sober)p(sober)
and then use this as the denominator in a fraction with
p(positive test | sober)p(sober) as the numerator. The end-result is
obtained in one step, but requires three simultaneous operations: mul-
tiplication, addition, and division. In contrast, the odds form of Bayes’
rule is intuitive and immediately clarifies the importance of the prior
odds and the separate role of evidence.18 18 For a more extensive treatment

see John Kruschke’s blog post at
http://doingbayesiandataanalysis.
blogspot.com/2015/12/
lessons-from-bayesian-disease-diagnosis_
27.html.

Exercises

1. Explain the law of conditional probability using Venn diagram and
lego (e.g., Kurt 2019).

2. In the left panel of Figure 3.4, explain what the ‘0.4’ on top of the
bars means; In the right panel of Figure 3.4, explain what the ‘0.4’ in
the grey area means.

3. Consider again the tennis match between Roger and Zita and the tree
diagram from Figure 3.6. After the match, what is the probability
that it was windy, given that you know that Zita won?

4. If you throw a fair die twice, what is the chance of obtaining at least
one six? Plot the sample space as a six-by-six grid, and explain two

http://doingbayesiandataanalysis.blogspot.com/2015/12/lessons-from-bayesian-disease-diagnosis_27.html
http://doingbayesiandataanalysis.blogspot.com/2015/12/lessons-from-bayesian-disease-diagnosis_27.html
http://doingbayesiandataanalysis.blogspot.com/2015/12/lessons-from-bayesian-disease-diagnosis_27.html
http://doingbayesiandataanalysis.blogspot.com/2015/12/lessons-from-bayesian-disease-diagnosis_27.html
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Poincaré on the Base Rate Fallacy

“An effect may be produced by the cause A or by the cause B. The
effect has just been observed. We ask the probability that it is due to
the cause A. This is an a posteriori probability of cause. But I could
not calculate it, if a convention more or less justified did not tell me
in advance what is the a priori probability for the cause A to come
into play; I mean the probability of this event for some one who had
not observed the effect.

The better to explain myself I go back to the example of the game
of écarté mentioned above [see the box in Chapter 2 – EWDM]. My
adversary deals for the first time and he turns up a king. What is
the probability that he is a sharper? The formulas ordinarily taught
give 8/9, a result evidently rather surprising. If we look at it closer,
we see that the calculation is made as if, before sitting down at the
table, I had considered that there was one chance in two that my
adversary was not honest. An absurd hypothesis, because in that
case I should have certainly not played with him, and this explains
the absurdity of the conclusion.

The convention about the a priori probability was unjustified, and
that is why the calculation of the a posteriori probability led me to
an inadmissible result. We see the importance of this preliminary
convention. I shall even add that if none were made, the problem of
the a posteriori probability would have no meaning. It must always
be made either explicitly or tacitly.” (Poincaré 1913, p. 169; italics in
original)
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ways of obtaining the answer. Repeat the exercise for the case of
three throws (you now need a cube).

5. Figures 3.1 and 3.2 concern two concrete examples in probability.
Discuss the extent to which each is either epistemic or aleatory in
nature (see previous chapter).

6. This is the chorus of Jeff Wayne’s ‘The Eve of the War’:
“The chances of anything coming from Mars
Are a million to one, he said (ah, ah)
The chances of anything coming from Mars
Are a million to one, but still, they come…”

Is the statement “a million to one” really a chance?

7. The following fragment is taken from the section ‘The Puzzle of
the Three Prisoners’ in Lindley (1985). First formulated by Martin
Gardner (i.e., Gardner 1959a for the problem statement; Gardner
1959b for the solution; see also Gardner 1961), this puzzle anticipates
the famous ‘Monty Hall problem’. An earlier version of this problem
was proposed by French mathematician Joseph Bertrand (1822–1900)
in his 1889 book Calcul des Probabilités – an English translation can be
found in the box that concludes this chapter.

“A problem which intrigues many people and also demonstrates the
notion of coherence in an interesting way is that of the three prisoners.
Alan, Bernard, and Charles are in jail unable to communicate with
one another or with anyone besides their respective jailers. Alan
knows that two of them are to be executed and the other set free,
and after some thinking concludes that he has no reason to think
that one of them is more likely to be the lucky one than either of
the others. If A denotes the event that Alan will go free, and B and
C similarly for Bernard and Charles, this last statement means that
p(A) = p(B) = p(C) = 1/3 in Alan’s opinion. Alan now says to
his jailer ‘Since either Bernard or Charles is certain to be executed,
you will give me no information about my own chances if you give
me the name of one man, Bernard or Charles, who is going to be
executed.’ Accepting this argument the jailer truthfully says ‘Bernard
will be executed.’ Thereupon Alan feels happier because now either he
or Charles will go free and, as before, he has no reason to think it is
more likely to be Charles, so his chance is now 1/2, not 1/3, as before.
Which argument is correct, the one that convinced the jailer or the
latter one?” (Lindley 1985, pp. 41-42)

8. “The Smiths have exactly two children, and at least one is a girl.
Assume for simplicity that boys and girls are equally likely (…) and
that children are one or the other (…). Assume also that the sexes of
this children are independent random variables (…).”
(a) ”What is the probability that the Smiths have two girls?”
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(b) “Now suppose that the elder child is a girl. What is the probability
that they have two girls?”
(c) “Finally, suppose that at least one is a girl born on a Tuesday.
What is the probability that they have two girls? (Assume all days of
the week are equally likely – also not true in reality, but not too far
off.)” (Stewart 2019, p. 66; pp. 70-75)

9. Consider the British court case of Sally Clark (Dawid 2005, Hill 2005,
Nobles and Schiff 2005):

“Clark had experienced a double tragedy: Her two babies had both
died, presumably from cot death or sudden infant death syndrome
(SIDS). If the deaths are independent, and the probability of any one
child dying from SIDS is roughly 1/8, 543, the probability for such
a double tragedy to occur is as low as 1/8, 543 × 1/8, 543 ≈ 1 in
73 million. Clark was accused of killing her two children, and the
prosecution provided the following statistical argument as evidence:
Because the probability of two babies dying from SIDS is as low as 1 in
73 million, we should entertain the alternative that the deaths at hand
were due not to natural causes but rather to murder. And indeed, in
November 1999, a jury convicted Clark of murdering both babies, and
she was sentenced to prison.” (Rouder et al. 2016a, p. 521)

Based on the statistical argument alone, was the jury correct in sen-
tencing Sally Clark to prison?

10. de Finetti (1974, pp. 154-155) explained that gamblers often use odds
instead of probability. As before, we define the odds for an event A
by o(A) = r = p(A)/p(¬A). The odds “are usually expressed as a
fraction or ratio, r = h/k = h : k (h and k integers, preferably small),
by saying that the odds are ‘h to k on’ the event, or ‘k to h against’ the
event. Of course, given r, that is the odds, or, as we shall say, the
probability ratio, the probability can immediately be obtained by

p = r/(r + 1), i.e. (if r is written as h/k) p = h/(h+ k)”

De Finetti then presents a version of Table 3.1 with examples:

Table 3.1: Examples of the correspondence between probabilities and odds, based on de
Finetti (1974, p. 155).

Probability Odds = r = h/k in words
(check)
h/(h+ k) = p

0.20 20/80 = 0.25 = 1/4 ‘4 to 1 against’ 1/(1 + 4) = 0.20

2/7 = 0.286 28.6/71.4 = 0.40 = 2/5 ‘5 to 2 against’ 2/(2 + 5) = 0.286

0.50 50/50 = 1 = 1/1 ‘evens’ 1/(1 + 1) = 0.50

0.75 75/25 = 3 = 3/1 ‘3 to 1 on’ 3/(3 + 1) = 0.75

Finally, the questions: (a) what is a probability of 5/7 ‘in words’, and
how could it have been deduced directly from the information in
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Table 3.1? (b) a bookie offers 13/2 odds on Holy Moly to win the
Kentucky Derby. This means that if you bet $2 on Holy Moly, and
Holy Moley wins, you gain $13 (i.e., the total payout equals $15:
$13 plus your initial $2 stake). In continental Europe, a popular
alternative to the traditional/fractional/British odds are so-called
decimal odds. The decimal odds represents the total payout for every
unit (dollar, say) that is wagered. What are the decimal odds for Holy
Moly, and how can they be obtained from the traditional odds in
general?

Figure available at BayesianSpectacles.org under a CC-BY license.

Chapter Summary

This chapter provided an overview of the elementary laws of probability
theory: the sum rule, the multiplication rule, the definition of condi-
tional probability and marginal probability, and Bayes’ rule. Bayes’ rule
was presented both in its probability form and its odds form. The odds
form is particularly convenient when it comes to knowledge updating,
and it makes it easier to avoid the base rate fallacy.

BayesianSpectacles.org
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Richard Feynman on Doubt and Certainty

Nobel-laureate Richard Feynman (1918-1988) is one of the most
famous physicists from the 20th century. A brilliant researcher, a
gifted communicator, and a devoted advocate of science, Feynman’s
legacy is now tainted by revelations concerning sexual misconduct
and domestic violence. An FBI report on Feynman (https://cdn.
muckrock.com/foia_documents/Feynman_Master_of_Deception.
pdf) states that in 1956, “His ex-wife reportedly testified that on
several occasions when she unwittingly disturbed either his calculus
or his drums he flew into a violent rage, during which time he choked
her, threw pieces of bric-a-brac about and smashed the furniture.”
Below are two of Feynman’s statements about doubt and certainty
that are relevant in the context of this book.

“(…) it is imperative in science to doubt; it is absolutely necessary,
for progress in science, to have uncertainty as a fundamental part
of your inner nature. To make progress in understanding, we must
remain modest and allow that we do not know. Nothing is certain
or proved beyond all doubt. You investigate for curiosity, because it
is unknown, not because you know the answer. And as you develop
more information in the sciences, it is not that you are finding out
the truth, but that you are finding out that this or that is more or
less likely.

That is, if we investigate further, we find that the statements of
science are not of what is true and what is not true, but statements
of what is known to different degrees of certainty (…) Every one of
the concepts of science is on a scale graduated somewhere between,
but at neither end of, absolute falsity or absolute truth.

It is necessary, I believe, to accept this idea, not only for science,
but also for other things; it is of great value to acknowledge igno-
rance. It is a fact that when we make decisions in our life, we don’t
necessarily know that we are making them correctly; we only think
that we are doing the best we can–and that is what we should do.”

(Feynman 1999, pp. 247-248 )

“You see, one thing is, I can live with doubt and uncertainty and not
knowing. I think it’s much more interesting to live not knowing than
to have answers which might be wrong. I have approximate answers
and possible beliefs and different degrees of certainty about different
things, but I’m not absolutely sure of anything and there are many
things I don’t know anything about (…) I don’t have to know an
answer, I don’t feel frightened by not knowing things. (Feynman
1999, pp. 24-25)

https://cdn.muckrock.com/foia_documents/Feynman_Master_of_Deception.pdf
https://cdn.muckrock.com/foia_documents/Feynman_Master_of_Deception.pdf
https://cdn.muckrock.com/foia_documents/Feynman_Master_of_Deception.pdf
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Want to Know More?

3 Grant Sanderson’s YouTube channel ‘3Blue1Brown’ presents fas-
cinating visualizations of a wide range of mathematics, including
probability theory. To the two videos referenced in the margin of
this chapter we would like to add “Bayes theorem, the geometry of
changing beliefs”. 3Blue1Brown is creative, informative, and fun
– do check it out.19 Another highly recommended YouTube video 19 At the time of writing, 3Blue1Brown

has over 5.5 million followers, so we are
not alone in our appreciation.

is “How to systematically approach truth – Bayes’ rule” from the
channel ‘Rational Animations’.

3 Bolstad, W. M. (2007). Introduction to Bayesian Statistics (2nd ed.).
Hoboken, NJ: Wiley. Chapter 4 provides an accessible and concise
overview of key concepts and laws in probability theory.

3 Blitzstein, J. K., & Hwang, J. (2019). Introduction to Probability (2nd
ed.). Taylor & Francis Group. Fabian Dablander: “I recommend this
book and online lectures to everybody who wants to get started with
probability. The new edition of his book is freely available online,
written in great style, and has lots of very good exercises.” More
information is available at https://projects.iq.harvard.edu/
stat110/home. The book also comes with a very good cheat sheet.

3 De Morgan, A. (1838). An Essay on Probabilities and on Their Appli-
cation to Life Contingencies and Insurance Offices. London: Longman.
An oldie but a goodie. Contains a number of exercises.

3 Kurt, W. (2019). Bayesian Statistics the Fun Way. San Francisco: No
Starch Press. Highly recommended. From a review on BayesianSpectacles.
org: “As a first introduction to Bayesian inference, this book is hard
to beat. It nails the key concepts in a compelling and instructive
fashion.”

3 Lindley, D. V. (2006). Understanding Uncertainty. Hoboken: Wiley.
We should really resist the temptation to recommend this book at the
end of every chapter.

3 Marks, S., & Smith, G. (2011). The two-child paradox reborn? CHANCE,
24, 54-59. Just when you think you understand the two-child para-
dox, this article comes along to make you rethink your entire rea-
soning process. The authors conclusion: “There is no paradox” (p.
58).

3 Nickerson, R. S. (1996). Ambiguities and unstated assumptions in
probabilistic reasoning. Psychological Bulletin, 120, 410–433.

“The results of a considerable amount of research have been taken
as evidence that people’s intuitions about probability are faulty. Some
of the problems that have been used to study those intuitions, and to
study reasoning under uncertainty more generally, are ambiguous and
not solvable in the absence of assumptions.” (p. 430)

https://projects.iq.harvard.edu/stat110/home
https://projects.iq.harvard.edu/stat110/home
BayesianSpectacles.org
BayesianSpectacles.org
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3 Rouder, J. N., & Morey, R. D. (2019). Teaching Bayes’ theorem:
Strength of evidence as predictive accuracy. The American Statistician,
73, 186-190. Outlines the evidential interpretation of Bayes’ theorem.

3 Stewart, I. (2019). Do Dice Play God? The Mathematics of Uncer-
tainty. New York: Basic Books. Ian Stewart is a great writer, and, on
pages 70-75, he explains the two-child paradox particularly clearly
in terms of restricted sample spaces (for details see the answer to the
last exercise above). However, Marks and Smith (2011, p. 59) argue
this approach answers the wrong question:

“A general question is how best to accommodate new information into
the evaluation of uncertain situations. Use of the restricted sample
space approach for the two-child problem does not yield a proper
conditional probability that a family has, say, two girls, given that
one has learned that one of the children is a girl. All it offers, in this
case, is a hypothetical calculation of the fraction of BG, GB, and GG
families that are GG. In the classic two-child problem, it also offers an
erroneous illusion of simplicity–that, in general, a two-child family is
equally likely to be BG, GB, or GG if we learn one of the children is a
girl.

In contrast, the Bayesian approach provides useful conditional
probabilities that can be applied directly to a family at hand as we
acquire new information about it. It also provides discipline in that it
requires us to be clear about the full set of assumptions that enter into
our probabilistic inferences.”

3 Taylor, D. G. (2021). Games, Gambling, and Probability: An Introduc-
tion to Mathematics (2nd ed.). Boca Raton: CRC Press. An accessible
introduction, especially suitable for those who remain confused about
the relation between probability and odds.

The next page provides a liberal translation of Bertrand’s famous “box
paradox”, by Nick Brown and EW. A literal translation by Bianca van
Rossum is available at https://tinyurl.com/Bertrandliteral. An-
other famous –and much more challenging– Bertrand paradox in prob-
ability theory illustrates how subtly different conceptualizations of
a seemingly straightforward problem can give dramatically different
answers (e.g., Aerts and de Bianchi 2014).20 20 See also https://en.wikipedia.

org/wiki/Bertrand_paradox_
(probability) and two episodes of
the YouTube channel ‘Numberphile’.

https://tinyurl.com/Bertrandliteral
https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
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A Liberal Translation of Joseph Bertrand’s Box Paradox

“There are three identical-looking boxes. Each box has two drawers
and each drawer contains one coin. In the first box, each drawer
contains a gold coin; in the second, each drawer contains a silver
coin; and in the third, one drawer contains a gold coin and the other
contains a silver coin.

One of the three boxes is chosen at random. What is the proba-
bility of finding one gold coin and one silver coin?

The answer seems obvious: There are three equally possible cases.
Only one case gives the required outcome (one coin of each type).
Hence, the probability is 1/3.

However, now consider what happens if, after choosing the box,
we open one of its drawers at random. Let’s say we see a gold coin.
We now know that we did not get the box with two silver coins. We
have chosen either the box with two gold coins, or the box with one
gold and one silver coin. The drawer that we have not opened may
therefore contain a gold coin or a silver coin, with a probability for
either event of 1/2. But now consider the alternative scenario: the
first drawer reveals a silver coin. The same reasoning again leads
to a probability of 1/2 for the unopened drawer to contain either a
gold coin or a silver coin. So regardless of whether the first drawer
shows a gold coin or a silver coin–and it is certain to show one of
the two–the probability of finding a non-matching coin in the second
drawer is 1/2. We therefore conclude that the mere act of opening a
drawer changes the probability, increasing it from 1/3 to 1/2.

The reasoning cannot be correct. And in fact it is not.
It is true that, after opening the first drawer and seeing a gold

coin, two cases (gold-gold and gold-silver) remain possible. It is also
true that only one of these two gives us the gold-silver combination,
whose probability we were asked to find. But the crucial point here
is that these two cases were not equally likely to have happened in
the first place.

To make this clearer, imagine that instead of three boxes we
have three hundred: A hundred contain two gold coins, a hundred
contain two silver coins, and a hundred contain one gold coin and
one silver coin. We open one drawer of each box, revealing a total of
300 coins. For the hundred “double-gold” and the hundred “double-
silver” boxes, we know that we will always see a gold or a silver coin,
respectively. For the other hundred boxes, those with a gold and
a silver coin, the proportions will be determined by chance, but we
will probably see about 50 of each. However, we know that of the
roughly 150 gold coins we see, 100 of them are in a gold-gold box
and only 50 are in a gold-silver box. There (50 out of 150) is our
correct probability of 1/3.

You can also see that, if we were asked to choose one of the
open boxes in which we see a gold coin and to bet on what color
the other coin in that box is, we would be wise to bet on gold,
because in two-thirds of cases (100 out of 150) we would be right.
Again, this corresponds to the fact that one-third of the boxes in
which we can see a gold coin in the open drawer have a silver coin
in the other (closed) drawer, whereas two-thirds have a gold coin
in the other drawer.” (Bertrand 1889, pp. 2-3; see also https:
//tinyurl.com/Bertrandliteral)

https://tinyurl.com/Bertrandliteral
https://tinyurl.com/Bertrandliteral


4 Interlude: Leibniz’s Blunder

It is very curious how often the most acute and powerful intellects have gone
astray in the calculation of probabilities.

Jevons, 1874

Chapter Goal

This chapter demonstrates that probability theory trips up even mathe-
matical geniuses of the highest order.

Gottfried Wilhelm Leibniz

Gottfried Wilhelm Leibniz was a scientist whose name will never be
forgotten. He invented calculus1, and when we write, for instance, 1 Independently from Newton, at around

the same time.∫
p(y, θ) dθ, we owe him the signs

∫
and d. In addition, Leibniz pro-

posed that time and space are relative (anticipating Einstein), and argued
that the earth has a molten core (a hypothesis confirmed in 1926 by the
hero of this book, Sir Harold Jeffreys, before it was corrected to its mod-
ern form by Inge Lehmann in 1936, with additional contributions from
Arwen Deuss in 2000). Leibniz also made pioneering contributions to
psychology (influencing Wilhelm Wundt) and theology (e.g., to retain
the notion that God is both omnipotent and benevolent, Leibniz argued
that we live in the best of all possible worlds – see the box on Theodicity
below). He invented the first mechanical calculator to do addition, sub-
traction, multiplication, and division. Leibnitz wrote in Latin, French,
and German, but also in English, Italian, and Dutch. As detailed on
Wikepedia, “Leibniz made major contributions to physics and technol-
ogy, and anticipated notions that surfaced much later in philosophy,
probability theory, biology, medicine, geology, psychology, linguistics,
and computer science. He wrote works on philosophy, politics, law,
ethics, theology, history, and philology.”
In addition to all of these accomplishments, Leibniz raised the spirits

of future generations of students who find themselves struggling with
probability theory. Leibniz accomplished this by committing a blunder.

Portrait of Gottfried Wilhelm Leibniz
(1646-1716) by Christoph Bernhard
Francke.
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The Blunder

Probability theory presents a minefield of mistakes and misconceptions.
Is there another discipline in which mathematicians made so many false
claims? As summarized by Jevons (1874/1913):

“The doctrine of probability, though undoubtedly true, requires very
careful application. Not only is it a branch of mathematics in which
positive blunders are frequently committed, but it is a matter of great
difficulty in many cases, to be sure that the formulæ correctly represent
the data of the problem. […]

It is very curious how often the most acute and powerful intellects
have gone astray in the calculation of probabilities. Seldom was Pascal
mistaken, yet he inaugurated the science with a mistaken solution.2 Leib- 2Montucla, ‘Histoire des Mathématiques,’

vol. iii. p. 386nitz fell into the extraordinary blunder of thinking that the number
twelve was as probable a result in the throwing of two dice as the number
eleven.3 In not a few cases the false solution first obtained seems more 3 Leibnitz ‘Opera,’ Dutens’ Edition, vol.

vi. part i. p. 217. Todhunter’s ‘History of
the Theory of Probability,’ p. 48.

plausible to the present day than the correct one since demonstrated.
James Bernouilli candidly records two false solutions of a problem which
he at first thought self-evident;4 and he adds an express warning against 4 Todhunter, pp. 67-69.

the risk of error, especially when we attempt to reason on this subject
without a rigid adherence to the methodical rules and symbols.5 Mont- 5 Ibid. p. 63.

mort was not free from similar mistakes,6 and as to D’Alembert, great 6 Ibid. p. 100.

though his reputation was, and perhaps is, he constantly fell into blunders
which must diminish the weight of his opinions.7 He could not perceive, 7 Ibid. pp. 258-59, 286.

for instance, that the probabilities would be the same when coins are
thrown successively as when thrown simultaneously.8 Some men of high 8 Todhunter, p. 279.

ability, such as Ancillon, Moses Mendelssohn, Garve,9 Auguste Comte10 9 Ibid. p. 453.
10 ‘Positive Philosophy,’ translated by
Martineau, vol. ii. p. 120.

and J. S. Mill,11 have so far misapprehended the theory, as to question its

11 ‘System of Logic,’ bk. iii. chap. 18. 5th
Ed. vol. ii. p. 61.

value or even to dispute altogether its validity.
Many persons have a fallacious tendency to believe that when a chance

event has happened several times together in an unusual conjunction, it
is less likely to happen again. D’Alembert seriously held that if head was
thrown three times running with a coin, tail would more probably appear
at the next trial.12 Bequelin adopted the same opinion, and yet there is no 12Montucla, ‘Histoire,’ vol. iii. p. 405.

Todhunter, p. 263.reason for it whatever. If the event be really casual, what has gone before
cannot in the slightest degree influence it. EWDM: Gorroochurn (2011, p. 250)

mentions that d’Alembert was “a man
of immense mathematical prowess”
and that he had a strong basis for his
probabilistic reasoning. D’Alembert’s
thinking “was partly responsible for
later mathematicians seeking a solid
theoretical foundation for probability,
culminating in its axiomatization by
Kolmogorov in 1933 (Kolmogorov 1933).”

As a matter of fact, the more often the most casual event takes place
the more likely it is to happen again; because there is some slight empiri-
cal evidence of a tendency, as will afterwards be pointed out. The source
of the fallacy is to be found entirely in the feelings of surprise with which
we witness an event happening by apparent chance, in a manner which
seems to proceed from design.” (Jevons 1874/1913, pp. 243-245)

Wait, what is this? Did the immortal Leibniz truly suggest that “the
number twelve was as probable a result in the throwing of two dice as
the number eleven”? We find more details in Todhunter (1865), the
absolute authority on early works in probability theory:

“Leibnitz took great interest in the Theory of Probability and shewed
that he was fully alive to its importance, although he cannot be said
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himself to have contributed to its advance. There was one subject which
especially attracted his attention, namely that of games of all kinds; he
himself here found an exercise for his inventive powers. He believed
that men had nowhere shewn more ingenuity than in their amusements,
and that even those of children might usefully engage the attention of
the greatest mathematicians. He wished to have a systematic treatise
on games, comprising first those which depended on numbers alone,
secondly those which depended on position, like chess, and lastly those
which depended on motion, like billiards. This he considered would be
useful in bringing to perfection the art of invention, or as he expresses it
in another place, in bringing to perfection the art of arts, which is the art
of thinking.

See Leibnitii Opera Omnia, ed. Dutens, Vol. V. pages 17, 22, 28, 29, 203,
206. Vol. VI. part 1, 271, 304. Erdmann, page 175.

See also Opera Omnia, ed. Dutens, Vol. VI. part 1, page 36, for the
design which Leibnitz entertained of writing a work on estimating the
probability of conclusions obtained by arguments.

Leibnitz however furnishes an example of the liability to error which
seems peculiarly characteristic of our subject. He says, Opera Omnia, ed.
Dutens, Vol. VI. part 1, page 217,

…par exemple, avec deux dés, il est aussi faisable de jetter douze
points, que d’en jetter onze; car l’un et l’autre ne se peut faire que d’une
seule manière; mais il est trois fois plus faisable d’en jetter sept; car cela
se peut faire en jettant six et un, cinq et deux, quatre et trois; et une
combinaison ici est aussi faisable que l’autre.13 13 “…for example, with two dice, it is

as feasible to throw twelve as to throw
eleven; because the one and the other
can be done in only one way; but it is
three times more feasible to throw seven;
because it can be done by throwing six
and one, five and two, four and three;
and each combination is as feasible as
another.” (translation courtesy of Bruno
Boutin).

It is true that eleven can only be made up of six and five; but the
six may be on either of the dice and the five on the other, so that the
chance of throwing eleven with two dice is twice as great as the chance of
throwing twelve: and similarly the chance of throwing seven is six times
as great as the chance of throwing twelve.” (Todhunter 1865, pp. 47-48)

Galileo 1, Leibniz 0

In their 2018 book “Ten Great Ideas About Chance”, Persi Diaconis and
Brian Skyrms discuss an earlier version of the problem that ensnared
Leibniz:

“In the early seventeenth century Galileo composed a short note on dice
to answer a question posed to him (by his patron, the Grand Duke of
Tuscany). The Duke believed that counting possible cases seemed to give
the wrong answer. Three dice are thrown. Counting combinations of
numbers, 10 and 11 can be made in 6 ways, as can 9 and 12. ‘…yet it is
known that long observation has made dice-players consider 10 and 11 to
be more advantageous than 9 and 12.’ How can this be?

Galileo replies that his patron is counting the wrong thing. He counts
three 3s as one possibility for making a 9 and two 3s and a 4 as one possi-
bility for making a 10. Galileo points out the latter covers three possibili-
ties, depending on which die exhibits the 4:

< 4, 3, 3 >,< 3, 4, 3 >,< 3, 3, 4 > .
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For the former, there is only < 3, 3, 3 >. Galileo has a complete grasp
of permutations and combinations and does not seem to regard it as
anything new.” (Diaconis and Skyrms 2018, pp. 4-5)

Theodicy

Leibniz was a devout Christian, and he was deeply concerned
with the problem of evil. Diogenes the Cynic (412/404 BC – 323
BC) already argued that “the prosperity and good fortune of the
wicked disprove the might and power of the gods entirely.” (Cicero
45BC/1956b, III: xxxvi). Consider the holocaust as example of the
ultimate evil. Now there are several options, none of them agreeable:
either God did not care about the holocaust, and which case he is
malicious; or he did not know about the holocaust, in which case
he is not omniscient; or he was unable to prevent the holocaust, in
which case he is not omnipotent. It may be argued that the holo-
caust is people’s own fault and God wanted humanity to learn from
its mistakes. One would think that the lesson could have been a little
less intense. Moreover, this argument does not work for evil that ap-
pears haphazard: it is hard to see God’s hand in debilitating diseases
such as multiple sclerosis or Alzheimer’s, and remain convinced that
He has humanities best interests at heart.

At any rate, Leibniz’ goal was theodicy, “the vindication of divine
providence in view of the existence of evil.” To achieve this, Leibnitz
proposed a radical solution, namely to declare that we live in the
best of all possible worlds (for details see https://plato.stanford.
edu/entries/leibniz-evil/). Remove the holocaust, remove
multiple sclerosis, remove Alzheimer’s, and that world would be
worse than the one we currently inhabit – perhaps because we lack
a proper appreciation of overall “goodness” of the world, or because
by eliminating one disease we inadvertently allow some bigger evil to
arise. Leibniz’s suggestion was lampooned by Voltaire in his famous
book Candide, ou l’Optimisme.

The Emperor of China

We end with one last remarkable story about Leibniz. At some point,
based on an analysis of an infinite series with alternating values of +1

and −1,

“(…) Leibniz believed that creation was mirrored in his binary arithmetic,
where he used only the two symbols 0 and 1. He imagined that God could
be represented by 1 and Nothing by 0, and that the Supreme Being had
created all matter from Nothing, just as 1 and 0 together express all the

https://plato.stanford.edu/entries/leibniz-evil/
https://plato.stanford.edu/entries/leibniz-evil/
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numbers in this system of arithmetic. This idea so pleased Leibniz that he
told the Jesuit Grimaldi, president of the mathematical council of China,
about it, in the hope that this symbolic representation of creation would
convert the emperor of that time (who had a particular predilection for
the sciences) to Christianity. I recount this incident only to show just to
what a degree puerile prejudices may mislead the greatest men.” (Laplace
1814/1995, p. 97)

Chapter Summary

Even a scientific demigod such as Gottfried Leibniz faltered when con-
fronted with a simple problem in probability theory. Or perhaps there
are no simple problems in probability theory!

Figure 4.1: “Probability mass function of sum of two regular dice. Bar graph used to
portray discrete density function. Labels on the right correspond to the n/36 results
format.” Figure available on Wikipedia (public domain), courtesy of Tim Stellmach.

Want to Know More?

3 Gorroochurn, P. (2011). Errors of probability in historical context.
The American Statistician, 65, 246-254. On p. 250 of this fascinating
overview, the author emphasizes that, despite Leibniz’s blunder,
“Nonetheless, this should not in any way undermine some of the
contributions Leibniz made to probability theory. For one thing,
he was one of the very first to give an explicit definition of classical
probability except phrased in terms of an expectation (Leibniz 1969,
p. 161)14: 14 EWDM: From Théodicée, original

published in 1710.
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If a situation can lead to different advantageous results ruling out
each other, the estimation of the expectation will be the sum of the
possible advantages for the set of all these results, divided into the
total number of results.

In spite of being conversant with the classical definition, Leibniz
was very interested in establishing a logical theory for different de-
grees of certainty. He may rightly be regarded as a precursor to later
developments in the logical foundations of probability by Keynes, Jef-
freys, Carnap, and others. Since Jacob Bernoulli had similar interests,
Leibniz started a communication with him in 1703. He undoubtedly
had some influence in Bernoulli’s Ars Conjectandi (Bernoulli 1713).”

3 Todhunter, I. (1865). A History of the Mathematical Theory of Prob-
ability From the Time of Pascal to That of Laplace. Cambridge:
MacMillan and Co. A comprehensive technical treatment.

3 In his book Do Dice Play God?, mathematician Ian Stewart starts the
chapter Fallacies and Paradoxes with a pithy remark: “Human in-
tuition for probability is hopeless” (p. 65). Some of the pernicious
misunderstandings concern the base rate fallacy (covered in Chap-
ter 3; this is also known as the prosecutor’s fallacy or transposing the
conditional) and the conjunction fallacy (i.e., deeming the proposi-
tion “Linda is a bank teller” as less probable than the conjunctive
proposition “Linda is a bank teller and a feminist”; see Tversky and
Kahneman 1983; for a critique see Hertwig and Gigerenzer 1999).

3 Gigerenzer, G., Multmeier, J., Föhring, A., & Wegwarth, O. (2021).
Do children have Bayesian intuitions? Journal of Experimental Psy-
chology: General, 150, 1041-1070. A counterweight to the prevailing
opinion that people are inherently bad at solving problems in prob-
ability theory. When the problem is presented in terms of natural
frequencies (i.e., as an ‘icon array’), performance is surprisingly good.
“A series of experiments demonstrates for the first time that icon
arrays elicited Bayesian intuitions in children as young as second-
graders for 22% to 32% of all problems; fourth-graders achieved 50%
to 60%. Most surprisingly, icon arrays elicited Bayesian intuitions in
children with dyscalculia, a specific learning disorder that has been
attributed to genetic causes. These children could solve an impressive
50% of Bayesian problems, a level similar to that of children with-
out dyscalculia. By seventh grade, children solved about two thirds
of Bayesian problems with natural frequencies alone, without the
additional help of icon arrays.” (p. 1041).

3 We recommend you go online to consult information on the ‘Stepped
reckoner’, the mechanical calculator invented by Leibniz in around
1673. According to Leibniz, “It is beneath the dignity of excellent
men to waste their time in calculation when any peasant could
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do the work just as accurately with the aid of a machine.” (Martin
1925/1992, p. 38)15 15 The Latin original reads “Indignum

enim est excellentium virorum horas
servili calculandi labore perire, qui
machina adhibita vilissimo cuique secure
transcribi posset.” This does not feature
peasants specifically, but it does refer
to “vilissimo cuique”, that is, anybody
without value whatsoever.

Figure 4.2: “The Staffelwalze, or Stepped Reckoner, a digital calculating machine invented
by Gottfried Wilhelm Leibniz around 1672 and built around 1700, on display in the
Technische Sammlungen museum in Dresden, Germany. It was the first known calculator
that could perform all four arithmetic operations; addition, subtraction, multiplication
and division. 67 cm (26 inches) long. The cover plate of the rear section is off to show the
wheels of the 16 digit accumulator. Only two machines were made. The single surviving
prototype is in the National Library of Lower Saxony (Niedersächsische Landesbibliothek)
in Hannover; this is a contemporary replica.” Description and photo from Kolossos,
available under a CC BY-SA 3.0 license.





5 The Measurement of Probability

Almost the greatest difficulty in this subject consists in acquiring a precise
notion of the matter treated. What is it that we number, and measure, and
calculate in the theory of probabilities? Is it belief, or opinion, or doubt, or
knowledge, or chance, or necessity, or want of art?

Jevons, 1874

Chapter Goal

Bayesians define probability as ‘degree of reasonable belief’ or ‘intensity
of conviction’. Although the concept may seem vague, it is possible –at
least in principle– to measure belief, that is, to compare it to a standard
and assign it a number. This chapter outlines five methods by which
this may be accomplished.

Figure 5.1: Results from a survey (http:
//www.probabilitysurvey.com/)
where 1700 people assigned probabilities
to 23 words that convey a degree of un-
certainty. Data reported by Andrew and
Michael Mauboussin. Figure reprinted
with permission.

How to Measure Belief?

In everyday life, belief and conviction are usually conveyed in words,
not in numbers. The statement ‘I am pretty sure Luigi’s Pizza Palace
opens at 6 pm’ is unremarkable, whereas the statement ‘I am 85% cer-
tain that Luigi’s Pizza Palace opens at 6 pm’ may raise eyebrows. But
words are vague and notoriously susceptible to alternative interpretation.
For example, Figure 5.1 shows the results of a survey on the use of 23
words that denote various degrees of uncertainty, such as ‘always’, ‘of-
ten’, and ‘possibly’. In their blog post ‘If you say something is “likely,”
how likely do people think it is?’, Andrew and Michael Mauboussin
argued that some of these probabilistic words are interpreted quite
broadly – for instance, some people indicated that the words ‘real possi-
bility’ refer to an event with a 20% probability, whereas others indicated
this to be 80%. The lesson Mauboussin and Mauboussin draw from all
this? Simple: “Use probabilities instead of words to avoid misinterpreta-
tion” (cf. Mosteller and Youtz 1990, Theil 2002, Willems et al. 2020).
Instead of through words, belief can also be expressed indirectly, by

decisions or actions – if I leave the house in order to arrive at Luigi’s

http://www.probabilitysurvey.com/
http://www.probabilitysurvey.com/
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Pizza Palace by 6 pm, this act signals that I have a non-negligible degree
of belief that Luigi’s Pizza Palace will be open by that time. But deci-
sions and actions are influenced not only by belief, but also by utility.
For instance, when someone visits the doctor in order to have a mole
checked out, this does not signal that the person believes there is a good
chance they have skin cancer; instead, the costs of getting it wrong are
wildly asymmetric – an unnecessary visit to a doctor presents only a
mild inconvenience, but a tumor that goes undiagnosed can prove lethal.
The decision to visit the doctor is dominated not by belief, but by utility
(‘better safe than sorry’).1 1Dennis Lindley’s 1985 book ‘Making

Decisions’ is perhaps the clearest expo-
sition of how belief and utility together
determine decisions.

So degree of belief and intensity of conviction2 are often expressed

2 Jeffreys (1937b, p. 253) suggests ‘degree
of knowledge’.

in words, reflected in decisions, but rarely quantified in numbers. No-
table exceptions are the betting office, the insurance industry, and the
stock market. Here the entire business model is predicated on uncer-
tainty – people speculate on what will happen in the future, and to
some degree their financial decisions are a numerical reflection of their
beliefs.3 3 It is perhaps not a coincidence that

the study of probability started with
applications in gambling and insurance
(e.g., Stigler 1986a, Todhunter 1865).

Real-life experience with the vagueness of beliefs and convictions
may suggest that the concept is so slippery that it eludes quantitative
treatment. But before giving up so soon after we have started, let’s con-
sider what a numerical assessment of belief would require. In general,
measurement requires comparison to a standard:

“Any measurement is constructed by reference to a standard. Length is
described in terms of the wavelength of sodium light; time by reference
to the oscillation of a crystal. It is therefore sensible to attempt the same
comparative technique when measuring uncertainty. Before doing this
note that actual measurements are not made by using the standard. We
do not assess the size of the table by sodium light; a tape-measure or
similar device is used. Consequently the reference to a standard for un-
certainty is not usually a practical way of measuring it. Rather it provides
a definition and, more importantly, enables important properties of the
measure to be found. A vital feature of numerical uncertainty is the rules
that it has to obey.” (Lindley 1985, p. 17)

Let’s see how this plays out in five concrete methods.

Method I. De Finitti’s Bet

Suppose we wish to measure the intensity of conviction concerning
event E. For concreteness, let’s say E is ‘within the next five years
there will be a successful coup in Venezuela’. The most intuitive way
to measure belief in E is by having people bet on it. For instance, in
a prediction market, participants can buy and sell ‘shares’ of E, and the
market price provides a reasonable indication of the shared opinion
about how likely E is to transpire. For instance, let’s say the price of a
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share of E stands at $0.60; this means that when you buy a share of E,
this costs you $0.60, but will pay out $1 in case E indeed transpires; if E
does not transpire, the share loses its value. If people believe that a coup
is very likely to happen, $0.60 is an attractive price and many shares may
initially be bought for that price. However, this demand drives up the
price until it stabilizes at the value that the market believes to be fair.
The problem with most betting scenarios is that the bettor is risking

part of his wealth, and elements of risk and utility pollute the measure.
This limitation can be circumvented by the following scheme, also
proposed by de Finetti. Suppose there exists a ticket that pays $1 if
event E transpires. You have to determine a fair price for the ticket, but
I can then decide whether to buy the ticket from you or sell the ticket to
you (for that price). This is similar to two people dividing a cake fairly:
one person cuts, the other person chooses.

Method II. Lindley’s Urn

In the section ‘Measurement by Reference to a Standard’, Lindley (1985)
proposed to measure uncertainty with the help of an urn4: 4 The following urn scheme is called the

‘de Finetti game’ by Devlin (2008, pp.
159–164); as discussed below, the essence
of this setup dates back at least to 1838.

“The contents are 100 balls as near identical as possible except that some
are coloured black and the rest white.(…) A ball is drawn from the urn
in such a way that you think each of the 100 balls has the same chance
of being drawn. (…) Consider the uncertain event B that the withdrawn
ball is black. The uncertainty clearly depends on how many black balls
are truly in the urn. If b are black, and 100 − b white, the probability
of the event B is defined to be b/100 or b%. Thus, if 50 are black, the
probability is 1/2 or 50%. This is the standard to which all uncertain events
will be referred: or rather, the set of standards for differing numbers b of
black balls from 0 to 100.

Dennis Victor Lindley (1923–2013).
Photo taken ca. 1964-1968. Included by
permission of Janet, Rowan, and Robert
Lindley.

Now consider any uncertain event E. To fix ideas take the event that
it will rain tomorrow in London. Now suppose you were to be offered
a small prize if the event occurred: if it did not, you would get nothing.
No stake is involved. Next, suppose you were to be offered the same
prize if a black ball were to be drawn from the urn under the conditions
already described. That is, there are two gambles, one contingent on E,
rain, the other on B, a black ball, but otherwise identical. Granted that
you may only have one gamble, which do you prefer? Again it depends
on the number b of black balls. If there are none it would be best to
gamble on rain: at the other extreme with all black balls, the urn is better.
Generally, the more black balls the better is the urn gamble. It easily
follows that there must be a particular number of black balls such that
you are indifferent between two gambles: call this number b. Were there
(b + 1) balls the urn gamble would improve and be better than the rain
one: with (b − 1) it would be worse. The event B has probability b/100
or b%. Since the two gambles are now in all respects equivalent we say the
probability of E, rain tomorrow in London, is also b%.” (Lindley 1985, pp.
17-18)
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The three conceptual ingredients of the urn scheme are: (1) there is
not a stake to be risked, but a prize to be gained. This removes compli-
cations related to the diminishing returns of money and the fact that
people are generally risk-averse (i.e., unwilling to gamble); (2) the stan-
dard is itself an uncertain event, but with uncertainty well understood
and quantified; (3) the standard is adjusted (i.e., the contents of the urn
changed) until a point of indifference is reached. The next two meth-
ods –the one mentioned by Borel and the one proposed by De Morgan–
echo this idea.

Method III. Borel’s Dice

Félix Édouard Justin Émile Borel (1871–
1956). Photo taken 1932; public domain,
courtesy of Bibliothèque nationale de
France.

In the section ‘The Probability of an Isolated Case’, the great French
probabilist Émile Borel discusses how probability may be measured.
The procedure is conceptually identical to Lindley’s urn. The first edi-
tion of the Borel book came out in French as early as 1909 but appears
to be missing the following fragment:

“(…) let us consider a match between two tennis players who have never
played against one another; however, each of them has played in many
tournaments and an enlightened amateur can appreciate the quality of
their play. Suppose now that we ask such an amateur to evaluate the
probability that one of the two players will win the match. It is assumed
that the match is of sufficient importance so that each player will make a
maximum effort to win.

If the amateur does not recognize probabilities referring to isolated
events, he might refuse to evaluate this probability, since it refers to an
event which (so far as we are concerned) cannot be reproduced a second
time. To force him to give us an evaluation we might resort to methods
based on betting. One cannot force a person to bet, that is, risk part of
his fortune, but few persons would refuse to accept a present offered
in exchange for a small intellectual effort. We thus make the amateur
the following proposition: We offer him a certain amount which he can
win in two different ways, either by rolling at least 10 with three dice or
by betting on player A. If he chooses the second alternative, that is, he
prefers to bet on player A, we can conclude that he regards the probability
of this event as greater than that of betting on the dice, namely, greater
than 0.50.5 Then we could ask him to choose between betting on player 5 EWDM: The probability of rolling

at least 10 with three dice is actually
62.5. Borel must have meant to write
“rolling at least 11”, which does yield
0.50. Pointed out to us by Arne John.

A or betting on getting 1, 2, 3, or 4 with a single die. If he chooses the
last alternative, which has a probability of 2/3, we can conclude that he
considers the probability of player A winning as being less than 2/3. We
have thus obtained two limits, 0.50 and 0.67, containing the probability
p that player A will win. It would be possible to obtain more stringent
limits by analogous means, so that the result would be exact to at least
one decimal; for example we might find that the probability is contained
between 0.50 and 0.60, It might seem that this result is rather crude,
but it often happens in the natural sciences that certain experimental
constants are known only very crudely, and such approximate knowledge
certainly differs from total ignorance.” (Borel 1965, pp. 167-168)
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Borel proposed a similar procedure in a 1924 article, A propos d’un
traité de probabilités, later translated to English:

“I can in the same way offer to someone who enunciates a judgment
capable of verification a bet on his judgment. If I want to avoid having
to account for the attraction or repugnance which inspires the bet, I can
offer a choice between two bets procuring the same advantages in case
of gain. Paul claims that it will rain tomorrow; I agree that we are in
accord on the precise meaning of this claim and I offer him the choice
of receiving 100 francs if he is correct or 100 francs if he receives a 5 or
a 6 in a throw of dice. In the second case the probability of receiving
100 francs is one third; if he then prefers to receive 100 francs if his
meteorological prediction is correct, it is because he attributes to this
prediction a probability superior to one third. The same method can be
applied to all verifiable judgments; it allows a numerical evaluation of
probabilities with a precision quite comparable to that with which one
evaluates prices.” (Borel 1964, p. 57)

Method IV. De Morgan’s Alphabet

The scenarios sketched by Borel and Lindley were anticipated by Augus-
tus De Morgan. First, in De Morgan’s 1849 encyplodedia entry ‘Theory
of Probabilities’, De Morgan discusses the measurement problem and
offers the urn as a solution:

“The notion we mean is this; we assert and require it to be granted that
the feeling of probability or improbability is of the same kind, whatever
may be the event in question; that the probability we attach to one event,
say a fact in history, bears a ratio to that which we attach to any other of
another kind, say the gaining of a prize in a lottery. (…) with regard to
probability, or the state of mind which produces it, if we were empow-
ered to put the following question, we conceive that there would be but
one answer. “There are two events, one past and one to come, on neither
of which are you in possession of total and mathematical certainty. The
first is the execution of Charles I.; the second is the drawing of a white
ball from an urn which contains one white and ninety-nine black balls.
Choose one of these, and let your interest in any way depend on your
deciding rightly the one you select: would you rather the safety of your
life should depend upon your saying correctly whether Charles I. was or
was not executed, or upon your drawing the white ball, and not one of
the black ones?” ”(De Morgan 1849, p. 395)

Title page of Augustus De Morgan’s 1838
book ‘An Essay on Probabilities and on
Their Application to Life Contingencies
and Insurance Offices’. Does the lady
who watches the ships perhaps represent
Fortuna, the goddess of chance? The
names of the artists at the bottom of the
page suggests this is an engraving of a
Henry Corbould painting – we have been
unable to confirm this.

Even earlier, in his 1838 book ‘An Essay on Probabilities and on
Their Application to Life Contingencies and Insurance Offices’, De
Morgan had proposed a similar but more elaborate scenario. Here we
also encounter the crucial remark that the ‘feeling of probability’ is
comparable for different events, and it is this comparability that allows
quantitative measurement.

“On this we remark, firstly, that by it we feel sensible of our assent and
dissent to propositions derived in very different ways, being a sort of
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impression which is of the same kind in all. To make this clearer, observe
the following:—A merchant has freighted a ship, which he expects (is
not certain) will arrive at her port. Now suppose a lottery, in which it
is quite certain that every ticket is marked with a letter, and that all the
letters enter in equal numbers. If I ask him, which is most probable, that
his ship will come into port, or that he will draw no letter if he draw, he
will answer, unquestionably, the first, for the second will certainly not
happen. If I ask, again, which is most probable, that his ship will arrive,
or that he will, if he draw, draw either a, or b, or c, ...... or x, or y, or z,
he will answer, the second, for it is quite certain. Now suppose I write the
following series of assertions:—

He will draw no letter (a drawing supposed).
He will draw a.
He will draw either a or b.
He will draw either a, or b, or c.
..........................................................................
..........................................................................
He will draw either a or b or ......... or y.
He will draw either a or b or ......... or y or z.

and making him observe that there are, of their kind, propositions of all
degrees of probability, from that which cannot be, to that which must
be, I ask him to put the assertion that his ship will arrive, in its proper
place among them. This he will perhaps not be able to do, not because
he feels that there is no proper place, but because he does not know how
to estimate the force of his impressions in ordinary cases. If the voyage
were from London Bridge to Gravesend, he would (no steamers being
supposed) place it between the last and last but one: if it were a trial of
the north-west passage, he would place it much nearer the beginning;
but he would find difficulty in assigning, within a place or two, where it
should be. All this time he is attempting to compare the magnitude of
two very different kinds (as to the sources whence they come) of assent or
dissent; and he shows by the attempt that he believes them to be of the
same sort. He would never try to place the weight of his ship in its proper
position in a table of times of high water.” (De Morgan 1838, pp. 4-5)

As already noted in chapter 2, ‘Epistemic and Aleatory Uncertainty’,
it is evident that De Morgan subscribes to a thoroughly subjectivist
interpretation of probability.

Method V. Ramsey’s Farmer

Despite dying at a young age, Frank Ramsey has had a profound impact
on the field of probability and inference. In his book ‘Making Deci-
sions’, Lindley lionizes Ramsey to the point of hyperbole:

“The basic ideas discussed in this book were essentially discovered
by Frank Ramsey, who worked in Cambridge in the 1920s. To my
mind Ramsey’s discoveries in the twentieth century are as important
to mankind as Newton’s made in the same city in the seventeenth. New-
ton discovered the laws of mechanics, Ramsey the laws of human action.”
(Lindley 1985, p. 64)
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Frank Plumpton Ramsey (1903-1930).
Source: Wikepedia.

In a famous paper, Ramsey (1926) casually mentions how one could
measure degree of uncertainty by means of a farmer. The story, illus-
trated in Figure 5.2, unfolds as follows. Harriet stands on a T-junction
and needs to walk distance d to arrive at her hotel in the village of Rot-
tevalle. Her confidence or belief that the correct way is to the right is
indicated by p. If Harriet chooses the wrong direction, however, she
will travel distance d and find herself in the village of Eastermar, after
which she has to walk back another 2d before finally arriving at Rotte-
valle, for a total distance of 3d if she is wrong. Alternatively, Harriet
can walk distance f to a friendly Frisian farmer who will point her to
Rottevalle for sure; walking to the farmer and back, and then walking to
Rottevalle implies a distance of 2f + d. Harriet’s degree of uncertainty
1− p that she needs to go right to end up in Rottevalle can be measured
by that distance f between Harriet and the farmer where Harriet is
exactly indifferent between (1) guessing the direction and risk going
the wrong way; and (2) walking up to the farmer to ask for directions.
The larger the distance f that Harriet is willing to walk to obtain the
farmer’s advice, the larger her uncertainty about the correct direction
must be.

Figure 5.2: Ramsey’s farmer. Harriet is not 100% certain about the direction of her hotel. Her degree of uncertainty can be measured
by the distance she is just willing to walk in order to obtain the correct information from a friendly Frisian farmer. Figure available at
BayesianSpectacles.org under a CC-BY license.

BayesianSpectacles.org
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Of course, whenever it is useful to quantify uncertainty or elicit
probabilities one does not always have easy access to a friendly Frisian
farmer, let alone a friendly Frisian farmer who stands perpendicular
to a T-section. Ramsey’s point is that uncertainty can be quantified as
the fair price for information that results in a certain outcome. When
Harriet is already very confident that she needs to go right, the added
information will be of little value to her, and so she is only willing to
‘buy’ that information when it is very cheap, that is, when the Frisian
farmer is very close.

Exercises

1. Show why the distance to the Frisian farmer f is a measure of uncer-
tainty p.

2. The analysis from the previous exercise implies that when you are
perfectly uncertainty about the correct direction (i.e., p = 1/2) the
distance to the farmer at the point of indifference equals f = 1/2 d.
Now imagine you arrive at the intersection in the late afternoon,
and you’d like to be at the hotel in time for dinner. You can cover a
distance of 2.5 d before dinner service closes. Is 1/2 d still a reasonable
point of indifference? What does this say about the Frisian farmer
scenario as a pure measure of uncertainty?

3. In what fundamental way does the Lindley-Borel-De Morgan setup
differ from that of Ramsey?

Chapter Summary

This chapter discussed several ways in which degree of belief could be
measured, at least in principle.

Want to Know More?

3 Borel, E. (1965). Elements of the Theory of Probability. Englewood
Cliffs, NJ: Prentice-Hall. The famous probabilist Borel appears to have
been a staunch Bayesian. This is an English translation of the French
original (first edition 1909).

“There can be no doubt that probabilities, as they are known to us, are
creations of the human mind. An omniscient being who knows all the
mechanisms of the universe in all details would need no probabilities.6 6We shall leave aside all considerations

concerning the modern theories of wave
mechanics, according to which certain
real phenomena can be defined only in
terms of probabilities.

Probabilities exist in the human mind and they depend on, and are
determined by, the body of knowledge K contained in the mind. This
body of knowledge is not always exactly the same for two different
minds, nor is it always the same even for one and the same mind at
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two different times. Thus, one should never speak of the probability
of an event (say, a particular outcome of a roll of a pair of dice), but of
the probability for Peter who rolls the dice, or for Paul who observes
the throw, perhaps after having placed a bet.” (Borel 1965, p. 165).

3 Duke, A. (2018). Thinking in Bets: Making Smarter Decisions When
You Don’t Have All the Facts. New York: Portfolio/Penguin. Writ-
ten by Annie ‘The Duchess of Poker’ Duke, this popular science
book presents various insights on betting. The two-part review on
BayesianSpectacles.org mentions the following eight:

◦ Every decision is a bet.

◦ We bet on our beliefs.

◦ What makes a decision good or bad is determined by the process,
not by the final outcome.

◦ By articulating uncertainty as a bet we avoid black-and-white
thinking, we become accountable for our beliefs, and it becomes
easier to adjust our opinion.

◦ By embracing uncertainty we can learn more effectively and hence
formulate more accurate beliefs that allow improved bets in the
future.

◦ People are exceptionally poor at updating their beliefs, particularly
because of hindsight bias and self-serving bias (and a host of other
biases). It takes conscious effort to overcome these biases, but it’s
worth it.

◦ Our decision making is improved when we expose ourselves
to a diversity of viewpoints rather than dwell in our own echo-
chambers.

◦ Better decisions can be made when we imagine different future
scenarios, their plausibilities, and their utilities.

3 Misak, C. (2020). Frank Ramsey: A Sheer Excess of Powers. Oxford:
Oxford University Press. A 500-page biography on the great Bayesian
probabilist Frank Ramsey, who died at age 26 due to complications
after having developed jaundice. Both Ramsey and Jeffreys were
members of the Cambridge-based ‘PsychAn’ (ψα) discussion society
on psychoanalysis (see also Strachey and Strachey 1986). On page
221, Misak writes: “But it was only now, through the Psych An So-
ciety, that they really got to know each other and discover a mutual
interest in the philosophical foundations of induction and statis-
tics.” Surprisingly, this claim is false. Howie (2002, p. 117) writes:
“though Jeffreys visited him in hospital during his illness, it was only
after his death that Jeffreys discovered they had shared an interest
in probability as well as psychoanalysis.” And this is confirmed by

BayesianSpectacles.org
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Jeffreys himself, in an unpublished interview with Dennis Lindley
for the Royal Statistical Society on August 25, 1983: “I knew Frank
Ramsey well and visited him in his last illness but somehow or other
neither of us knew that the other was working on probability the-
ory.” (“Transcription of a Conversation between Sir Harold Jeffreys
and Professor D.V. Lindley,” Exhibit A25, St John’s College Library,
Papers of Sir Harold Jeffreys).

3 Mosteller, F., & Youtz, C. (1990). Quantifying probabilistic expressions.
Statistical Science, 5, 2–12. “Many people say that one cannot put
a single number on a qualitative word. Actually one can put many
numbers on a qualitative word, and that is one reason for pursuing
such studies.” (p. 3)

3 Ramsey, F. P. (1926). Truth and probability. In Braithwaite, R. B.
(Ed.), The Foundations of Mathematics and Other Logical Essays, pp.
156–198. London: Kegan Paul. One of the most famous essays in
probability theory.

3 Willems, S., Albers, C., & Smeets, I. (2020). Variability in the inter-
pretation of probability phrases used in Dutch news articles – a risk for
miscommunication. Journal of Science Communication, 19, A03. A
Dutch replication of earlier results obtained in English.



6 Coherence

If one accepts, in its totality, the subjectivistic interpretation, probability theory
constitutes the logic of uncertainty; this complements the logic of certainty and
the two together form a unified and complete framework within which to
conduct any argument. Those who reject this point of view find themselves
without any coherent foundation on which to build.

de Finetti, 1974

Chapter Goal

Bayesians learn about the world in the same way that logicians draw
conclusions using syllogisms (e.g., modus ponens: if all story-tellers are
poor, and Kai Lung is a story-teller, then it follows that Kai Lung is
poor). The difference is that in the Bayesian world, propositions are
not only true or false, but have an in-between degree of plausibility.
And, just like systems of pure logic, Bayesian reasoning (‘the logic of
partial beliefs’) is governed by laws that make it impossible to draw con-
clusions that are silly, that is, internally inconsistent, contradictory, or
incoherent. In this chapter we first discuss the importance of coherence
and then discuss how the only way to avoid incoherence is to reallocate
plausibility assignments using the laws of probability theory.

Against Contradictions

In their quest to better understand the world, researchers generally
hate to end up with a contradiction. Contradictions suggest that, at an
earlier stage in the reasoning process, something fundamental has gone
off the rails. This visceral antipathy for contradictions is particularly
pronounced for mathematicians and logicians.1 1 For robots in the science fiction genre, a

contradiction is often simply intolerable
– as soon as the artificial intelligence
realizes it faces a contradiction, it is just
a matter of time before it turns insane or
becomes catatonic (e.g., Asimov 1950).

Contradictions in Mathematics

Mathematicians embrace contradictions only insofar as they reveal that a
particular assumption must be false. Specifically, the method known as
‘proof by contradiction’ proceeds as follows2: 2 The example below is taken from

https://www.youtube.com/watch?v=
jkhKPySIHgY.

https://www.youtube.com/watch?v=jkhKPySIHgY
https://www.youtube.com/watch?v=jkhKPySIHgY
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1. Consider a statement one wishes to prove, for instance, ‘There are no
positive integer solutions to the equation x2 − y2 = 1’.

2. Assume that the statement is false; that is, assume that there do exist
positive integer solutions to the equation x2 − y2 = 1.

3. Demonstrate that assuming the statement to be false leads to non-
sense, that is, it results in a contradiction. Rewrite x2 − y2 = 1 as
(x + y) · (x − y) = 1, and note that this is true for positive integers x
and y only when x + y = 1 and x − y = 1. This in turn implies that
x = 1 and y = 0; but y was supposed to be a positive integer, and this
contradicts the solution that y = 0.

4. Having thus rejected the possibility that the statement is false, the
only viable option is to assume the statement is correct.

One can even go a step further and argue that the absence of con-
tradictions lies at the very heart of mathematics. The great French
mathematician Henri Poincaré seems to have felt this way:

“Mathematics is independent of the existence of material objects; in
mathematics the word exist can have only one meaning, it means free
from contradiction.” (Poincaré 1913, p. 454)

and

“Be not deceived. What is after all the fundamental theorem of geome-
try? It is that the assumptions of geometry imply no contradiction (…).”
(Poincaré 1913, p. 467)

and finally

“a definition is acceptable only on condition that it implies no contradic-
tion.” (Poincaré 1913, p. 468)

Contradictions in Logic

The tolerance for contradictions is hardly any higher among logicians.
For ease of exposition, consider the logic of syllogisms, first outlined by
Aristotle in his 350 BC book Prior Analytics.
Given two premises –statements assumed to be true with absolute

certainty– we wish to draw a conclusion that is necessarily true. One
valid rule of syllogistic reasoning is known as modus ponens (‘affirming
the antecedent’): “The general problem of deduction is as

follows: —From one or more propositions
called premises to draw such other propo-
sitions as will necessarily be true when the
premises are true.” (Jevons 1874/1913, p.
59)

All story-tellers are poor
Kai Lung is a story-teller

Kai Lung is poor
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Another valid rule is known as modus tollens (‘denying the consequent’):

All story-tellers are poor
Kai Lung is not poor

Kai Lung is not a story-teller

Aristotle (384-322 BC), as painted in 1811
by Francesco Hayez (1791-1882). Public
domain. “Aristotle has been called the
most important thinker who has ever
lived; he is recognized as the father of sci-
ence, logic, biology, political science, zo-
ology, embryology, natural law, scientific
method, rhetoric, psychology, realism,
criticism, individualism, teleology, mete-
orology and of all philosophers.” (https:
//en.wikipedia.org/wiki/Aristotle)

Other such forms of valid logical reasoning exist and go under names
such as Barbara, Celarent, Darii, Ferio, Baralipton, Celantes, Dabitis,
Fapesmo, Frisesomorum, Cesare, Cambestres, Festino, Barocho, Darapti,
Felapto, Disamis, Datisi, Bocardo, and Ferison – medieval mnemonics
that were invented to make it easier for students to recall the different
logical forms (for details see Lagerlund 2008).
There also exist invalid rules –logical fallacies– for drawing inferences

from the premises. One beguiling logical fallacy is known as ‘affirming
the consequent’:

All story-tellers are poor
Kai Lung is poor

Kai Lung is a story-teller [invalid!]

It is evident that this conclusion is not necessarily true, because Kai
Lung could be poor for a different reason than being a story-teller; Kai
Lung could be a beggar, or a businessman who has just gone bankrupt.
Another fallacy is known as ‘denying the antecedent’:

All story-tellers are poor
Kai Lung is not a story-teller

Kai Lung is not poor [invalid!]

Again, the premises do not make the conclusion necessarily true – Kai
Lung could be a poor cobbler. “Logic sometimes makes monsters.”

(Poincaré 1913, p. 435)Having introduced the basics of syllogistic logic, one may wonder
what happens if the premises contain a contradiction. One may correctly
anticipate that the method collapses; however, the nature and the to-
tality of the collapse may elicit more surprise: the method collapses
because a contradiction allows any statement whatever to be proven.
This is known as the principle of explosion (i.e., ex contradictione sequitur
quodlibet, ‘from a contradiction, anything follows’).
The disastrous effects of contradictions on logic and science were

emphasized by Sir Karl Popper (1902-1994). For instance, in his book
Conjectures and Refutations he elaborates:

https://en.wikipedia.org/wiki/Aristotle
https://en.wikipedia.org/wiki/Aristotle
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“But this means that if we are prepared to put up with contradictions,
criticism, and with it all intellectual progress, must come to an end. (…)

For it can easily be shown that if one were to accept contradictions
then one would have to give up any kind of scientific activity: it would
mean a complete breakdown of science. This can be shown by proving
that if two contradictory statements are admitted, any statement whatever must
be admitted; for from a couple of contradictory statements any statement
whatever can be validly inferred.

This is not always realized,6 and will therefore be fully explained here. 6 See for example H. Jeffreys, ‘The
Nature of Mathematics’, Philosophy
of Science, 5, 1938, 449, who writes:
‘Whether a contradiction entails any
proposition is doubtful.’ See also Jeffreys’
reply to me in Mind, 51, 1942, p. 90,
my rejoinder in Mind, 52, 1943, pp. 47
ff., and L.Sc.D., note ⋆2 to section 23.
All this was known, in effect, to Duns
Scotus (ob. 1308), as has been shown by
Jan Lukasiewicz in Erkenntnis, 5, p. 124.
[footnote in original – EWDM]

It is one of the few facts of elementary logic which are not quite trivial,
and deserve to be known and understood by every thinking man. It can
easily be explained to those readers who do not dislike the use of symbols
which look like mathematics; but even those who dislike such symbols
should understand the matter easily if they are not too impatient, and
prepared to devote a few minutes to this point.” (Popper 1972, p. 317)

Popper then proceeds to give an example where two contradictory
premises –‘the sun is shining now’ and ‘the sun is not shining now’– al-
low the conclusion of the statement ‘Caesar was a traitor’. The example
is instructive, but a version that is simpler and shorter can be found on
the Wikipedia entry for the principle of explosion:

“As a demonstration of the principle, consider two contradictory statements–
“All lemons are yellow” and “Not all lemons are yellow”–and suppose
that both are true. If that is the case, anything can be proven, e.g., the
assertion that “unicorns exist”, by using the following argument:

1. We know that “Not all lemons are yellow”, as it has been assumed to
be true.

2. We know that “All lemons are yellow”, as it has been assumed to be
true.

3. Therefore, the two-part statement “All lemons are yellow or unicorns
exist” must also be true, since the first part “All lemons are yellow” of
the two-part statement is true (as this has been assumed).

4. However, since we know that “Not all lemons are yellow” (as this has
been assumed), the first part is false, and hence the second part must
be true to ensure the two-part statement to be true, i.e., unicorns
exist.”

(Wikipedia, obtained from https://en.wikipedia.org/wiki/Principle_
of_explosion on 19-09-2022)3 3 Almost a millennium earlier, Duns Sco-

tus gave yet another example, identical
in structure to that provided by Popper
and Wikipedia: “Socrates walks and
Socrates does not walk, therefore you are
in Rome” (“Socrates currit et Socrates non
currit; igitur tu es Romae” – full quotation
in Lukasiewicz 1935).

Popper then concludes:

“We see from this that if a theory contains a contradiction, then it entails
everything, and therefore, indeed, nothing. A theory which adds to every
information which it asserts also the negation of this information can
give us no information at all. A theory which involves a contradiction
is therefore entirely useless as a theory.” (Popper 1972, p. 319; see also
Popper 1940)

When discussing the impact of contradictions, Sir Ronald Fisher
illustrated the problem with the following anecdote4: 4 The anecdote is repeated in Jeffreys

1973, p. 18, who was convinced by
Popper that a contradiction implies any
proposition (see also Jeffreys 1961, pp.
34-35).

https://en.wikipedia.org/wiki/Principle_of_explosion
https://en.wikipedia.org/wiki/Principle_of_explosion
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“There is a story that emanates from the high table at Trinity that is
instructive in this regard. G. H. Hardy, the pure mathematician—to
whom I owe all that I know of pure mathematics—remarked on this
remarkable fact, and someone took him up from across the table and
said, “Do you mean, Hardy, if I said that two and two make five that you
could prove any other proposition you like?” Hardy said, “Yes, I think so.”
“Well, then, prove that McTaggart5 is the Pope.” “Well,” said Hardy, “if 5 John McTaggart (1866-1925) was a

lecturer in philosophy at Trinity College,
Cambridge – EWDM.

two and two make five, then five is equal to four. If you subtract three,
you will find that two is equal to one. McTaggart and the Pope are two;
therefore, McTaggart and the Pope are one.” (Fisher 1958, p. 269)

In sum, contradictory premises utterly destroy the kind of deductive
logic that underlies syllogistic reasoning. But what is the nature and
impact of contradictions if our premises are uncertain, and we wish to
learn from noisy data?

The Logic of Partial Beliefs

The idea of a reasonable degree of belief intermediate between proof and
disproof is fundamental. It is an extension of ordinary logic, which deals only
with the extreme cases.

Jeffreys, 1955

As indicated by the epigraph to this section, Bayesian inference is a
generalization of pure logic6; in this generalization, the premises can be 6 This was also stressed by arch-Bayesians

such Ramsey, de Finetti, and Jaynes.probabilistic rather than true with absolute certainty. For example, here
is a Bayesian version of the modus ponens:

If you were to learn that Kai Lung is a story-teller, the probability that
he is poor equals .60; if you were to learn that Kai Lung is not a story-
teller, the probability that he is poor equals .30.
You see Kai Lung walk into the town square and unroll his mat; this
behavior is characteristic of story-tellers and consequently you assign a
probability of .80 to the proposition that Kai Lung is a story-teller

The probability that Kai Lung is poor is (.80× .60) + (.20× .30) = .54

The premises now involve probabilistic statements, and the conclu-
sion results from applying the law of total probability. The practical
relevance of this style of reasoning –contra that of syllogistic logic– is
immediately evident:

“They say that Understanding ought to work by the rules of right rea-
son. These rules are, or ought to be, contained in Logic; but the actual
science of Logic is conversant at present only with things either certain,
impossible, or entirely doubtful, none of which (fortunately) we have to
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reason on. Therefore the true Logic for this world is the Calculus of Prob-
abilities, which takes account of the magnitude of the probability (which
is, or which ought to be in a reasonable man’s mind). This branch of
Math., which is generally thought to favour gambling, dicing, and wager-
ing, and therefore highly immoral, is the only “Mathematics for Practical
Men,” as we ought to be.” (James Clerk Maxwell, in a 1850 letter to Lewis
Campbell; reproduced in Campbell and Garnett 1882, p. 80)

Corroborating the Consequent

The introduction of probabilities and uncertainty also opens the door
to learning from experience, as incoming information may continually
change the relevant probabilities. Hence, instead of conducting a purely
deductive analysis we now find ourselves involved in induction. And
this means that a logical pitfall is transformed to an inductive principle.7 7 The fragment that follows is based

in part on the BayesianSpectacles.
org blog post “Is Polya’s fundamental
principle fundamentally flawed?”

As discussed above, a famous fallacy in deductive logic is “affirming
the consequent”. Another example of a syllogism gone wrong:

When Socrates rises early in the morning, he always has a foul mood
Socrates has a foul mood

Socrates has risen early in the morning [invalid!]

The deduction is invalid because Socrates may also be in a foul mood
at other times of the day. What the fallacy does is take the general
statement “A→ B” (A implies B; rising in the morning→ foul mood),
and interpret it as “B→ A” (B implies A; foul mood→ rising in the
morning).
When we switch from deductive reasoning to inductive learning,

however, the fallacy of “affirming the consequent” is transformed to a
law, one that might be called “corroborating the consequent”. In two
brilliant books, the mathematician George Pólya (1887-1985) describes
in detail how inductive reasoning is important in mathematics, a field
that most people would believe is governed solely by deductive pro-
cesses and rigorous proof. As Pólya states in a lecture that is available on
YouTube8: “first guess, then prove”. Actually, in his books Pólya pro- 8 https://www.youtube.com/watch?v=

h0gbw-Ur_doposes that the process by which mathematicians work is slightly more
complicated: first guess, then corroborate the guess with examples, then
prove. Here we focus on what Pólya called “the fundamental inductive
pattern”:

There is no demonstrative conclusion: the verification of its consequence
B does not prove the conjecture A. Yet such verification renders A more
credible. (…) “We have here a pattern of plausible inference:

A implies B
B true

BayesianSpectacles.org
BayesianSpectacles.org
https://www.youtube.com/watch?v=h0gbw-Ur_do
https://www.youtube.com/watch?v=h0gbw-Ur_do


coherence 103

A more credible

The horizontal line again stands for ‘therefore.’ We shall call this pattern
the fundamental inductive pattern, or, somewhat shorter, the ‘inductive
pattern’.

This inductive pattern says nothing surprising. On the contrary, it
expresses a belief which no reasonable person seems to doubt: The ver-
ification of a consequence renders a conjecture more credible. With a little
attention, we can observe countless reasonings in everyday life, in the law
courts, in science, etc., which appear to confirm to our pattern.” (Pólya
1954b, pp. 4–5)

Thus, in the Socrates example we only need to make a small change
to go from deductive fallacy to inductive law:

When Socrates rises early in the morning, he always has a foul mood
Socrates has a foul mood

It has now become more credible than before that Socrates has risen
early in the morning

This example actually suggests that Pólya’s definition has a flaw. When
the consequent is predictively irrelevant, the credibility of the conjec-
ture ought to remain unaffected. For instance, suppose we know that
Socrates was perpetually in a foul mood, irrespective of the time of day;
this invalidates the inference above. To drive the point home, here is
another example:

On Mondays, trains from Hilversum to Amsterdam run every 15 min-
utes
Today, trains from Hilversum to Amsterdam run every 15 minutes

It has now become more credible than before that today is a Monday

But what if I tell you that trains from Hilversum to Amsterdam run
every 15 minutes every day of the week? It becomes clear that the alterna-
tive hypotheses (days of the week) also imply the consequent, and the
consequent is therefore predictively irrelevant, and the credibility of the
proposition is left unchanged.9 9 In the second appendix of Chapter 9

we will take a stronger stance, and argue
that Pólya’s definition is untenable
except in the complete absence of
background knowledge (cf. Good 1967,
Rosenkrantz 1982). The verification
of a consequence may even render a
conjecture less credible! We were shocked
when we first learned about this.

Garbage in, Garbage out

Another similarity to deductive reasoning is that in Bayesian inference,
the conclusion is only as good as its premises. In other words, Bayesian
inference does not tell you how to define your prior knowledge; instead,
Bayesian inference tells you how to update beliefs from a given starting
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point of background knowledge. Just as in pure logic and deductive rea-
soning, faulty Bayesian premises may yield faulty Bayesian conclusions,
in line with the popular adage garbage in, garbage out.10 Bruno de Finetti 10 An example from syllogistic logic: the

premises ‘all birds can fly’ and ‘penguins
are birds’ leads to the conclusion ‘pen-
guins can fly’. The reasoning itself is
valid, but because one of the premises is
false, the conclusion is also false.

expressed the sentiment more eloquently:

“The calculus of probability can say absolutely nothing about reality; in the
same way as reality, and all sciences concerned with it, can say nothing about
the calculus of probability. The latter is valid whatever use one makes
of it, no matter how, no matter where. One can express in terms of
it any opinion whatsoever, no matter how ‘reasonable’ or otherwise,
and the consequences will be reasonable, or not, for me, for You, or
anyone, according to the reasonableness of the original opinions of the
individual using the calculus. As with the logic of certainty, the logic
of the probable adds nothing of its own: it merely helps one to see the
implications contained in what has gone before (either in terms of having
accepted certain facts, or having evaluated degrees of belief in them,
respectively).” (de Finetti 1974, p. 182)

Coherence

(…) the most generally accepted parts of logic, namely, formal logic,
mathematics and the calculus of probabilities, are all concerned simply to
ensure that our beliefs are not self-contradictory.

Ramsey, 1926

The theory must be self-consistent; that is, it must not be possible to derive
contradictory conclusions from the postulates and any given set of observational
data.

Jeffreys, 1939

Coherence acts like geometry in the measurement of distance; it forces several
measurements to obey the system.

Lindley, 2000

Finally we arrive at the heart of the matter. We have seen that
Bayesian inference –the calculus of probability– “can say absolutely
nothing about reality”. But what then typifies Bayesian inference? Ulti-
mately, it comes down to a single concept: coherence. “The Bayesian theory is about coherence,

not about right or wrong”. (Lindley 1976,
p. 359)

In Chapter 2 we mentioned that for a Bayesian, the word ‘probability’
is synonymous with ‘reasonable degree of belief’. This suggests that if
we assign degrees of belief to different propositions, we have to obey
the rules of probability theory – if these laws are violated, our beliefs
are mutually inconsistent or nonsensical. Thus:
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“[The rules of probability] proscribe constraints on your beliefs. While
you are free to assign any probability to the truth of the event, once this
has been done, you are forced to assign one minus that probability to the
truth of the complementary event. If your probability for rain tomorrow
is 0.3, then your probability for no rain must be 0.7.” (Lindley 2006, p.
40)

Another perspective is that the laws of probability theory protect us
from incoherence. These laws dictate that when (a) we learn that Kai
Lung is a story-teller, the probability that he is poor equals .60 (whereas
it would have equaled .30 if Kai Lung is not a story-teller); and when
(b) you see Kai Lung walk into the town square and unroll his mat;
this behavior is characteristic of story-tellers and consequently you
assign a probability of .80 to the proposition that Kai Lung is a story-
teller; then it has to follow that the probability that Kai Lung is poor is
(.80× .60)+(.20× .30) = .54. Any other assessment would be incoherent.

It is immediately clear that people are in dire need of the protection
that the laws of probability theory provide. Unaided by probability
theory, people will find it impossible to specify coherent degrees of
beliefs across many propositions of varying complexity. The notion of
coherence is therefore prescriptive, not descriptive:

“(…) a formal and consistent theory of inductive processes cannot rep-
resent the operation of every human mind in detail; it will represent an
ideal mind, but it will also help the actual mind to approximate to that
ideal.” (Jeffreys 1961, p. 421)

Coherence therefore constrains the assignment of degrees of be-
lief; this holds across related propositions but, crucially, coherence also
exerts complete control over how beliefs are updated as additional in-
formation becomes available. Let’s revisit the example in Chapter 3
on the base rate fallacy. In this example, the prior odds was 999:1 of a
driver being sober rather than drunk; a positive breathalyzer test out-
come (i.e., the incoming data) is 20 times more likely when the driver
is drunk than when they are sober; consequently, the posterior odds for
the driver being sober has to be 999/20 = 49.95.
In other words, once our prior knowledge has been specified, con-

frontation with the data will cause a unique, coherent update to poste-
rior knowledge. An apt metaphor is to the laws of geometry, as illus-
trated by the triangle shown in Figure 6.1. The adjacent side symbolizes
the prior knowledge, and the opposite side symbolizes the observed
data; with these two sides in place, the location of the hypotenuse (i.e.,
the posterior knowledge) is defined uniquely.
This implies that if the posterior knowledge is deemed unpalatable

or implausible, the fault lies either with our intuition, or with the data
(these may have been recorded or reported incorrectly), or with the
prior knowledge – the fault most definitely does not lie with the updat-
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Figure 6.1: With prior knowledge fully specified, incoming data trigger a learning process
that results in uniquely defined posterior knowledge, courtesy of Bayes’ theorem. “This
theorem is to the theory of probability what Pythagoras’s theorem is to geometry.” (Jef-
freys 1931, p. 19). Figure available at BayesianSpectacles.org under a CC-BY license.

ing process, which is a mathematical operation to ensure that posterior
beliefs cohere with prior beliefs. Imagine a perfect chef who creates the
best possible dish (tailored to your tastes) given the available ingredients.
If you nevertheless strongly dislike the dish, this can only mean that the
ingredients were poor, and it is inappropriate to critique the chef.
To elaborate on this important point, assume one wishes to estimate

the proportion θ of first-year psychology students who prefer cats to
dogs. We are getting ahead of ourselves, but the standard Bayesian
analysis assumes that every value of θ from 0 to 1 is equally likely a pri-
ori. Suppose the first student we ask indicates that they prefer cats to
dogs; an application of the rules of probability theory then transform
the prior beliefs about θ to posterior beliefs. Examining these posterior
beliefs reveals that the single most likely value of θ equals 1, which cor-
responds to the assertion that all first-year psychology students prefer
cats to dogs. If this conclusion appears unreasonable, it signals a prob-
lem with the specification of the prior distribution. When sufficient

BayesianSpectacles.org


coherence 107

thought is given to the problem, one may discover that it is actually
unreasonable to deem every value of θ equally likely a priori.
You may remain unconvinced. It may seem unappealing that your

beliefs should find themselves shackled and constrained to particular
values. Indeed, you could adopt the philosophy of Feyerabend, embrace
epistemological anarchism, and provocatively state that with respect to
your beliefs, “anything goes”. What then is the downside of incoher-
ence? First and foremost, we should not forget that ‘incoherence’ is just
a fancy word for ‘nonsensical’. For instance, we may assume that the
order in which the data come in is irrelevant, but then obtain a differ-
ent conclusion depending on whether the data are analyzed all at once,
batch-by-batch, or one at a time.11 Hence, incoherence is intellectually 11 In contrast, coherent Bayesian inference

always draws the same conclusion: “It is
self-consistent in the sense that the final
probabilities of a set of hypotheses are
the same in whatever order the data are
taken into account.” (Jeffreys 1938d, p.
444; see also Jeffreys 1938a, pp. 191-192)

disturbing and suggests a hidden flaw in one’s reasoning. Second, as
mentioned before, coherence is the axiomatic basis for a rational system
of learning from experience. “Anything goes” does not provide a firm
foundation for any theory, let alone a theory that eliminates all reason-
ing that is internally inconsistent. The case for coherence can be made
in many ways (e.g., Cox 1946, Jaynes 2003, Joyce 1998, Jeffreys 1961; see
also Diaconis and Skyrms 2018) but here we pursue a line of attack that
is due to de Finetti: if you, as an epistemological anarchist, were forced
to act on those incoherent beliefs, your actions would allow a malevo-
lent third party to exploit you with impunity. In other words, acting
on incoherent beliefs leads to a sure loss. The next section provides a
concrete example.

De Finetti’s Bet Revisited

In order to clarify the importance of coherence, Bruno de Finetti pro-
posed a scenario involving betting. The scenario shows that degrees of
belief need to be governed by the rules of probability theory. If these
rules are flaunted, the beliefs are incoherent, and a third party can ex-
ploit this incoherence to obtain a guaranteed profit.
Consider then a ticket that pays $1 if a particular proposition holds

true. Ticket I presents the proposition “At the next summer Olympics,
the gold medalist for the women’s marathon will have the Kenian na-
tionality”. How much money do you believe Ticket I is worth? To
ensure that your assessment is fair, we agree that I will have the choice
either to buy the ticket from you or sell the ticket to you, for the price
that you have determined.12 Let’s assume that you believe a fair price 12De Finetti’s scenario was already

introduced in Chapter 5.is $0.40. Note that this assessment depends on your knowledge of
marathon runners; a person who knows more (or less) about this dis-
cipline may set a different price.
We continue and examine Ticket II. This ticket presents the proposi-

tion “At the next summer Olympics, the gold medalist for the women’s
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Anything Goes, Except for Incoherence?

In his deliberately provocative book Against Method, Austrian-born
philosopher Paul Feyerabend (1924-1994) advocated what he termed
epistemological anarchism:

“Science is an essentially anarchic enterprise (…) The only principle
that does not inhibit progress is: anything goes.”(Feyerabend 1993,
p. 5; first edition 1975)

Militant subjective Bayesians would broadly agree but insist on co-
herence as a crucial addendum. Hence their amended rule would
be: anything goes, except for incoherence. Below one of the most
militant of subjective Bayesians underscores the point:

“There are some probabilities that are almost universally accepted.
For example, if A includes extensive knowledge about a coin and θ

is the event that it falls heads when reasonably tossed, then it would
be an unusual person who came up with p(θ |A) anything other
than 1/2. But if John insists that p(θ |A) = 1/3 who is to say he is
wrong? He will be wrong if he fails to react to data on tosses of the
coin by using Bayes’ theorem (…) but I can see no sense in which his
original curious value is wrong. The only way he can be wrong is in
not being coherent.” (Lindley 1985, p. 192)

marathon will have the Ethiopian nationality”. What is the fair price for
this ticket? For the sake of the argument, suppose you set the price to
$0.75. This would be incoherent – your evaluation does not respect the
laws of probability theory and therefore you can be made a sure loser.
In particular, I notice that you have overpriced the tickets – the sum
of the prices is $1.15, more than the amount that can be won. Conse-
quently, I will sell both tickets to you and gain $1.15, whereas you are
left with only a chance to win $1. You do not fall into this trap, how-
ever, and instead you set a price for Ticket II that equals $0.30.
Now consider Ticket III. This ticket presents the proposition “At the

next summer Olympics, the gold medalist for the women’s marathon
will have either the Kenian nationality or the Ethiopian nationality”.
How much is this ticket worth? Coherence allows only one answer:
$0.70. Set any other price and the resulting incoherence allows you to
be made a sure loser. For instance, suppose you incoherently set the
price of Ticket III to $0.60. This is cheaper than $0.70, and so I will buy
Ticket III from you and sell Tickets I and II to you; this gives me a $0.10
pure profit, as our chances to win the $1 are identical. Alternatively,
suppose you incoherently set the price of Ticket III to $0.80. This is
more expensive than $0.70, and so I will sell Ticket III to you and buy
Tickets I and II from you, earning a pure profit of $0.10 – again, our
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chances to win the $1 are identical. In both example cases, the incoher-
ence revealed by Ticket III led you to lose $0.10 without the slightest
compensation.
The only way to avoid a sure loss is to price Ticket III as $0.40+

$0.30 = $0.70. Note that by assigning beliefs so as to avoid a certain
loss, we have in fact reproduced one of the defining rules of probability
theory: For mutually exclusive events, probability adds. The other rules
of probability theory may be obtained from de Finetti’s betting scenatio
in similar fashion (e.g., Diaconis and Skyrms 2018, pp. 22-33).

Figure available at BayesianSpectacles.org under a CC-BY license.

Rebuttal of the Common Critique on Betting

Some philosophers would sooner participate in a season of Temptation
Island13 than admit that Bayesian inference has practical or theoretical 13 “Temptation Island is an American

reality dating show, in which several
couples agree to live with a group of
singles of the opposite sex, in order to
test the strength of their relationships.”
(Wikepia, https://en.wikipedia.org/
wiki/Temptation_Island_(TV_series,
consulted 21-09-2022)

merit. This is one of life’s great mysteries, as philosophers should be
especially keen to embrace a methodology that, by its very construction,
weeds out opinions and convictions that are inherently inconsistent.
At any rate, when detractors of the Bayesian gospel are presented

with de Finetti’s betting scenario, their knee-jerk response is to argue

BayesianSpectacles.org
https://en.wikipedia.org/wiki/Temptation_Island_(TV_series
https://en.wikipedia.org/wiki/Temptation_Island_(TV_series
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that people rarely bet on their beliefs, and that betting introduces com-
plications to do with the utility of money, loss aversion, etc. Hence, the
betting scenario is judged to be irrelevant. We believe such a critique is
superficial at best and purely rhetorical at worst.
In order to disarm the critique, it should first be stressed again that

coherence is prescriptive, not descriptive: it is a framework for how ra-
tional agents ought to reason under uncertainty, not how people actually
fumble about in practice, unaided by probability theory and depending
solely on intuition.
Secondly, no actual betting with monetary stakes needs to take place:

“Aiming for coherence has its roots in a desire for consistency. It applies
to logic as well. One of the wisest men we know put it this way: “We all
believe inconsistent things. The purpose of rational discussion aims at
this: If someone says ‘You accept A and B, but by a chain of reasoning,
each step of which you accept, it can be shown that A implies not B,’ you
would think that something is wrong and want to correct it.”

It is similar with judgments of uncertainty. Of course, there is no
bookie, and no one is betting. Still coherence, like consistency, seems like
a worthwhile standard.” (Diaconis and Skyrms 2018, pp. 25-26 )

Third, the betting scenario is merely a demonstration of the misfor-
tunes that befall anybody who is prepared to act on a set of incoherent
beliefs. Finally, even though one may object that people rarely bet on
their beliefs, there is an argument to be made that people bet on their
beliefs all the time, except not with money:

“Objections have been raised because the standard involves gambling
and some people object to gambling. The confusion here is due to in-
adequacies in the English language (or in my use of it). We are all faced
with uncertain events like ‘rain tomorrow’ and have to act in the reality
of that uncertainty—shall we arrange for a picnic? We do not ordinarily
refer to these as gambles but what word can we use? In this sense all of
us ‘gamble’ every day of our lives, and the word is used in this sense. The
gambles that people object to are unnecessary gambles on horses, or sport,
or cards, usually conducted for monetary gain or excitement. The prize
in our case need not be awarded: it is only contemplated. The essential
concept is action in the face of uncertainty.” (Lindley 1985, p. 19)

and

“Some statisticians have protested that to base opinions on betting is to
reduce statistics to the level of a racecourse. However, in a sense any deci-
sion in life is a kind of generalized bet. If we go out for a walk without a
raincoat, this is a bet with nature that it will be fine. If it is, we have the
reward of unencumbered movement; if it rains, we pay the penalty of
the discomfort of being soaked or having to take shelter” (Smith 1965, p.
477)

and
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“(...) all our lives we are in a sense betting. Whenever we go to the station
we are betting that a train will really run, and if we had not a sufficient
degree of belief in this we should decline the bet and stay at home. The
options God gives us are always conditional on our guessing whether a
certain proposition is true.” (Ramsey 1926 as given in Eagle (Ed.) 2011, p.
62)

Closing Remarks

When asked about the benefits of Bayesian inference, few practitioners
and theoreticians will mention coherence. This is not because coherence
is somehow unimportant – paradoxically, it is exactly because coherence
is so important that it does not get mentioned: coherence is automati-
cally achieved whenever prior opinions are updated by the data using
Bayes’ rule, so Bayesians generally need not worry about it.14 In this 14 Some Bayesians occasionally use

prior knowledge that is informed by
the observed data (for examples see
Consonni et al. 2018); strictly speaking
this practice is incoherent, but the degree
of incoherence may be relatively mild.

way, coherence is akin to good health; it is usually enjoyed without
much thought. Only when it breaks down does it suddenly become
apparent that it was in fact crucial all along.
Coherence is the bedrock of rationality. In a way, it is a minimum

requirement for reasoning under uncertainty. Through the laws of
probability theory, coherence restricts the beliefs that one can entertain.
This is limiting only to the degree that one desires the freedom to be
silly. Coherence is rather like a crutch that supports people when they
draw inferences from uncertain events. Epistemological anarchists may
throw away the crutch of coherence and cry “freedom!”, but they will
immediately find themselves falling to the floor, unable to make further
progress.
One final thought. In real life people are not coherent, and yet most

of us get by without our incoherence being ruthlessly exposed and ex-
ploited. We suspect that when people operate in the real world, their
actions are shaped through continual feedback with the environment15: 15 This learning process takes place at

multiple time scales, including the time
scale of human evolution.

adaptive behavior is rewarded, and inopportune behavior is punished.
For some tasks, this results in acceptable performance. When a cog-
nitively limited agent operates under considerable time pressure in a
highly complex environment, it may just be a waste of resources and
opportunity to strive for perfect coherence. We end with a quotation
from the hero of this book:

“The theory of probability is a formal statement of common-sense. Its
excuse for existence is that it gives rules for consistency. It does not try
to justify common-sense nor to alter its general practice; it recognizes
that the human mind is a useful tool, but that, like other tools, it is not
necessarily perfect.” (Jeffreys 1936a, p. 337)
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Exercises

1. Consider the box “Anything goes, except for incoherence”. Lindley
argues that someone with peculiar prior beliefs cannot be judged to
be wrong. Argue against this view.

2. Explain why it is incoherent to inform prior knowledge by the ob-
served data.

Coherence as a Jigsaw Puzzle

Consider again the simplest example of incoherence: the probability
of an event happening is judged to be x, and the probability of that
event not happening is judged to be different from 1 − x. For in-
stance, you may believe that the probability of rain tomorrow in the
Atacama Desert is 0.98; given that the Atacama Desert is one of the
world’s driest places, this is certainly a remarkable belief – but it is
not yet incoherent. It only becomes incoherent if you also believe, at
the same time, that the probability of it not raining in the the Ata-
cama Desert tomorrow is 4%, 1%, 50%, or really anything different
from 100− 98 = 2%.

In this example, our propositions may be likened to a jigsaw puzzle
with only two pieces: ‘rain’ and ‘not rain’. When the puzzle pieces
fit together, they belong to the same puzzle. When one puzzle piece
(‘rain’) is 98% and the other is, say, 4%, this means that the pieces
originate from different puzzles – they are beliefs that may legiti-
mately be entertained, but not simultaneously by the same agent.

Puzzles of just two pieces are easy and few people will hold inco-
herent beliefs in such cases. But in real life as well as in statistics,
the puzzles quickly grow in complexity as new information is added.
Some puzzles may have hundreds of pieces, or even infinitely many.
Very quickly, it becomes a daunting task to check whether or not
the pieces form a single coherent puzzle. And this is perhaps the
single outstanding benefit of Bayes’ rule: it ensures that initially sim-
ple sets of coherent beliefs remain coherent when they are updated
or sharpened as more information (such as new data or additional
background information) becomes available.

Chapter Summary

In syllogistic logic, contradictions allow any statement whatever to be
proven. Bayesian inference is the logic of partial beliefs, that is, the
coherent way of reasoning in an uncertain world. The Bayesian equiv-
alent of a contradiction is termed an incoherence. In order to reason
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in a coherent fashion (i.e., remain free from internal inconsistencies)
it is required that our beliefs obey the laws of probability. Those who
are prepared to act on a set of incoherent beliefs can be exploited with
impunity by a malevolent third party. Coherence is the bedrock of ra-
tionality; Bayesians rarely ponder the wonders of coherence because
Bayes’ theorem has coherence built in.

Want to Know More?

3 Chapter 26 demonstrates the role of coherence in Bayesian evidence
updating.

3 Diaconis, P., & Skyrms, B. (2018). Ten Great Ideas About Chance.
Princeton: Princeton University Press. Chapter 2, ‘Judgment’ provides
a good discussion of the different aspects of coherence.

3 Eagle (Ed.), A. (2011). Philosophy of Probability: Contemporary
Readings. New York: Routledge. A collection of key readings in the
philosophy of probability theory. Requires some background in
mathematics for its proper appreciation. Our quotations of Ramsey
(1926) were taken from this source. The collection also contains an
article by Joyce, who proved that “any system of degrees of belief
that violates the axioms of probability can be replaced by an alterna-
tive system that obeys the axioms and yet is more accurate in every
possible world” (Joyce 1998, as given in Eagle (Ed.) 2011, p. 89)

3 Lindley, D. V. (2000). The philosophy of statistics. The Statistician,
49, 293-337. Throughout his work, Lindley hammered home the
importance of coherence, up to the point where he proposed to
replace the term ‘Bayesian statistics’ with ‘coherent statistics’ (Lindley
1985). ‘The philosophy of statistics’ is one of Lindley’s best articles.
A background in statistics is recommended.
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7 Learning from the Likelihood Ratio

[with Alexandra Sarafoglou and František Bartoš]

The theory comes into play where ignorance begins, and the knowledge we
possess requires to be distributed over many cases.

Jevons, 1874

“(…) if you can’t do simple problems,
how can you do complicated ones?”
Lindley (1985, p. 65)

Chapter Goal

This chapter showcases each of the separate elements of the Bayesian
learning cycle in its simplest form. The guiding example has the mini-
mum uncertainty required to get the Bayesian ball rolling.

Bayes’ rule on a bib. Here d stands for
‘data’ and h for ‘hypothesis’. In the
current chapter we will limit ourselves to
two hypotheses: did Andy or Bobbie bake
the pancakes?

Two Pressing Questions about Pancakes

Miruna comes home and discovers that it’s Dutch pancakes for dinner.
Hurray! She knows the pancakes were baked by either of her parents,
Andy and Bobbie, but she does not know which one. The only clue
as to the identity of the baker is provided by the composition of the
pancakes: Andy has a probability of producing a bacon pancake of
θA = 0.40, whereas that probability is θB = 0.80 for Bobbie. We assume
that all non-bacon pancakes are plain, that is ‘vanilla’ type pancakes. We
also assume that the stack is produced randomly, that is, any order is as
likely as any other.1

1 In Bayesian lingo, the pancakes are said
to be ‘exchangeable’ (de Finetti 1974,
Zabell 1982).

This is a simple scenario. There are only two candidate bakers, only
two types of pancakes, and the probability of Andy and Bobbie pro-
ducing a bacon pancake (their ‘bacon proclivity’) is constant over time
and known exactly. We can relax these assumptions and consider more
realistic scenarios, but for now we keep things simple. Consider two
fundamentally different questions:

◦ After inspection of the pancake stack, what can we say about the
probable identity of the baker? Desired here is an inference about an
unobserved cause or latent data-generating process.
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◦ After inspection of the pancake stack, what is the probability that
the next pancake will have bacon? Desired here is a prediction about a
to-be-observed consequence or future datum.

We will now address these questions in turn.

A stack of Dutch pancakes, with a bacon
pancake on top.

Question 1: Who Baked the Pancakes?

In our example, there are two rival hypotheses, that is, two candidate
causes for the pancake stack: either Andy or Bobbie is the baker. Be-
fore we can start our Bayesian analysis, we need to specify our prior
knowledge: the relative plausibility of the rival hypotheses, reflecting
our uncertainty about who baked the pancakes. In this case, Miruna has
no information that suggests that either Andy or Bobbie is the baker,
and she therefore believes both hypotheses are equally credible a priori
– hence, p(θA) = p(θB) = 1/2; equivalently, we can say that the prior We abuse notation and denote

p(Andy is the baker and therefore θ =
θA) by p(θA).

odds is 1: p(θA)/p(θB) = 1. Miruna’s lack of information concerning the
identity of the baker is illustrated in Figure 7.1.

Prior Distribution

θA = .4 θB = .8

0.0

0.2

0.4

0.6

0.8

1.0

P
(θ

)

Figure 7.1: Before having seen any of the pancakes, Miruna believes that Andy and
Bobbie are equally likely to have baked the stack. This uncertainty is reflected in a prior
distribution that assigns Andy and Bobbie equal mass.

We pause here and reflect on a momentous occasion. What you see
in Figure 7.1 is a prior distribution, the first of many in this book. Note
that the distributions you usually encounter are distributions of some-
thing you can observe directly, such as height or income. Figure 7.1,
however, shows a distribution of something more ephemeral: a distribu-
tion of belief, expressing the relative plausibility of the different values



learning from the likelihood ratio 119

for the bacon proclivity θ. This prior distribution is very simple, as our
belief is distributed across just two discrete values (‘atoms’), θA and θB .
Let’s see how this distribution is updated as we observe data.

Datum 1: A Bacon Pancake

Now Miruna observes the first pancake and notices that it has bacon, an
event that we denote as {b}. This observation has to shift her conviction
in the direction of Bobbie being the baker; after all, the probability of
a bacon pancake is higher for Bobbie than it is for Andy. To compute
how much this information should shift her belief we use Bayes’ rule.
Here we will apply both the probability form and the odds form (cf.
Chapter 3). First, the probability form of Bayes’ rule:

p(θB | {b}) = p(θB) ·
p({b} | θB)

p({b} | θA) p(θA) + p({b} | θB) p(θB)

= 1/2 ·
8/10

4/10 · 1/2 + 8/10 · 1/2
= 2/3.

Second, we can apply the odds form and obtain the same result:

Posterior odds︷ ︸︸ ︷
p(θB | {b})
p(θA | {b})

=

Prior odds︷ ︸︸ ︷
p(θB)

p(θA)
×

Evidence︷ ︸︸ ︷
p({b} | θB)
p({b} | θA)

= 1×
8/10
4/10

= 2.

The ‘evidence’ term is the extent to which the data mandate a change
from prior to posterior odds. Here our rival hypotheses are specified
without uncertainty – we know that Andy has θA exactly equal to .40,
and that Bobbie has θB exactly equal to .80; in such a scenario, the
evidence is also known as the likelihood ratio (e.g., Royall 1997).2 The 2 As we will discuss in more detail later,

the statistical term likelihood means
unsurprise: the extent to which the
observed data were expected or predicted
under a hypothesized data-generating
process θ.

evidence term tells us that the data (i.e., a bacon pancake) are twice
as likely under the hypothesis that Bobbie is the baker than they are
under the hypothesis that Andy is the baker; that is, the data are twice
as surprising under the hypothesis that Andy is the baker than under
the hypothesis that Bobbie is the baker. In other words, the Bobbie-
is-the-baker hypothesis predicted the data twice as well as the Andy-
is-the-baker hypothesis. With a prior odds equal to 1, this means that
Miruna should now believe that it is twice as likely that Bobbie is the
baker than that Andy is the baker. As explained in Chapter 3, ‘The
Rules of Probability’, in order to transform any odds Ω to a probability,
we compute Ω

Ω+1 ; an odds of 2 in favor of Bobbie therefore translates
to a posterior probability of 2/3, consistent with the result from the
probability form of Bayes’ rule. The result is visualized in Figure 7.2.
We have arrived at another moment for solemn contemplation, be-

cause Figure 7.2 shows the first posterior distribution in this book. The
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interpretation of the prior and posterior distribution is identical, in the
sense that both reflect the relative plausibility of the candidate values
of bacon proclivity θ – both distributions quantify the allocation of be-
lief across the different values of θ. The difference is that the ‘prior’
distribution reflects the relative uncertainty about the values of θ before
seeing the data, and the ‘posterior’ distribution reflects the relative un-
certainty about the values of θ after seeing the data. The ‘before’ and
‘after’ refer to our state of knowledge, not to time. For instance, an ex-
isting ‘prior’ opinion about a species of dinosaur may be updated by the
discovery of a new set of fossils, resulting in ‘posterior’ opinion, even
though the data were laid down before millions of years before the prior
opinion was formed.3 3 Linguistically, we may distinguish

‘prediction’ (a statement of uncertainty
regarding future data that are as yet
unknown to the forecaster) from ‘retro-
diction’ (a statement of uncertainty
regarding past data that are as yet un-
known to the forecaster). There is also
‘postdiction’ (a statement of uncertainty
regarding data that are known to the fore-
caster), but this comes close to statistical
cheating.

Likelihood
In our pancake example, we updated our beliefs about the identity
of the baker as a function of how well the rival hypotheses predicted
the first datum (i.e., a bacon pancake, {b}), that is, p({b} | θA) and
p({b} | θB). This measure of predictive success is generally known
as the likelihood, “the probability that the observations should have
occurred, given the hypothesis and the previous knowledge” (Jeffreys
1939, p. 46). Non-Bayesians slightly complicate matters by defining
it as anything that is proportional to predictive success, such that
c · p({b} | θA) is also a likelihood, for any non-zero number c (Etz
2018, Myung 2003).

Regardless, Bayesians and non-Bayesians agree on the importance
of the likelihood. Our Bayesian hero Sir Harold Jeffreys wrote:

“The prior probability of the hypothesis has nothing to do with the
observations immediately under discussion, though it may depend on
previous observations. Consequently, the whole of the information
contained in the observations that is relevant to the posterior proba-
bilities of different hypotheses is summed up in the values that they
give to the likelihood.” (Jeffreys 1939, p. 46; see also Jeffreys 1938c
and Jeffreys 1961, p. 57).

In a brief comment to Jeffreys (1938c), his anti-Bayesian nemesis Sir
Ronald Fisher actually agreed:

“It may thus be said as Jeffreys notes, that the likelihood function
contains the whole of the information supplied by the observations.”

Given its central importance to statistical inference, it is surprising
that most introductions to statistics hardly mention likelihood at all.
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Posterior distribution

after the first pancake
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Figure 7.2: Having observed that the first pancake has bacon, Miruna now believes it is
twice as likely that Bobbie rather than Andy is the baker.

Datum 2: A Vanilla Pancake

Miruna observes a second pancake and notices that it does not have
bacon, an event that we denote as {v} (for ‘vanilla’). This observation
has to shift her conviction back in the direction of Andy being the baker.
Moreover, the totality of pancakes observed so far (i.e., {b, v}) has a
bacon sample mean of .50, closer to Andy’s θA = .40 than Bobbie’s
θB = .80, so the overall evidence ought to support the hypothesis
that Andy is the baker. Let’s substantiate this intuition with a Bayesian
calculation. “For, evidently, those systems will be

regarded as the more probable in which
the greater expectation had existed of
the event which actually occurred. The
estimation of this probability rests upon
the following theorem:
If, any hypothesis H being made, the

probability of any determinate event E is h,
and if, another hypothesis H’ being made
excluding the former and equally probable
in itself, the probability of the same event is
h’: then I say, when the event E has actually
occurred, that the probability that H was the
true hypothesis, is to the probability that H’
was the true hypothesis, as h to h’.” (Carl
Friedrich Gauss, 1809, as reported in
D’Agostini 2020; italics in original)

We continue with the odds form of Bayes’ rule. Taking into account
the knowledge that the first pancake was bacon, we have:

Posterior odds︷ ︸︸ ︷
p(θB | {b, v})
p(θA | {b, v})

=

Prior odds︷ ︸︸ ︷
p(θB) | {b})
p(θA) | {b})

×

Evidence︷ ︸︸ ︷
p({v} | θB)
p({v} | θA)

= 2×
2/10
6/10

= 2/3.

Transforming odds to probability, we obtain the posterior probability
that Bobbie is the baker as p(θB | {b, v}) as

2/3
2/3+1 = 2/5 = .40, and hence

the posterior probability that Andy is the baker equals p(θA | {b, v}) =

1 − .40 = .60. The updated posterior distribution after two pancakes is
shown in Figure 7.3.
Note that the prior odds had been updated to take into account the

knowledge that the first pancake was bacon. We could also have up-
dated differently: what if Miruna had seen the two pancakes at the
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Posterior distribution

after the second pancake
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Figure 7.3: Having observed that the first pancake has bacon and the second pancake is
vanilla, Miruna now believes the probability is .60 that Andy rather than Bobbie is the
baker.

same time, instead of one-by-one? We would then have had:

Posterior odds︷ ︸︸ ︷
p(θB | {b, v})
p(θA | {b, v})

=

Prior odds︷ ︸︸ ︷
p(θB)

p(θA)
×

Evidence︷ ︸︸ ︷
p({b, v} | θB)
p({b, v} | θA)

= 1×
8/10
4/10
×

2/10
6/10

= 1× 2× 1/3 = 2/3,

which gives exactly the same result. In general, it does not matter for
our conclusion whether the pancakes come in sequentially, as they are
being baked, or simultaneously, as a completed stack.4 To drive home 4 See Chapter 26 for details.

this important point, notice that every bacon pancake yields a likelihood
ratio of 2 in favor of Bobbie (i.e., LRb = p({b} | θB)/p({b} | θA) = 2),
whereas every vanilla pancake yields a likelihood ratio of 3 in favor
of Andy (i.e., LRv = p({v} | θB)/p({v} | θA) = 1/3). Every new pancake
therefore multiplies the posterior odds by either 2 (if it’s bacon) or 1/3

(if it’s vanilla). Symbolically, for just two pancakes, bacon followed by
vanilla, we have:

Posterior odds = Prior odds× LRb × LRv.

Updating the prior odds after the first pancake, and then adding the
evidence from the second pancake can be represented as

Posterior odds = [Prior odds× LRb]× LRv,
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whereas simultaneous updating can be represented as

Posterior odds = Prior odds× [LRb × LRv].

The commutative property of multiplication entails that these opera-
tions result in the same outcome. It also follows that the order in which
the pancakes are observed does not matter for the end result. Finally, “Thus it does not matter in what order

we introduce our data; as long as we
start with the same data and finish
with the same additional data, the final
results will be the same. The principle
of inverse probability cannot lead to
inconsistencies.” (Jeffreys 1938a, pp.
191-192).

note that as the pancakes accumulate, the associated multiplicative evi-
dence factors keep accumulating as well, such that the influence of the
prior odds is increasingly diluted: eventually, the evidence overwhelms
the prior opinion. Given that the problem was correctly specified, this
overwhelming evidence will identify the best predicting hypothesis with
a probability that approaches 1.

An Excursion to Stylometry

Before proceeding to the second question (“will the next pancake have
bacon?”) we will attempt to pacify those readers who feel the pancake
scenario lacks gravitas. Consider the following authorship question
(Mosteller and Wallace 1963):5 5 This example is inspired by Donovan

and Mickey (2019) and the https:
//priceonomics.com blog post “How
Statistics Solved a 175-Year-Old Mystery
About Alexander Hamilton”.

“The Federalist papers were published anonymously in 1787-1788 by
Alexander Hamilton, John Jay, and James Madison to persuade the citi-
zens of the State of New York to ratify the Constitution. Of the 77 essays,
900 to 3500 words in length, that appeared in newspapers, it is generally
agreed that Jay wrote five: Nos. 2, 3, 4, 5, and 64, leaving no further prob-
lem about Jay’s share. Hamilton is identified as the author of 43 papers,
Madison of 14. The authorship of 12 papers (Nos. 49-58, 62, and 63) is in
dispute between Hamilton and Madison; finally, there are also three joint
papers, Nos. 18, 19, and 20, where the issue is the extent of each man’s
contribution.” (Mosteller and Wallace 1963, p. 276)

Remarkably, this authorship dispute can be resolved even hundreds
of years after the authors have passed away, and in a way that is statisti-
cally similar to the pancake scenario. Instead of asking “who baked the
pancakes, Andy or Bobbie?” we ask “who wrote the disputed Federalist
papers, Hamilton or Madison?”
The general idea is that the authorship dispute can be resolved by

considering writing style. We first use the undisputed works to analyze
and quantify the writing style of each candidate author. For instance,
perhaps Hamilton generally used longer words or longer sentences
than Madison; this difference in writing style can then be used as a clue
about authorship of the disputed papers. Specifically, we could compute
the average word-length or sentence-length from the disputed papers
and assess whether these features are more Hamilton-like or more
Madison-like. The idea may have been first conceived by Augustus
De Morgan6. In a 1851 letter to a friend, De Morgan wrote: 6We already met De Morgan in Chap-

ter 5, when we discussed his ‘alphabet’
for measuring epistemic probability.

https://priceonomics.com
https://priceonomics.com
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“I wish you would do this: run your eye over any part of those of St.
Paul’s Epistles which begin with Παυλoς—the Greek I mean—and with-
out paying any attention to the meaning. Then do the same with the
Epistle to the Hebrews, and try to balance in your own mind the question
whether the latter does not deal in longer words than the former. It has
always run in my head that a little expenditure of money would settle
questions of authorship in this way. The best mode of explaining what I
would try will be to put down the results I should expect as if I had tried
them.

Alexander Hamilton (1755 or 1757 –
1804), one of the authors of the Federalist
papers and one of the Founding Fathers
of the United States of America. Portrait
by John Trumbull, 1806.

Count a large number of words in Herodotus—say all the first book—
and count all the letters; divide the second numbers by the first, giving
the average number of letters to a word in that book.

Do the same with the second book. I should expect a very close ap-
proximation. If Book I. gave 5.624 letters per word, it would not surprise
me if Book II. gave 5.619. I judge by other things.

But I should not wonder if the same result applied to two books of
Thucydides gave, say 5.713 and 5.728. That is to say, I should expect the
slight differences between one writer and another to be well maintained
against each other, and very well agreeing with themselves. If this fact
were established there, if St. Paul’s Epistles which begin with Παυλoς
gave 5.428 and the Hebrews gave 5.516, for instance, I should feel quite
sure that the Greek of the Hebrews (passing no verdict on whether Paul
wrote in Hebrew and another translated) was not from the pen of Paul.

If scholars knew the law of averages as well as mathematicians, it
would be easy to raise a few hundred pounds to try this experiment on a
grand scale. I would have Greek, Latin, and English tried, and I should
expect to find that one man writing on two different subjects agrees more
nearly with himself than two different men writing on the same subject.
Some of these days spurious writings will be detected by this test. Mind, I
told you so.” (De Morgan 1882, pp. 215-216; from a 1851 letter to Rev. W.
Heald)

I told you so, indeed!7 Now well-established, the field of stylometry –the 7Not all of De Morgan’s ideas proved
similarly prophetic. For instance, in
an 1853 letter to the same friend, De
Morgan wrote: “I remember giving
you my experience in regard to clairvoy-
ance. I will now tell you some of my
experience in reference to table-turning,
spirit-rapping, and so on. (…) I am,
however, satisfied of the reality of the
phenomenon.” De Morgan 1882, pp.
221-222

computational analysis of writing style– offers a sophisticated statistical
methodology to attribute authorship for disputed works. Modern sty-
lometry often depends on machine learning methods such as provided
by the Java Graphical Authorship Attribution Program (Juola 2006) or
the R package stylo (Eder et al. 2016).
With only limited assistance of computers, however, stylometry can

be quite laborious. To begin with, one of the main challenges in the
pre-computer era was to discover which aspects of a writing style are
diagnostic in the first place. And, unfortunately, Hamilton and Madison
were stylistically rather similar:

“The writings of Hamilton and Madison are difficult to tell apart because
both authors were masters of the popular Spectator style of writing–
complicated and oratorical. To illustrate, in 1941 Frederick Williams and
Frederick Mosteller counted sentence lengths for the undisputed papers
and got means of 34.55 and 34.59 words respectively for Hamilton and
Madison, and average standard deviations for papers of 19.2 and 20.3.
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These results show that for some measures the authors are practically
twins.” (Mosteller and Wallace 1963, p. 276)

Mosteller and Wallace (1963) then proceeded to consider the fre-
quency with which Hamilton and Madison used individual words –
they focused their efforts on filler words such as ‘an’, ‘of’, ‘to’, and
‘by’; because these are both common and topic-independent, they are
potentially ideal candidates for discriminating the writers. After a con-
siderable amount of work, Mosteller and Wallace (1963, p. 278) con-
cluded that “The best single discriminator we have ever discovered is
upon, whose rate is about 3 per thousand for Hamilton and about 1/6
per thousand for Madison.” For educational purposes (and with some
trepidation, for we are doing the work of Mosteller and Wallace an in-
justice), we consider only the discriminator word ‘upon’. We follow
Donovan and Mickey (2019) and focus on disputed paper no. 54, “The
Apportionment of Members Among the States”, a document of 2008
words in which the word ‘upon’ occurs twice.

James Madison (1751–1836), one of the
authors of the Federalist papers, and the
fourth President of the United States of
America.

The similarity to our pancake scenario is now clear: Hamilton is a
baker of words with an ‘upon’ proclivity of θH = 3/1000 = .003, whereas
Madison has an ‘upon’ proclivity of θM = 1/6000 ≈ .00017. We are
then presented with a ‘stack’ of 2008 words, two of them being ‘upon’.
What evidence does this provide for each man’s authorship claim? One
of the exercises at the end of this chapter invites the reader to use the
Learn Bayes module in JASP to find out exactly, but we can already
guesstimate the outcome; the observed frequency of occurrence for
‘upon’ in “The Apportionment of Members Among the States” is about
1 in a 1000 – slightly lower than Hamilton’s rate of 3/1000, but higher
than Madison’s rate of 1/6000. Overall, the sample outcome is closer
to what is expected under Hamilton than to what is expected under
Madison; the sample ought to provide modest evidence for Hamilton
being the author.

Question 2: Will the Next Pancake Have Bacon?

Miruna goes through 6 pancakes and finds that 4 have bacon, in the
order {b, v, b, b, b, v}. The likelihood ratio contribution is

p({b, v, b, b, b, v} | θB)
p({b, v, b, b, b, v} | θA)

=

[
p({b} | θB)
p({b} | θA)

]4
×

[
p({v} | θB)
p({v} | θA)

]2
= 24 × 1

3

2

= 16/9.

Transforming the odds to posterior probability we find that p(θB | {b, v, b, b, b, v}) =
16/9

16/9+1 = 16/25 = .64 (i.e., the probability that Bobbie is the baker equals
.64), and hence p(θA | {b, v, b, b, b, v}) = 1− .64 = .36 (i.e., the probability
that Andy is the baker is .36).8 We are now in the situation to quantify 8 The order of trials may be unknown

or irrelevant, in which case we compute
not the probability of a specific order, but
the probability of any order that includes,
say, 4 bacon pancakes and 2 vanilla
pancakes (see Chapter 28.) This does
not affect the outcome of the Bayesian
analysis.
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Extraordinary Claims Require Extraordinary Evidence

The odds form of Bayes’ rule shows that the posterior odds (what we
believe after having seen the data) equals the evidence (how the data
change our beliefs) when the prior odds is 1; in that case we have:

p(Hypothesis X | data)
p(Hypothesis Y | data)︸ ︷︷ ︸

Posterior plausibility
for the rival hypotheses

= 1× p(data | Hypothesis X)
p(data | Hypothesis Y)︸ ︷︷ ︸

Evidence
from the data

.

When the prior odds is not 1, however, evidence and posterior be-
lief/knowledge can be quite different, as is conveyed by the adage
‘extraordinary claims require extraordinary evidence’. For instance,
suppose that, upon entering her house, Miruna is greeted by Bobbie,
who is smelling strongly of bacon, has pieces of pancake stuck in her
hair, and is wearing a chef’s apron with fresh butter stains. These
prior observations mean that the prior odds are now massively in
favor of Bobbie being the baker. The same stack of pancakes (i.e.,
the same evidence) that, starting from a position of equipoise, would
have made Miruna believe that Andy is the baker, now –when taking
this prior knowledge into account– still has her believe that it is in
fact Bobbie who is the baker.

The great Pierre-Simon Laplace –the first real ‘Bayesian’– often
used prior odds of 1 in his work. However, Laplace was well aware of
the fact that this practice is correct only if the competing hypotheses
are equally likely a priori. In fact, Laplace stated that “The weight
of evidence for an extraordinary claim must be proportioned to its
strangeness.”, a statement that anticipates the popular phrase from
the American astronomer Carl Sagan (1934-1996): “extraordinary
claims require extraordinary evidence.”
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our conviction that the seventh pancake will have bacon. Note that, as
demonstrated in Chapter 2, this requires that we take into account both
our epistemic uncertainty (“who baked the pancakes”?) and our aleatory
uncertainty (“given the identity of the baker, what is the chance of
getting a bacon pancake?”).
We know that if Andy is the baker, the probability that the seventh

pancake (or any other, for that matter) has bacon is θA = .40; if Bobbie
is the baker, this probability is θB = .80. According to the law of total
probability (see Chapter 3), the overall probability that the seventh pan-
cake has bacon is an average of these two θ’s, with averaging weights
given by the posterior probability that Andy (or Bobbie) is the baker:

p({b} | {b, v, b, b, b, v}) = p({b} | θA) · p(θA | {b, v, b, b, b, v})
+ p({b} | θB) · p(θB | {b, v, b, b, b, v})

= 4/10 · 9/25 + 8/10 · 16/25
= 164/250 = .656.

As usual, the law of total probability can be understood by construct-
ing a tree diagram, as in Figure 7.4. The probability that the Andy
branch is taken and results in a bacon pancake is .36 · .40; for the Bobbie
branch this probability is .64 · .80. Adding both probabilities yields .656.

Figure 7.4: To obtain the probability that the seventh pancake has bacon, use the law
of total probability and add the probability of the two branches that result in bacon:
.36 · .40 + .64 · .80 = .656. Note that, in the figure, the first branching factor refers to our
epistemic uncertainty regarding the identity of the baker, and the second branching factor
refers to our aleatory uncertainty regarding the nature of the pancake, given that we know
the identity of the baker.

When we view bacon proclivity θ as a parameter (i.e., a single-process
‘dial’ that can be set to different values), this application of the law of
total probability is called computing a ‘posterior predictive’. When
instead we view Andy and Bobbie as two rival models of the world, this
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application of the law of total probability is called ‘Bayesian model
averaging’. The operation is mathematically identical, and only the
surface label differs (e.g., Gronau and Wagenmakers 2019).
As a final thought, note the similarity of the averaging process with

the phenomenon known as the ‘wisdom of the crowd’, where the av-
erage prediction of a group of people outperforms the majority of the
individual predictions. In the Bayesian version, the average is weighted
by posterior plausibility, which can be likened to a person’s level of ex-
pertise (i.e., their prior credentials and the adequacy of their previous
predictions).

The Bayesian World is Comparative

Suppose we were to observe that all of n = 20 pancakes are of
the vanilla variety. The evidence for Andy being the baker is then
computed as follows:

Evidence that Andy is the baker =
[
p({v} | θA)
p({v} | θB

]n
=

[
6/10
2/10

]20
= 320.

With prior odds of 1, this means that it is now 3,486,784,401 times
more likely that Andy rather than Bobbie is the baker, for a posterior
probability of 3,486,784,401/3,486,784,402 ≈ 0.9999999997. This looks
like a pretty compelling result – but there is a catch. The data are
a sequence of 20 consecutive vanilla pancakes, and such a sequence
is highly unlikely if Andy is the baker. The reason that the evidence
is overwhelmingly in favor of Andy is because the data are virtually
impossible under the hypothesis that Bobbie is the baker. So both
hypotheses predict the data poorly, but the Bobbie hypothesis is
particularly abysmal.

It should therefore be kept in mind that “The Bayesian world
is a comparative world in which there are no absolutes.” (Lindley
2000, p. 308). Our Bayesian plausibility assessments are always con-
ditional on background knowledge K; hence, we could have written
the prior probabilities more elaborately as p(θA |K) and p(θB |K).
The background knowledge may include the fact that we believed we
were faced with a choice between Andy and Bobbie. The fact that
Andy’s sister came to visit, and that she is a fanatic vegetarian, was
not part of K. In such a case, the models are said to be misspecified
(see also Gronau and Wagenmakers 2019 and references therein).
Some Bayesians have devised more or less ad-hoc devises to evaluate
a model in isolation (e.g., Box 1980) but the royal Bayesian road
always involves multiple models – the Bayesian world is comparative.
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Exercises

1. Many textbooks present Bayes’ rule as follows:

p(θ | data) = p(θ) p(data | θ)
p(data)

= p(θ) p(data | θ) · 1/c
∝ p(θ) p(data | θ),

where c is a single non-zero number and the ∝ symbol means ‘is
proportional to’. In words, we have (Jeffreys 1939, p. 46):

Posterior ∝ Prior× Likelihood,

which means that our updated knowledge of the world (‘posterior’) is
a compromise between our old knowledge (‘prior’) and the informa-
tion coming from the data (‘likelihood’, or ‘predictive success’). Show
how to use this formulation to go from Figure 7.1 to Figure 7.2.

2. Consider again the authorship question for the Federalist papers. As
before, assume that Hamilton’s rate of using ‘upon’ equals θH =
3/1000 whereas Madison’s rate equals θM = 1/6000. Disputed paper no.
54 is 2008 words long, two of which are ‘upon’.

2.1. What is the prior probability that Hamilton is the author?

2.2. As was done in the first paragraph of the section ‘Question 2: Will
the next pancake have bacon?’ decompose the likelihood ratio and
quantify the contribution of each occurrence of ‘upon’ versus each
occurrence of any other word. Which term is more influential?

2.3. Compute the evidence that the ‘upon’ data (i.e., 2 out of 2008)
provide for the hypothesis that Hamilton wrote paper no. 54.

2.4. Update your prior probability that Hamilton wrote paper no. 54
to your posterior probability.

2.5. Use the Learn Bayes module in JASP to confirm your results.

2.6. Consider disputed paper no. 63, “The Senate Continued”, which
is 3033 words long, without any occurrence of ‘upon’.9 Use the 9 The full text of the Federalist papers is

available at https://guides.loc.gov/
federalist-papers.

Learn Bayes module in JASP to quantify the evidence that these
data provide for Madison rather than Hamilton being the author.

2.7. It is striking how rarely the word ‘upon’ occurs in the disputed
papers. What does this suggest?

3. At the start of this chapter, we argued that the questions “who baked
the pancakes?” and “will the next pancake have bacon?” are funda-
mentally different. Now argue that we were wrong, and that these
questions are in fact intimately connected.

https://guides.loc.gov/federalist-papers
https://guides.loc.gov/federalist-papers
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4. We’ve established that the probability that the seventh pancake will
have bacon is .656.

4.1. What is the probability that the seventh and eighth pancakes will
both have bacon? (hint: expand the tree diagram in Figure 7.4).

4.2. Confirm your answer using the Learn Bayes module in JASP (hint:
use the Binomial Testing routine).10 10 The term ‘binomial’ refers to the fact

that only two outcomes are possible (here:
the pancakes are assumed to be of only
two types, bacon or vanilla).

4.3. Explain why the answer .656× .656 is both tempting and wrong.

Chapter Summary

These are the main lessons from this chapter:

◦ Prior knowledge about the relative plausibility of rival hypotheses is
adjusted by the data to yield posterior knowledge.

◦ The adjustment brought about by the data is a function of the ri-
val hypotheses’ success in predicting those data. Hypotheses under
which the data are relatively surprising decrease in plausibility.

◦ Only when the rival hypotheses are equally plausible a priori is it true
that the evidence (i.e., relative predictive success) equals knowledge
or belief (i.e., posterior probability).

◦ Bayes’ rule allows one to infer probable causes (e.g., the identity of
the baker) from observed consequences (e.g., the composition of the
pancake stack).

◦ Data may be analyzed sequentially or simultaneously: the end result
is exactly the same.

◦ Eventually, the evidence from the data will overwhelm the prior
opinion.

◦ In order to obtain a prediction for to-be-observed data one needs to
consider all possible causes, and weigh the prediction from each with
the posterior plausibility of that cause (i.e. apply the law of total
probability).

Want to Know More?

3 Donovan, T. M., & Mickey, R. M. (2019). Bayesian Statistics for
Beginners: A Step–by–Step Approach. Oxford: Oxford University
Press.

3 Mosteller, F., & Wallace, D. L. (1963). Inference in an authorship
problem. Journal of the American Statistical Association, 58, 275–309.
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Figure available at BayesianSpectacles.org under a CC-BY license.

The paper that energized the field of stylometry: the use of statistics
to quantify writing style.

3 Mosteller, F., & Wallace, D. L. (1984). Applied Bayesian and Classical
Inference: The Case of The Federalist Papers (2nd ed.). New York:
Springer. A riveting and comprehensive Bayesian account of the
authorship problem, a summary of which was given in the above-
referenced 1963 article. The first edition of this book was published
in 1964 under the title “Inference and Disputed Authorship: The
Federalist”.
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8 An Infinite Number of Hypotheses

[with Quentin F. Gronau]

It might seem, indeed, utterly impossible to calculate out a problem having an
infinite number of hypotheses, but the wonderful resources of the integral
calculus enable this to be done (…) But I may add that though the integral
calculus is employed as a means of summing infinitely numerous results, we in
no way abandon the principles of combinations already treated.

Jevons, 1874

Chapter Goal

This chapter explains how Bayesians routinely update beliefs about an
infinite number of rival hypotheses.

Many Potential Bakers

In the example from Chapter 7 there were only two possible bakers,
each with known bacon proclivity: Andy with θA = .40, and Bobbie
with θB = .80. Exactly the same principles of knowledge updating
apply when more candidate bakers are introduced. For instance, we can
add the following nine: Charly with θC = 0; Denver with θD = .10;
Evan with θE = .20; Frankie with θF = .30; Jackie with θJ = .50;
Lennon with θL = .60; Oakly with θO = 0.70; Robin with θR =

0.90; and Sidney with θS = 1. Note that Charly is a vegetarian and
never bakes bacon pancakes, whereas Sidney is a carnivore who always
bakes bacon pancakes. So now the question that Miruna faces, when
she comes home to have a pancake dinner with her extended family,
is “who baked the pancakes – Andy, Bobbie, Charly, Denver, Evan,
Frankie, Jackie, Lennon, Oakly, Robin, or Sidney?”
As before, the probability-form of Bayes’ rule shows that the poste-

rior probability of person i being the baker (i.e., p(θi | data)) is obtained
by updating their prior probability (i.e., p(θi)) with their relative predic-
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tive performance:

p(θi | data) = p(θi) ·
p(data | θi)
p(data)

= p(θi) ·
p(data | θi)∑n

j=1 p(data | θj) p(θj)
.

Note that the average predictive performance, p(data), is obtained
by applying the rule of total probability (cf. the tree diagram in Fig-
ure 7.4). The knowledge updating term p(data | θi)/p(data) can also be
interpreted in terms of a change in surprise. Averaged across all rival
hypotheses, p(data) quantifies the extent to which the observed data
are predictable or unsurprising: the lower this number, the more sur-
prising the data. Then we consider how unsurprising the observed
data are when we assume that person i was the baker (i.e., p(data | θi)),
that is, when we condition on person i being the baker. When the act
of conditioning on θi reduces the surprise (i.e., increases the ‘unsur-
prise’1), we have p(data | θi) > p(data) and this in turn implies that 1 Instead of unsurprise, Rosenkrantz

(1983, p. 75) used the term ‘expected-
ness’.

p(θi | data) > p(θi): in words, hypotheses gain credibility when they
make the observed data more predictable (i.e., less surprising).2 2 This is the central concept of Bayesian

learning, and we will keep bringing it
up throughout this book, for instance in
Chapter 24. See also Rouder and Morey
(2019).

Figure 8.1: A hypothesis θ gains credibility (i.e., p(θ | data) > p(θ) when it acts to reduce
surprise from the data (i.e., p(data | θ) > p(data)). Surprise lost is credibility gained. Figure
available at BayesianSpectacles.org under a CC-BY license.

When each person is deemed equally likely a priori to be the baker,
the factor p(θi) cancels (in our pancake example, p(θi) = 1/11, as there
are 11 candidate bakers), and the posterior probability is determined

BayesianSpectacles.org
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solely by relative predictive success, unweighted with prior plausibility:

p(θi | data) =
p(data | θi)∑n
j=1 p(data | θj)

.

The posterior probability for person i can then be interpreted as the
proportion of unsurprise, or the proportion of predictability.3 3 “If there is originally no ground to

believe one of a set of alternatives rather
than another, the prior probabilities are
equal. The most probable, when evidence
is available, will then be the one that was
most likely to lead to that evidence. We
shall be most ready to accept the hypothesis
that requires the fact that the observations
have occurred to be the least remarkable
coincidence.” (Jeffreys 1961, p. 29; italics
ours)

For concreteness, consider that the data consists of a single bacon
pancake, data = {b}. For each baker i, the prediction for this event
simply equals their bacon proclivity parameter θi. Table 8.1 shows the 11
candidate bakers, the associated prediction that the first pancake will be
either vanilla or bacon, the bakers’ prior probability, and their resulting
posterior probability after observing that the first pancake has bacon.
Note that in the equation immediately above,

∑n
j=1 p(data = {b} | θj) =

0 + .1 + .2 + .3 + .4 + .5 + .6 + .7 + .8 + .9 + 1 = 5.5 (i.e., the sum of the
‘Bacon’ column in Table 8.1), such that the posterior probability for each
baker is simply the proclivity θi divided by 5.5. “Sixth Principle.—The greater the prob-

ability of an observed event given any
one of a number of causes to which that
event may be attributed, the greater
the likelihood of that cause {given that
event}. The probability of the existence
of anyone of these causes {given the
event} is thus a fraction whose numera-
tor is the probability of the event given
the cause, and whose denominator is the
sum of similar probabilities, summed
over all causes. If these various causes
are not equally probable a priori, it is
necessary, instead of the probability
of the event given each cause, to use
the product of this probability and the
possibility of the cause itself. This is the
fundamental principle of that branch
of the analysis of chance that consists
of reasoning a posteriori from events to
causes.” (Laplace 1814/1995, pp. 8-9,
italics in original)

Table 8.1: Who baked the pancakes? Eleven candidate bakers, each with known bacon
proclivity θi, are associated with a prediction for whether or not the first pancake will
have bacon. After observing that the first pancake has bacon, the candidate bakers’ prior
plausibility p(θi) = 1/11 = 5/55 is updated to a posterior probability, given in the final
column.

Pancake prediction

Candidate
baker

Bacon
proclivity

Vanilla Bacon
Prior
probability

Posterior
probability

Charly θC = 0 1 0 5/55 0

Denver θD = .10 .90 .10 5/55 1/55 ≈ .02
Evan θE = .20 .80 .20 5/55 2/55 ≈ .04
Frankie θF = .30 .70 .30 5/55 3/55 ≈ .05
Andy θA = .40 .60 .40 5/55 4/55 ≈ .07
Jackie θJ = .50 .50 .50 5/55 5/55 ≈ .09
Lennon θL = .60 .40 .60 5/55 6/55 ≈ .11
Oakly θO = .70 .30 .70 5/55 7/55 ≈ .13
Bobbie θB = .80 .20 .80 5/55 8/55 ≈ .15
Robin θR = .90 .10 .90 5/55 9/55 ≈ .16
Sidney θS = 1 0 1 5/55 10/55 ≈ .18

The prior and posterior probabilities from Table 8.1 are shown in
Figure 8.2. As explained in Chapter 7, these are distributions of be-
lief, conviction, plausibility, or uncertainty, and they reflect our lack of
knowledge about the identity of the baker before and after observing
a single bacon pancake. Figure 8.2 and Table 8.1 allow the following
conclusions:

◦ The observation of a single bacon pancake has ‘irrevocably exploded’
(Pólya 1954a, p. 6) the hypothesis that Charly is the baker – Charly
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Figure 8.2: Prior distribution (in salmon) and posterior distribution (in green) across
11 possible bakers with known bacon proclivity, after observing a single bacon pancake.
Exact numbers shown in Table 8.1.

is a vegetarian and never bakes bacon pancakes (i.e., θC = 0). So we
can be absolutely certain that Charly is not the baker. In this case,
Bayesian inference reduces to propositional logic: ‘Charly never bakes
bacon pancakes’ & ‘A bacon pancake was baked’→ ‘Charly is not the
baker’.

◦ The observation of a bacon pancake (i.e., a known ‘consequence’)
makes it more likely that the baker (i.e., an unknown ‘cause’) has
a high bacon proclivity rather than a low bacon proclivity. This is
because the observation of a bacon pancake is less and less surprising
as the bacon proclivity increases. The data are the least surprising
under the hypothesis that Sidney is the baker – in fact, Sidney only
bakes bacon pancakes, so the observation of a bacon pancake elicits
no surprise whatsoever. Consequently, based on the observation of a
single bacon pancake, the highest posterior probability is for Sidney
being the baker.4 4Note the evidential asymmetry be-

tween Charly and Sidney: a prediction
that is completely correct increases Sid-
ney’s plausibility from 5/55 ≈ .09 to
10/55 ≈ .18, whereas a prediction that is
completely incorrect decreases Charly’s
plausibility to zero, from which it is
impossible to recover.

◦ Compared to their prior probabilities, high bacon proclivities θi
have become more credible, and low θi’s have become less credible;
the fulcrum of the posterior distribution is at θJ = .50; for Jackie,
the prior probability is the same as the posterior probability – in
other words, the predictive performance of θJ is exactly equal to the
average, and its plausibility is therefore unchanged.
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◦ The observation of a new datum leads to an adjustment of beliefs;
that is, credibility is re-allocated and flows towards hypotheses that
predicted the datum relatively well and flows away from hypotheses
that predicted the datum relatively poorly. Note that credibility is not
gained or lost overall – the mass of the prior and posterior distribu-
tion always sums to 1.5 5 This may be likened to the conservation

of volume – when water is poured into
a differently-sized container, the water
level may change but the volume stays
the same.

Probability versus Likelihood: It’s Complicated

There is a subtle difference between ‘probability’ and ‘likelihood’.
Consider first the pancake predictions for each baker shown in Ta-
ble 8.1. When Evan is the baker, the probability that the next
pancake will have bacon is .20. Consequently a probability of
1 − .20 = .80 is assigned to the complementary event that the pan-
cake will be vanilla (in statistical jargon: ‘with the parameter fixed
and the data variable’). So, in Table 8.1, each row-specific predic-
tion is a probability: given a specific account of the world, unknown
events are assigned probabilistic predictions. Once the data are in
(e.g., once we observe that the first pancake has bacon) it makes
sense to consider only the predictions for the event that actually
occurred. In Table 8.1, this means that we focus on the ‘Bacon’ col-
umn, and inspect how unsurprising the observed data are under the
rival hypotheses (in statistical jargon: ‘with the data fixed and the
parameter variable’). For the observed data the predictions across
the bakers are not probabilities – for instance, the numbers in the
‘Bacon’ column do not sum to 1. Instead, each individual prediction
is known as a ‘likelihood’, and the entire column is known as a ‘likeli-
hood function’ (e.g., Edwards 1992, Etz 2018, Lindley 2006, Myung
2003). If we want to transform the column of likelihoods p(data | θi)
to a posterior probability p(θi | data), we need to apply Bayes’ rule
and multiply each likelihood by a prior probability p(θi) and divide by
p(data), the weighted average prediction across all bakers.

In sum, a statistical hypothesis makes predictions for to-be-
observed data by assigning probabilities to exhaustive events (con-
sequently, the numbers sum to 1 across the space of possible out-
comes). With a particular observation in hand, however, we may
compare the associated predictive performance across rival hypothe-
ses. Considered as a function of the hypotheses, the numbers to not
generally sum to 1; hence they are referred to not as probabilities,
but as likelihoods. So yeah, it’s complicated.
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The Pancake Proclivity of Mr. X

In the previous example, we considered 11 possible bakers, each with
a unique value of θ. This means we have 11 discrete possibilities for θ;
each person was equally likely a priori to be the baker, that is, p(θi) =
1/11. Now imagine an army of N possible bakers, each with their own
bacon proclivity θ. Figure 8.2 would then consist of N prior and pos-
terior probability bars; the prior probability of each soldier being the
baker would equal 1/N, and decrease towards zero as the army grows
larger. In the limit of an infinitely large army, we transition from a
discrete distribution to a continuous distribution, where the probability
of any single baker is zero; the concept of probability now applies to a
range of bakers, that is, to an area under the curve (cf. Figure 3.4).
To see why a continuous distribution would be useful, consider the

following situation. Miruna comes home and is informed that the pan-
cakes have been baked by Mr. X, a family friend whose bacon proclivity
θX is unknown. Every value of θX from 0 to 1 represents a hypothesis
about Mr. X’s preference for bacon pancakes, and there is an infinite
number of them. Before we consider the statistical details, let’s consider
what happens when we assume that, a priori, all values of θX are equally
plausible – the resulting prior distribution is shown in Figure 8.3.
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Figure 8.3: Prior distribution for the unknown bacon proclivity of Mr. X. Figure from the
JASP module Learn Bayes.

The horizontal line indicates that all values for θX are deemed
equally likely a priori (cf. the shape of the salmon-colored prior distribu-
tion across the eleven values of θ shown in Figure 8.2). The prior mean
of θX is indicated by a dot and equals 1/2. The prior probability that Mr.
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X prefers bacon pancakes over vanilla pancakes (i.e., p(θX) > 1/2) equals
1/2 – the gray area under the curve.
The first pancake that Mr. X bakes has bacon, and this yields an up-

date for all values of θX . The resulting posterior distribution is shown
in Figure 8.4. The observation has tilted the distribution towards higher
values of θ (cf. the shape of the green-colored posterior distribution
across the eleven values of θ shown in Figure 8.2). The posterior mean
equals 2/3 (as we will see later, the value 0.667 is due to rounding). The
most likely value of θX –the mode, where the posterior reaches its high-
est point– is 1.0. The posterior median –that value for θX below which
lies 50% of posterior mass– equals .707. Finally, the posterior probabil-
ity that Mr. X prefers bacon pancakes over vanilla pancakes equals .75 –
the size of the gray area under the curve.
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Figure 8.4: Posterior distribution for the unknown bacon proclivity of Mr. X, after
observing a single bacon pancake. Figure from the JASP module Learn Bayes.

A posterior distribution can be summarized and queried in a myriad
ways. One may report the posterior mean, mode, or median; one may
report the posterior mass that lies in any interval of interest;6 or one 6 Above, we were interested in p(0.5 ≤

θ ≤ 1), but we may enquire about
p(a ≤ θ ≤ b) for any a and b as long as
0 ≤ a < b ≤ 1. Note that p(a ≤ θ ≤ b)

can also be written p(θ ∈ [a, b]).

may specify a target amount of posterior mass and request an interval
that contains that mass. One of the most popular posterior summary
measures is the “95% credible interval”, an interval that contains 95% of
the posterior mass.
There are two popular types of 95% credible intervals. The first one

is the central 95% credible interval, which is obtained by excluding 2.5%
of posterior mass from both ends of the distribution, left and right. By
construction, θ is just as likely to fall below the interval as it is to lie
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above it. Central credible intervals are sometimes called ‘equal-tailed
intervals’. Figure 8.5 shows the 95% credible interval method as applied
to the example of Mr. X. The interval ranges from .158 to .987 and
contains 95% of the posterior mass. Note that the interval excludes that
part of the posterior distribution which contains the most likely values
of θX , namely the slice from .987 to 1.
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Figure 8.5: Central 95% credible interval of the posterior distribution for the unknown
bacon proclivity of Mr. X, after observing a single bacon pancake. Figure from the JASP
module Learn Bayes.

The second popular type of credible interval is the 95% highest poste-
rior density (HPD) interval, which is defined as the smallest interval that
contains 95% of posterior mass. Figure 8.6 shows the 95% HPD method
as applied to the example of Mr. X. The interval ranges from .224 to 1

and contains 95% of the posterior mass. Note that this interval includes
the part of the posterior distribution which contains the most likely
values of θ.
Which type of 95% interval should you use? We don’t have a strong

preference, and in most practical applications it does not matter much.
When the two intervals do give very different results, it is prudent
to display the entire posterior distribution rather than summarize it by
a few numbers. When summary measures are used, no matter their
sophistication or rationale, information is inevitably lost.
Regardless of what type of x% credible interval is being reported, its

interpretation is the same: x% of the posterior mass falls in the specified
interval from a to b. Hence, under the statistical model that is being
entertained, and with the data in hand, you can be 95% certain that the
parameter of interest lies between a and b. This is a direct, intuitive
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Figure 8.6: 95% highest posterior density interval of the posterior distribution for the
unknown bacon proclivity of Mr. X, after observing a single bacon pancake. Figure from
the JASP module Learn Bayes.

interpretation that is inappropriate for a frequentist ‘confidence interval’
(Morey et al. 2016a).7 7 Briefly, a frequentist 95% confidence

interval is generated by a procedure
that, in repeated use across different data
sets, encloses the true data-generating
parameter value 95% of the time. Note
that no reference can be made to the
actual end-points of the interval. For
frequentists, confidence refers to an
evaluation of performance in repeated
use, not to an assessment of plausibility
for the individual case.

A Second Pancake from Mr. X

Mr. X now produces a second pancake and it’s vanilla. We can now
update our knowledge in two ways, which lead to exactly the same end
result. The first method is to retain the uniform prior, and pretend that
the two pancakes {b, v} were seen at the same time. Doing this leads
to the dome-shaped posterior distribution shown in Figure 8.7. The
observation of a vanilla pancake has considerably reduced the previous
enthusiasm for high values of θX , and the posterior mean is reduced
to .5, the same value it had before any pancakes were observed. The
posterior distribution is now symmetric around the value of θ = .5

(which means that .5 is the posterior median); the posterior distribution
also peaks on θ = .5 (which means that .5 is the posterior mode). As can
be seen from the size of the gray area, the posterior probability that Mr.
X prefers bacon pancakes over vanilla pancakes equals .50. So in many
ways we appear to be back where we started before any pancake was
observed. However, a comparison between the flat prior distribution to
the dome-shaped posterior distribution shows that, after two pancakes,
middle values of θX have become more credible than they were before,
whereas values lower than about .20 and higher than about .80 have
become less credible.



142 bayesian inference from the ground up

mean = 0.500;  P(0.5 £ q £ 1) = 50%

0.0

0.5

1.0

1.5

0.0 0.2 0.8 1.00.4 0.6 

Mr. X Bacon Proclivity q

D
en

si
ty

Figure 8.7: Posterior distribution for the unknown bacon proclivity of Mr. X, after
observing one bacon pancake and one vanilla pancake. Figure from the JASP module
Learn Bayes.

The second way of updating is more elegant. Instead of pretending
to have observed the two pancakes simultaneously, we stay true to
the sequential nature of how the data were obtained. Specifically, we
first update our knowledge about θX based on having observed the
bacon pancake, yielding the posterior distribution shown in Figure 8.4
(i.e., the ramp). Next, this posterior distribution then becomes our
prior distribution for the second knowledge update, based on having
observed the vanilla pancake. The end result is exactly the posterior
distribution shown in Figure 8.7; it does not matter whether the data
were analyzed simultaneously or sequentially. But how exactly do we
set up the sequential analysis? In particular, how can we specify a prior
distribution (prior to the observation of the second pancake) to be equal
to a posterior distribution (posterior to the observation of the first
pancake)?

The Beta Prior

In principle, θ –the unknown chance that any specific pancake comes
with bacon– can be assigned a prior distribution at will, no matter how
erratic, haphazard and idiosyncratic, just as long as it has area 1, and as
long as it respects the fact that θ is defined on the interval from 0 to 1.
In practice, it is convenient to select a prior distribution from a flex-

ible family of distributions whose shape can be adjusted by changing
one or two parameters. And, as mentioned in the previous section, for
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The Principle of Insufficient Reason

The Principle of Insufficient Reason, a term due to Laplace, is also
known as the Principle of Indifference (Keynes 1921) or the Principle
of Non-sufficient Reason (Jeffreys 1933a, p. 528). The principle
holds that, when we have no ground for preferring one alternative
over the other (i.e., when we are indifferent), the prior probabilities
are taken to be equal. An example is to assign prior probability 1/11

to each of the 11 candidate bakers in our pancake scenario. The
Principle may appear self-evident. As stated by Jeffreys (1933a,
p. 528): “The fundamental rule is the Principle of Non-sufficient
Reason, according to which propositions mutually exclusive on the
same data must receive equal probabilities if there is nothing to
enable us to choose between them. This principle (…) seems to me
so obvious as hardly to require statement” (see also Howie 2002,
148-150; Jeffreys 1931, p. 20). It is obvious in part because any
other assignment of prior probabilities seems indefensible. Specifically,
“if we do not take the prior probabilities equal we are expressing
confidence in one rather than another before the data are available,
and this must be done only from definite reason. To take the prior
probabilities different in the absence of observational reason for doing
so would be an expression of sheer prejudice.” (Jeffreys 1961, p.
33, italics ours; see also Jeffreys’s 1934 letter to Fisher presented in
Bennett 1990, p. 154).

Nevertheless, it has been argued that the blind application of the
Principle of Insufficient Reason results in paradoxes (e.g., Eva 2019;
Keynes 1921; Van Fraassen 1989, Chapter 12). For instance, when
we are indifferent about a standard deviation σ we might be tempted
to assign it a uniform distribution from 0 to ∞, such that every
value of σ is deemed equally likely a priori. However, not only is this
distribution improper (i.e., it does not have area 1), it also induces a
non-uniform distribution on the variance σ2, a quantity about which
we might likewise be indifferent. These challenges were addressed by
Jeffreys (1961, Chapter 3), a discussion of which would lead us too
far afield. In modern Bayesian analysis, data analysts have adopted
a more pragmatic approach, and this has reduced the relevance of
philosophical debates concerning the Principle of Insufficient Reason.



144 bayesian inference from the ground up

sequential updating is desirable that the prior distribution for the nth
observation can be specified to equal the posterior distribution after the
(n− 1)th observation.

For our problem concerning the chance θ, the standard choice is
to select a prior distribution from the beta family. Beta distributions
have two parameters; these are traditionally called a and b, but in this
book we refer to them as α and β, in line with the convention to use
the Greek alphabet for unobserved quantities and the Latin alphabet
for observed quantities. Figure 8.8 shows four examples of beta distri-
butions. The flat green line is the beta(1, 1) distribution that we already
encountered in Figure 8.3; this distribution indicates that every value of
θ is equally plausible a priori. The red line is a beta(1/2, 1/2) distribution,
whose U-shape indicates that extreme values are more likely a priori
than values in the middle of the range.8 The yellow line is a beta(10, 1) 8 The beta(1/2, 1/2) distribution is known

as ‘Jeffreys’s prior’, but a discussion on
its rationale is well beyond the scope of
this textbook. Curious readers can find
a tutorial-style explanation in Ly et al.
(2017).

distribution, whose J-shape indicates that relatively high values of θ are
deemed much more plausible than low values; values of θ lower than
1/2 are relatively unlikely. Finally, the blue line is a beta(10, 10) distri-
bution. Its inverted-U shape indicates that values of θ in the middle of
the range are more plausible than those in the extremes; specifically,
values of θ lower than .20 and larger than .80 are relatively unlikely. We
encourage the reader to explore different values for α and β and their
effect on the shape of the beta distribution. In JASP, this can be done
both from the Learn Bayes module (‘Binomial Estimation’) and from the
Distributions module (‘Continuous’→ ‘Beta’).9 9 A Shiny app to examine the shape of

different beta distributions is available at
http://shinyapps.org/, under “A first
lesson in Bayesian inference”.

In general, the following regularities can be observed about the shape
of beta priors as parameters α and β are varied:

◦ Beta priors with α = β are symmetric around θ = 1/2, and thus do
not encode a prior preference for successes (e.g., bacon pancakes) over
failures (e.g., vanilla pancakes).

◦ As α and β increase, the beta prior becomes more peaked, indicating
more prior certainty about the plausible values of θ.

◦ When α and β are both large, the beta distribution is peaked around
the value α/(α+β), which is also the distribution’s mean.

◦ When α > β (e.g., the yellow line in Figure 8.8), the prior distribu-
tion assigns more mass to values of θ greater than 1/2, reflecting a
prior preference for successes over failures; when β > α, the prior
distribution assigns more mass to values of θ lower than 1/2, reflect-
ing a prior preference for failures over successes.

These regularities concerning the beta prior suggest that parameter α
can be interpreted as the hypothetical number of prior successes and
parameter β can be interpreted as the hypothetical number of prior

http://shinyapps.org/
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Figure 8.8: Example of four beta distributions that could be specified to capture one’s uncertainty about the chance θ in advance of data
collection. Parameter α can be interpreted as the hypothetical prior number of successes, and parameter β can be interpreted as the hypo-
thetical prior number of failures (Jaynes 2003, pp. 385-386).

failures. To demonstrate that this suggestion is correct we now turn to
the underlying mathematics.10 10 There is an ongoing debate on whether

α and β ought to be interpreted as the
number of hypothetical prior success and
failures, or as these numbers minus one.
See the last exercise in this chapter.

Knowledge Updating with the Beta Prior

Having specified our prior knowledge about θ by means of a beta dis-
tribution, we are now ready to update this knowledge by means of the
data. By Bayes’ rule:

p(θ | data) = p(θ) · p(data | θ)
p(data)

∝ p(θ) · p(data | θ),

where ∝ stands for ‘is proportional to’.11 As mentioned in Chapter 7, 11 Recall that p(data) is a constant: a
marginal likelihood that does not depend
on θ.



146 bayesian inference from the ground up

Parameter or Hypothesis?

In the example of the 11 candidate bakers, it is intuitive to view each
proclivity θi as a separate, rival hypothesis concerning the baker’s
identity. But when the number of bakers grows infinitely large and
θ becomes continuous, convention dictates that θ is then called a
parameter, not a space for an infinite number of hypotheses. Al-
though the difference is linguistically convenient, it should be kept in
mind that the distinction is merely that – a matter of linguistics (e.g.,
Good 1983, p. 126; Gelman 2011, p. 76; Gronau and Wagenmakers
2019). In particular, the Bayesian rules for updating knowledge do
not depend on whether θ called a hypothesis (in the discrete case) or
a parameter (in the continuous case).

this means (Jeffreys 1939, p. 46):

Posterior ∝ Prior× Likelihood. (8.1)

Firstly, consider the beta prior:

p(θ) ∼ beta(α, β)
∝ θ α−1(1− θ) β−1.

(8.2)

The complete expression for the beta distribution contains an additional
term, but because this term is a constant that does not involve θ we can
omit it from the equation – for the current explanation we only need
the result in proportional form. Note that entertaining α = β = 1

produces the flat prior (i.e., the green line in Figure 8.8).
Secondly, consider the binomial likelihood, that is, the predictive

performance of particular θ for the observed number of bacon and
vanilla pancakes. For example, consider again our pancake sequence
from Chapter 7: {b, v, b, b, b, v}. The probability of this exact sequence
is θ × (1 − θ) × θ × θ × θ × (1 − θ) = θ4 × (1 − θ)2. In general, the
probability of the exact observed sequence containing s successes and f
failures is θs × (1− θ)f .
At this point it may be tempting to define the binomial likelihood as

p(s, f | θ) = θs×(1−θ)f . But this is not quite correct. That probability is
for the exact sequence {b, v, b, b, b, v}; but the data summary s = 4, f =

2 is also consistent with 14 other sequences, including {b, b, v, b, b, v},
{b, b, b, b, v, v}, and so forth. Hence, for the case of s = 4, f = 2 the
likelihood is given by p(s = 4, f = 2 | θ) = 15 × θ4 × (1 − θ)2, where
15 represents the number of possible sequences. But because that single
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number does not involve the parameter θ, we can write the binomial
likelihood as follows:

p(s, f | θ) = binomial(s, f | θ)
∝ θ s(1− θ) f .

(8.3)

This likelihood is clearly of a form similar to the beta prior shown in
Equation 8.2. Multiplying beta prior and binomial likelihood we obtain
a posterior distribution proportional to θ α−1 × (1 − θ) β−1 × θs ×
(1 − θ)f = θ a+s−1 × (1 − θ) b+f−1. This posterior quantity can be
recognized as proportional to another beta distribution – specifically, a
beta(α+ s, β + f) distribution.
Consequently, the tinkering above has provided the following helpful

rule: if we define our prior beliefs about a binomial chance parameter θ
by a beta(α, β) distribution, and if we observe binomial data constitut-
ing of s successes and f failures, then our updated beliefs are quantified
by a posterior distribution which is also a beta distribution, just like the
prior, but now with parameters beta(α+ s, β + f). This is so convenient,
and so important, that it deserves a separate equation:

p(θ | s, f)︸ ︷︷ ︸
Posterior for θ:
beta(α+s,β+f)

∝ p(θ)︸︷︷︸
Prior for θ:
beta(α,β)

× p(s, f | θ)︸ ︷︷ ︸
Probability for s,f

given θ

(8.4)

This property –that the prior distribution and the posterior distribu-
tion are in the same family, making the updating process intuitive and
convenient– is called conjugacy.12 Unfortunately, more complicated 12 Although few people are familiar with

the concept of conjugacy (‘connected’;
literally: ‘yoked together’), many more
will be familiar with the term ‘conjugal
visit’.

models are rarely conjugate.
Reflecting on the fact that a beta(α, β) prior distribution, updated

with s successes and f failures, yields a beta(α + s, β + f) posterior
distribution produces a number of insights:

◦ The order in which the observations have arrived does not influence
the inference. Ultimately all that matters is the number of successes
and failures. Their order is of no import (Jeffreys 1938d, p. 444;
Jeffreys 1938a, pp. 191-192).

◦ It does not matter whether data are analyzed simultaneously or se-
quentially. Again, all that matters is the final number of successes
and failures.

◦ As s and f increase, they will start to dominate α and β. This means
that, as far as the location and shape of the posterior distribution
is concerned, the impact of the prior distribution is increasingly
watered down as the data accumulate. This is sometimes described by
the phrase ‘the data overwhelm the prior’.13 13Wrinch and Jeffreys (1919).
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◦ Suppose there exists a true value for θ, denoted θ⋆. As the data accu-
mulate the posterior will be increasingly peaked, and the mean of the
posterior distribution, which is (α+s)/(α+s+β+f) will become arbitrar-
ily close to s/(s+f), the value corresponding with θ⋆. This suggests
that the posterior distribution will converge to θ⋆ (a suggestion that
was proven by Laplace 1774/1986).14 14 In statistical jargon, this property is

called consistency.

Figure available at BayesianSpectacles.
org under a CC-BY license.

Mr. X Revisited

Armed with newfound knowledge about the beta prior and about con-
jugacy, we briefly return to the scenario of estimating the bacon pro-
clivity θX of Mr. X. We started with a uniform prior distribution (cf.
Figure 8.3) and after the first pancake (which was bacon) our knowl-
edge was updated to a posterior distribution that resembled a ramp
(cf. Figure 8.4). We now know that the uniform prior distribution is a
beta(1, 1), and that the posterior distribution is a beta(2, 1). We then ob-
served a second pancake (which was vanilla) and updated our beta(1, 1)
distribution all at once with both observations, yielding a dome-shaped
posterior (cf. Figure 8.7). We now know that this dome-shaped poste-
rior is a beta(2, 2). In addition, we now have an answer to the question
how we can analyze the data from Mr. X sequentially, one pancake
after the other. After the first pancake is observed, our knowledge is
reflected in a beta(2, 1) posterior. It is this posterior that should be our
prior distribution as we await the second pancake. When that second
pancake arrives, we update to a beta(2, 2) distribution, and we end up
with the same inference that we did when the data were analyzed all at
once. Figure 8.9 visualizes the second sequential updating step.

Exercises

1. Based on the information in Table 8.1, compute the likelihood ratio
for Denver versus Lennon.

2. Construct Figure 8.2 (i.e., the 11-baker plot) with the Learn Bayes
module (under Binomial Testing).

3. Imagine that instead of 1 bacon pancake, we observe a stack of 20
pancakes, 10 of which are vanilla and 10 of which have bacon. What
general conclusion can we draw about the relative plausibility of the
bakers? Confirm your intuition with the Learn Bayes module.

4. Suppose we entertain a large number of plausible hypotheses. One
of the hypotheses provides the best prediction for the observed data.
Explain how the Bayesian paradigm tempers the enthusiasm for this
best-predicting model.

BayesianSpectacles.org
BayesianSpectacles.org
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Figure 8.9: Sequential analysis of the unknown bacon proclivity of Mr. X. The dotted
gray line represents a beta(2,1) distribution, which is posterior to the occurrence of
the first pancake but prior to the occurrence of the second pancake. After observing
the second pancake, the beta(2, 1) distribution is updated to a beta(2, 2) distribution,
represented by the black line. Figure from the JASP module Learn Bayes.

5. Consider again Figure 8.4. Use the Learn Bayes module to confirm
that the posterior median is .707. For further confirmation, what
credible interval would you need to show?

6. Consider Figure 8.3 (i.e., the uniform prior) and Figure 8.4 (i.e., the
posterior ramp). What is the evidence, obtained from observing a
single bacon pancake, that θX > .50?

7. Suppose we start with the beta(1, 1) prior distribution for the bacon
proclivity for a Mr. Y (the green line in Figure 8.8), and we end
up with a beta(10, 1) posterior distribution (the yellow line). What
pancakes did Mr. Y produce?

8. After observing one bacon and one vanilla pancake, we wrote that
“middle values of θX have become more credible than they were
before, whereas values lower than about .20 and higher than about
.80 have become less credible“. Use the Learn Bayes module to obtain
the exact numbers. [hint: use the support interval (Wagenmakers
et al. 2022)].

9. The statistical framework outlined in the previous chapters can be
applied widely. Describe how you would apply it to the following
problems15: 15NB. Neither problem involves any

pancakes.
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9.1. How much of the earth’s surface is covered by water? The only
objects at your disposal are a globe, a pencil, and piece of paper.16 16 To the best of our knowledge, this

example application was first suggested
by Richard McElreath.9.2. What is the median speed of flowing traffic on the highway closest

to where you live? You have at your disposal a car, a driver (who
obeys your instructions), a pencil, and a piece of paper.

10. “Bayesian: One who, vaguely expecting a horse and catching a
glimpse of a donkey, strongly concludes he has seen a mule.” (Senn
2007, p. 46). Discuss.

11. Assume you update a beta(1/2, 1/2) prior distribution for θ with a sin-
gle success and a single failure. What does the posterior distribution
look like?

12. Amy assigns a beta(α = 8, β = 2) prior distribution to a chance θ.
What number of hypothetical previously seen successes and failures
does this prior distribution correspond to?

Chapter Summary

In this chapter we demonstrated how to update beliefs about an infinite
number of hypotheses. We first expanded our set of candidate bakers
(i.e., rival hypotheses or possible causes) from 2 to 11. In the limit of
an infinite number of candidate bakers, each associated with a unique
value for their bacon proclivity parameter θ, we obtain a continuous
distribution. This continuous distribution may be summarized by a
central tendency (e.g., the mean) and a measure of its spread or width
(e.g., an x% credible interval, which contains x% of the distribution
mass). For inference concerning chances, a convenient choice is the
beta distribution: a beta(α, β) prior distribution, when updated with s
successes and f failures, yields a beta(α+ s, β + f) posterior distribution.
This shows that the order of the observations is irrelevant, as is the
choice of whether to analyze the data sequentially or all at once.

Want to Know More?

3 Albert, J. M. (2009). Bayesian Computation with R (2nd ed.). New
York: Springer. This book interweaves conceptual explanation with
concrete application – and all analyses are supported with concise R
scripts.

3 Bolstad, W. M. (2007). Introduction to Bayesian Statistics (2nd ed.).
Hoboken, NJ: Wiley. Prior to writing the book you are reading now,
Bolstad was our go-to reference for students needing a gentle intro-
duction to Bayesian inference.
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3 Etz, A. (2018). Introduction to the concept of likelihood and its appli-
cations. Advances in Methods and Practices in Psychological Science,
1, 60-69. Alexander Etz is an exceptionally clear writer.

3 Kruschke, J. K. (2015). Doing Bayesian Data Analysis: A Tutorial with
R, JAGS, and Stan (2nd ed.). Academic Press/Elsevier. This book has
greatly helped popularize Bayesian inference, especially in the field of
psychology. It has puppies on the cover.

3 Kurt, W. (2019). Bayesian Statistics the Fun Way. San Francisco: No
Starch Press. We have recommended this introductory treatment in
an earlier chapter, and we are re-issuing our recommendation here.

3 Stone, J. V. (2016). Bayes’ Rule with R: A Tutorial Introduction to
Bayesian Analysis. Sebtel Press. A concise, well-presented introduc-
tion, with R code.

Appendix: A Simple Illustration of Bayesian Inference,
by Jevons (1874)

This appendix is also presented, with
minor changes, in Gronau and Wagen-
makers (2019).

Jevons’ 1874 masterpiece The Principles of Science contains the section
‘Simple Illustration of the Inverse Problem’ that showcases Bayesian
updating and posterior prediction for the case of multiple discrete hy-
potheses. For historical interest, and out of respect for the clarity of
Jevons’ writing, we present the section in full:17 17 For a modern-day account, see

D’Agostini (1999) and other works by
the same author.“Suppose it to be known that a ballot-box contains only four black or

white balls, the ratio of black and white balls being unknown. Four
drawings having been made with replacement, and a white ball having
appeared on each occasion but one, it is required to determine the proba-
bility that a white ball will appear next time. Now the hypotheses which
can be made as to the contents of the urn are very limited in number, and
are at most the following five:–

4 white and 0 black balls

3 „ „ 1 „ „

2 „ „ 2 „ „

1 „ „ 3 „ „

0 „ „ 4 „ „

The actual occurrence of black and white balls in the drawings renders
the first and last hypotheses out of the question, so that we have only
three left to consider.

If the box contains three white and one black, the probability of
drawing a white each time is 3

4
, and a black 1

4
; so that the compound

event observed, namely, three white and one black, has the probability
3
4
× 3

4
× 3

4
× 1

4
, by the rule already given (p. 233).18 But as it is indifferent 18 The relevant text on p. 233 reads:

“When the component events are inde-
pendent, a simple rule can be given for
calculating the probability of the com-
pound event, thus—Multiply together the
fractions expressing the probabilities of the
independent component events.” [italics in
original]

to us in what order the balls are drawn, and the black ball might come



152 bayesian inference from the ground up

first, second, third, or fourth, we must multiply by four, to obtain the
probability of three white and one black in any order, thus getting 27

64
.

Taking the next hypothesis of two white and two black balls in the
urn, we obtain for the same probability the quantity 1

2
× 1

2
× 1

2
× 1

2
× 4,

or 16
64
, and from the third hypothesis of one white and three black we

deduce likewise 1
4
× 1

4
× 1

4
× 3

4
×4, or 3

64
. According, then, as we adopt the

first, second, or third hypothesis, the probability that the result actually
noticed would follow is 27

64
, 16

64
, and 3

64
. Now it is certain that one or other

of these hypotheses must be the true one, and their absolute probabilities
are proportional to the probabilities that the observed events would follow
from them (see p. 279).19 All we have to do, then, in order to obtain the 19Note from the authors: this assumes

that the hypotheses are equally likely a
priori. The relevant text on p. 279 reads:
“If an event can be produced by any one of
a certain number of different causes, the
probabilities of the existence of these causes as
inferred from the event, are proportional to
the probabilities of the event as derived from
these causes.” [italics in original]

absolute probability of each hypothesis, is to alter these fractions in a
uniform ratio, so that their sum shall be unity, the expression of certainty.
Now since 27 + 16 + 3 = 46, this will be effected by dividing each fraction
by 46 and multiplying by 64. Thus the probability of the first, second,
and third hypotheses are respectively—

27

46
,

16

46
,

3

46
.

The inductive part of the problem is now completed, since we have found
that the urn most likely contains three white and one black ball, and
have assigned the exact probability of each possible supposition. But
we are now in a position to resume deductive reasoning, and infer the
probability that the next drawing will yield, say a white ball.20 For if the 20 EWDM: Note that when the possible

content of each ballot-box is considered
a parameter, this forecast is known as a
‘posterior prediction’; when the possible
content is interpreted as a competing
hypothesis, the same forecast is known as
‘Bayesian model averaging’ (e.g., Hinne
et al. 2020, Gronau and Wagenmakers
2019), see Chapter 7.

box contains three white and one black ball, the probability of drawing
a white one is certainly 3

4
; and as the probability of the box being so

constituted is 27
46
, the compound probability that the box will be so filled

and will give a white ball at the next trial, is

27

46
× 3

4
or

81

184
.

Again, the probability is 16
46
that the box contains two white and two

black, and under those conditions the probability is 1
2
that a white ball

will appear; hence the probability that a white ball will appear in conse-
quence of that condition, is

16

46
× 1

2
or

32

184
.

From the third supposition we get in like manner the probability

3

46
× 1

4
or

3

184
.

Now since one and not more than one hypothesis can be true, we may
add together these separate probabilities, and we find that

81

184
+

32

184
+

3

184
or

116

184

is the complete probability that a white ball will be next drawn under the
conditions and data supposed.” (Jevons 1874/1913, pp. 292-294)

In the next section, General Solution of the Inverse Problem, Jevons
points out that in order for the procedure to be applied to natural phe-
nomena, an infinite number of hypotheses need to be considered:
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“When we take the step of supposing the balls within the urn to be in-
finite in number, the possible proportions of white and black balls also
become infinite, and the probability of any one proportion actually exist-
ing is infinitely small. Hence the final result that the next ball drawn will
be white is really the sum of an infinite number of infinitely small quanti-
ties. It might seem, indeed, utterly impossible to calculate out a problem
having an infinite number of hypotheses, but the wonderful resources of
the integral calculus enable this to be done with far greater facility than
if we supposed any large finite number of balls, and then actually com-
puted the results. I will not attempt to describe the processes by which
Laplace finally accomplished the complete solution of the problem. They
are to be found described in several English works, especially De Mor-
gan’s ‘Treatise on Probabilities,’ in the ‘Encyclopædia Metropolitana,’ and
Mr. Todhunter’s ‘History of the Theory of Probability.’ The abbreviating
power of mathematical analysis was never more strikingly shown. But I
may add that though the integral calculus is employed as a means of summing
infinitely numerous results, we in no way abandon the principles of combinations
already treated.[italics ours]” (Jevons 1874/1913, p. 296)





9 The Rule of Succession

If there have been m occasions on which a certain event might have been
observed to happen, and it has happened on all those occasions, then the
probability that it will happen on the next occasions of the same kind is m+1

m+2
.

Jevons, 1874

Chapter Goal

The goal is to derive Laplace’s Rule of Succession and set up the proper
understanding for the next chapter.

The Beta Prediction Rule

Suppose a binomial chance θ has a beta distribution, that is, θ ∼
beta(α, β). An example of a beta distribution with parameters α = 4,
β = 6 is shown in Figure 9.1. Using the information in the beta distri-
bution, we now wish to predict the outcome of the next binomial trial –
what is the probability that it will be a success?1 1 In the pancake example, successes and

failures were defined as occurrences of
bacon and vanilla pancakes, respectively.
The term ‘success’ and ‘failure’ is more
generic. In the following, we denote a
success by ‘1’ and a failure by ‘0’.
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Figure 9.1: A beta(α=4, β=6) distribution for a binomial success parameter θ.

Stamp “Laplace” (N◦ Yvert & Tellier
1031) by Paul-Pierre Lemagny. Repro-
duced with permisson of ©La Poste and
Rosine Gosset-Lemagny.

What we know is the probability of a success given a particular value
of θ: this is simply θ. For instance, if we know that Andy has a pro-
clivity for producing bacon pancakes that equals θ = .40, then the
probability that the next pancake contains bacon is .40. Therefore,
p(y = 1 | θ) = θ, where y = 1 stands for the next observation y be-
ing a success (i.e., a bacon pancake). But we wish to make an overall
statement, a prediction that takes into account all possible values of
θ, weighted with the plausibility as provided by the beta distribution.
In other words, we need to average out θ according to the law of total
probability, as explained in Chapter 3.
Now if θ were composed of n discrete possibilities, we would obtain

our prediction by computing a weighted average:

p(y = 1) =

n∑
i=1

p(y = 1 | θi) p(θi).

This process is essential, so we will drive this point home. Suppose θ is
composed of just n = 2 discrete possibilities: θA = .40 and θB = .80.
Furthermore, suppose the prior distribution on θ assigns probability .36
to θA and probability .64 to θB . This discrete, two-point prior distribu-
tion across θ is displayed in Figure 9.2.
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Figure 9.2: A discrete, two-point prior distribution for a chance θ, assigning prior mass
.36 and .64 to θA = .40 and θB = .80, respectively. Applying the law of total probability
yields the probability that the next observation will be a success. See text for details.
Figure from the JASP module Learn Bayes.

By applying the law of total probability we can issue a prediction that
accounts for our uncertainty about the possible values of θ:

p(y = 1) =

n∑
i=1

p(y = 1 | θi) p(θi)

= p(y = 1 | θA) p(θA) + p(y = 1 | θB) p(θB)
= p(y = 1 | θ = .40) .36 + p(y = 1 | θ = .80) .64

= .40× .36 + .80× .64 ≈ .656.

These numbers are in fact identical to those used in Chapter 7, when
we predicted whether or not the seventh pancake would have bacon,
averaging across the uncertainty about the identity of the baker (i.e.,
either Andy, with a bacon proclivity of θ = .40, or Bobbie, with a bacon
proclivity of θ = .80). The associated tree diagram was presented as
Figure 7.4.
However, the beta distribution is continuous and this means that we

need to compute an integral instead of a sum, as follows:

p(y = 1) =

∫ 1

0

p(y = 1 | θ) p(θ) dθ

=
α

α+ β
.

(9.1)

As it turns out, the integral across θ yields a surprisingly simple result:
the required probability is α/(α + β), which is in fact just the mean of
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a beta(α, β) distribution.2 For example, for the beta(α=4, β=6) distri- 2 The appendix to this chapter provides
three related ways to derive the result
mathematically.

bution shown in Figure 9.1, weighted predictions across the different
values of θ integrate to 4/(4+6) = .40. This shortcut can be used to solve
a series of historically important problems with relative ease.

Example 1: Update & Predict

Suppose we assign θ a beta prior distribution with parameters α = 2 and
β = 2; we then observe s = 2 successes and n − s = 4 failures. What is
the probability of a success on the seventh trial?
The solution proceeds in two steps. First, we use conjugacy to update

our beta prior, resulting in a beta posterior: p(θ | s, n) ∼ beta(α + s, β +

n − s) = beta(4, 6). Not coincidentally, it is this posterior distribution
that is shown in Figure 9.1. Second, we apply the prediction rule from
Equation 9.1 and this yields

p(y = 1 | s, n) = α+ s

α+ s+ β + n− s
=

α+ s

α+ β + n
, (9.2)

showing that when the information in the sample (i.e., s and n) domi-
nates the information in the prior (i.e., α and β), the prediction will be
relative close to the sample proportion s/n. Plugging in our prior values
α = β = 2 and our sample values s = 2, n = 6 yields a prediction that
the seventh trial is a success of 4/10 = .40.

Example 2: Laplace’s Rule of Succession

Laplace’s famous Rule of Succession, stated by Jevons in the epigraph
to this chapter, follows from Equation 9.1 when θ is assigned a uniform
prior distribution (i.e., α = β = 1) and the sample consists of only
successes (i.e., s = n). In this case, we obtain:

p(y = 1 | s = n) =
s+ 1

s+ 2
.

Jevons (1874/1913, pp. 299-300) describes the relevance of the Rule
of Succession as follows:

“When an event has happened a very great number of times, its hap-
pening once again approaches nearly to certainty. Thus if we suppose
the sun to have risen demonstratively one thousand million times, the
probability that it will rise again, on the ground of this knowledge merely,
is 1,000,000,000+1

1,000,000,000+1+1
. But then the probability that it will continue to rise

for as long a period as we know it to have risen is only 1,000,000,000+1
2,000,000,000+1

, or
almost exactly 1/2. The probability that it will continue so rising a thou-
sand times as long is only about 1

1001
. The lesson which we may draw

from these figures is quite that which we should adopt on other grounds,
namely that experience never affords certain knowledge, and that it is
exceedingly improbable that events will always happen as we observe
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Will the Sun Rise Tomorrow?

In ‘Philosophical essay on probabilities’, Pierre-Simon Laplace pro-
vides a famous example of his Rule of Succession:

“Thus one finds that when an event has happened any number of
times running, the probability that it will happen again next time is
equal to this number increased by 1, divided by the same number
increased by 2. For example, if we place the dawn of history at 5,000

years before the present date, we have 1,826,213 days on which the
sun has constantly risen in each 24 hour period. We may therefore
lay odds of 1,826,214 to 1 that it will rise again tomorrow. But this
number would be incomparably greater for one who, perceiving in
the coherence {or totality} of phenomena the principle regulating
days and seasons, sees that nothing at the present moment can
check the sun’s course.” (Laplace 1814/1995, p. 11)

This example is easy to critique, but only if one conveniently forgets
Laplace’s final sentence, and the fact that it is likely inspired by
Hume, who repeatedly brought up the example of the sun rising
(Diaconis and Skyrms 2018, p. 103; Zabell 1989).

The example of the sun rising was also discussed by Richard Price,
in an appendix to Thomas Bayes’ famous 1763 article ‘An Essay
towards Solving a Problem in the Doctrine of Chances’. After going
over an example calculation, Price cautions:

“It should be carefully remembered that these deductions suppose a
previous total ignorance of nature. After having observed for some
time the course of events it would be found that the operations of
nature are in general regular, and that the powers and laws which
prevail in it are stable and parmanent [sic]. The consideration of
this will cause one or a few experiments often to produce a much
stronger expectation of success in further experiments than would
otherwise have been reasonable; just as the frequent observation
that things of a sort are disposed together in any place would lead
us to conclude, upon discovering there any object of a particular
sort, that there are laid up with it many others of the same sort. It
is obvious that this, so far from contradicting the foregoing deduc-
tions, is only one particular case to which they are to be applied.”
(Richard Price, 1763, in the appendix to Bayes 1763, p. 410)
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them. Inferences pushed far beyond their data soon lose any considerable
probability.”

Example 3: Laplace’s Rule of Succession for Series

Given a uniform prior on θ, and an unbroken sequence of past suc-
cesses, the Rule of Succession provides the probability that the next
single event is again a success. But what if we wish to know the proba-
bility that the next k trials are also an unbroken sequence of successes?
This generalizes the Rule from predicting a single success to a string of
k successes. As summarized by Jevons (1874/1913, pp. 297-298)3: 3We have changed Jevons’s notation to

be consistent with that used in this book.
“To find the probability that an event which has not hitherto failed will not
fail for a certain number of new occasions, divide the number of times the event
has happened increased by one, by the same number increased by one and the
number of times it is to happen. An event having happened s times without
fail, the probability that it will happen k more times is s+1

s+k+1
.”

Thus, the probability for an unbroken string of k successes is

s+ 1

s+ k + 1
,

a probability that decreases towards zero as the desired sequence k
grows large (cf. Jeffreys 1973, Appendix II). This reveals that the Laplace
method of inference is built on the assumption that no general law can
be absolutely true, and exceptions are certain to arise if the observer is
sufficiently patient. But, as Hume already wrote decades before Laplace:

“One wou’d appear ridiculous, who wou’d say, that ’tis only probable
the sun will rise to-morrow, or that all men must dye; tho’ ’tis plain we
have no further assurance of these facts, than what experience affords us.”
(Hume 1739)

In other words, is it really ‘common sense expressed in numbers’ –as
Laplace liked to describe his method– to assume that we believe that
we will eventually discover a person who is in fact immortal, if only we
search long enough? This conundrum remained unaddressed for almost
150 years, until Dorothy Wrinch and Harold Jeffreys proposed a way to
adapt the Laplacean system to overcome this limitation. But this will be
the topic of future chapters in this book.

Example 4: Laplace’s Rule of Succession from Mixed
Past Experience

Another way to generalize the Rule of Succession that yields a clean re-
sult is to assume that the past is not an unbroken series of successes,
but a mix of s successes and f failures. As summarized by Jevons
(1874/1913, p. 298):
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“An event having happened and failed a certain number of times, to find the
probability that it will happen the next time, divide the number of times the
event has happened increased by one, by the whole number of times the event
has happened or failed to happen increased by two. Thus, if an event has
happened s times and failed f times, the probability that it will happen
on the next occasion is s+1

s+f+2
.”

Thus, the probability that the next trial is a success after having experi-
enced s successes and f failures is

s+ 1

s+ f + 2
.

Comparison to Equation 9.2 shows that this rule is, again, based on
assuming a uniform distribution on θ (i.e., α = β = 1).
More intricate prediction problems can be proposed; for instance, one

might wish to obtain the probability, from mixed past experience, of
an unbroken sequence of k successes. More generally still, one might
seek the probability, from the combination of any beta(α, β) prior
and mixed past experience (i.e., s successes and f failures), of a mixed
sequence consisting of k successes out of m future trials. As described
in the appendix to this chapter, these probabilities follow from the beta-
binomial distribution.4 4 Specifically, given any beta(α + s,

β + f ) posterior distribution on θ, the
probability of future k successes out
ofm trials is a ratio of beta functions,(m
k

)
B(α+ s+ k, β + f +m− k)/B(α+

s, β+f), as discovered already by Laplace
(e.g., Laplace 1774/1986, p. 365; Stigler
1986b).

We can conveniently analyze such problems with the Learn Bayes
module in JASP. For instance, suppose we assign the chance θ a beta(α =

2, β = 2) prior distribution and observe s = 2 successes and f = 4 fail-
ures, yielding a beta(4,6) posterior distribution for θ. Desired is the
predicted number of successes in the next 100 trials. To obtain these
predictions from JASP, open the Learn Bayes module and select ‘Counts’
→ ‘Binomial Estimation’. Enter the observed data and specify the prior
distribution. Then open the ‘Posterior prediction’ tab and enter ‘100’
in the field ‘Future observations’. The result is shown in Figure 9.3 by
the wide gray predictive distribution labeled ‘Epistemic + Aleatory’. For
comparison, the narrow green predictive distribution labeled ‘Aleatory’
yields the predictions from a model in which the chance parameter θ
is assumed to equal .40 exactly. With a relatively wide beta(4,6) poste-
rior distribution for θ, there is considerable epistemic uncertainty; this
uncertainty propagates to the predictive distribution, making it much
wider than the one that reflects only aleatory uncertainty (cf. Chap-
ter 2).

Exercises

1. Prove Laplace’s Rule of Succession for series (Example 3 above).

2. A coin is tossed twice. The uncertainty about the chance θ of the
coin landing heads is quantified by a beta(α, β) distribution. What
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Figure 9.3: Predictions for the number of successes in the next 100 trials, based on
the mixed past experience scenario described in the main text. The ‘aleatory’ curve is
based on the assumption that the binomial chance θ equals .40 exactly. The ‘epistemic +
aleatory’ curve includes epistemic uncertainty about θ as expressed in a beta(4,6) posterior
distribution. This added uncertainty is reflected in predictions that are more spread out.
Figure from the JASP module Learn Bayes.

is the probability that the coin comes up heads on both tosses? (cf.
Jevons 1874/1913, p. 301; Laplace 1774/1986, p. 378; Todhunter 1865,
p. 472)

3. A chance θ is assigned a prior beta(α, β) distribution. A single da-
tum is observed, and the resulting posterior distribution is either a
beta(α + 1, β) distribution (when the observation shows a success) or
a beta(α, β + 1) distribution (when the observation shows a failure).
Both posterior distributions intersect the prior distribution once, at
the point where θ = α/(α+β). Confirm this visually with a concrete
example, and use the beta prediction rule to explain why this has to
be the case.

Chapter Summary

“The grand object of seeking to estimate the probability of future
events from past experience, seems to have been entertained by James
Bernouilli and De Moivre, at least such was the opinion of Condorcet;
and Bernouilli may be said to have solved one case of the problem.5 The 5 Todhunter’s ‘History,’ pp. 378, 79.

English writers Bayes and Price are, however, undoubtedly the first who
put forward any distinct rules on the subject.6 Condorcet and several 6 ‘Philosophical Transactions’ [1763], vol.

liii. p. 370, and [1764], vol. liv. p. 296.
Todhunter, pp. 294-300.

other eminent mathematicians advanced the mathematical theory of the
subject; but it was reserved to the immortal Laplace to bring to the sub-
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ject the full power of his genius, and carry the solution of the problem
almost to perfection.” (Jevons 1874/1913, p. 302)

Want to Know More?

3 Bayes, T. (1763). An Essay towards solving a problem in the doctrine
of chances. Philosophical Transactions of the Royal Society of London,
53, 370–418.
This essay, which was published posthumously by initiative of Bayes’
friend Richard Price, unquestionably marks the birth of Bayesian
inference. At the start, Bayes states his main objective:

“Given the number of times in which an unknown event has hap-
pened and failed: Required the chance that the probability of its hap-
pening in a single trial lies somewhere between any two degrees of
probability that can be named.” (Bayes 1763, p. 376)

In other words, Bayes aims to find a rule of succession. His efforts
were frustrated by the fact that the computations involve an inte-
gral –the incomplete beta function– that is difficult to evaluate. As
summarized by Stigler (1986a, pp. 130–131):

“This much is clear, however: Through an exceedingly painstaking
and tortured analysis, Bayes sought to bound the incomplete beta
above and below. His solution was no more than a Pyrrhic victory
because his bounds were far too complex for practical evaluation and
were not even very close. (…)

Bayes’s treatment of the binomial may be regarded as mathemat-
ically incomplete. Whether or not that is accepted as the reason for
his reluctance to publish, it is a sufficient explanation for the lack
of attention his work received after it was published. A decade later
Laplace was led to the same problem; but he was armed with a far
greater analytic skill and consequently his solution was richer and
more complete.”

3 Diaconis, P., & Skyrms, B. (2018). Ten Great Ideas About Chance.
Princeton: Princeton University Press.

3 Laplace, P.–S. (1774/1986). Memoir on the probability of the causes
of events. Statistical Science, 4, 364-378. A solid contender for Most
Impressive Paper on Statistics of All Time, this 1774 article (trans-
lated by Stephen Stigler in 1986) was published when Laplace was
only 25 years old.

3 Rosenkrantz, R. D. (1982). Does the philosophy of induction rest on
a mistake? The Journal of Philosophy, 79, 78–97. Impressed by the
scientific reputation of Laplace, Jevons, Jeffreys, and Pólya, we had
unthinkingly accepted the fundamental inductive pattern mentioned
in Chapter 6: “The verification of a consequence renders a conjecture
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more credible” (Pólya 1954b, p. 5). This pattern also forms the basis
for Laplace’s Rule of Succession.7 The Rosenkrantz article blew our 7 And for Haldane’s Rule of Succession

outlined in Chapter 16.preconceptions out of the water (see also Berent 1972, Good 1967,
Gardner 1976). Rosenkrantz demonstrates that background knowl-
edge plays a vital role, and that, generally speaking, “conforming
observations need not be confirming.” (p. 84). In fact, the verification
of a consequence can render a conjecture less likely. We elaborate on
this surprising insight in the second appendix of this chapter.

3 Stigler, S. M. (1986). Laplace’s 1774 memoir on inverse probability.
Statistical Science, 4, 359-378.

3 Todhunter, I. (1865). A History of the Mathematical Theory of Prob-
ability From the Time of Pascal to That of Laplace. Cambridge:
MacMillan and Co.

3 Zabell, S. L. (1989). The rule of succession. Erkenntnis, 31, 283-321.
All of Sandy Zabell’s papers are scholarly, informative, and highly
recommended; this one is a must-read for anybody who wishes to
understand the Rule of Succession in more detail. “This paper will
trace the evolution of the rule, from its original formulation at the
hands of Bayes, Price, and Laplace, to its generalizations by the En-
glish philosopher W. E. Johnson, and its perfection at the hands of
Bruno de Finetti. By following the debate over the rule, the criti-
cisms of it that were raised and the defenses of it that were mounted,
it is hoped that some insight will be gained into the achievements
and limitations of the probabilistic attempt to explain induction.” (p.
283).

3 Zabell, S. L. (2005). Symmetry and Its Discontents: Essays on the His-
tory of Inductive Probability. Cambridge: Cambridge University Press.
What holds for Zabell’s papers also holds for his books: scholarly,
informative, and highly recommended.

Appendix A: Deriving the Beta Prediction Rule

This chapter was concerned with the following prediction rule:

p(y = 1) =

∫ 1

0

p(y = 1 | θ) p(θ) dθ

=
α

α+ β
,

in other words, the probability that the next binomial trial results in a
success, given that the uncertainty across parameter θ is described by a
beta(α, β) distribution. Here we provide three different ways to obtain
the result.
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First, we may use the fact that p(y = 1 | θ) = θ and obtain:

p(y = 1) =

∫ 1

0

p(y = 1 | θ) p(θ) dθ

=

∫ 1

0

θ p(θ) dθ,

which is easily recognized as the expression for a mean, and we know
that the mean of a beta(α, β) distribution is α/(α + β). This solution is
intuitive, but it is mathematically less satisfactory than computing the
integral.
Second, we may use the properties of the beta integral:

p(y = 1) =

∫ 1

0

θ p(θ) dθ

=

∫ 1

0

θ
θ(α−1)(1− θ)(β−1)

B(α, β)
dθ

=
1

B(α, β)

∫ 1

0

θα(1− θ)(β−1) dθ

=
B(α+ 1, β)

B(α, β)

=
α

α+ β
.

Here B is the beta function; for integer values of x and y, we have
B(x, y) = (x−1)! (y−1)!/(x+y−1)!. The last step above follows from the
identity B(α+ 1, β) = B(α, β)× α

α+β .
Third, we can use the expression for the probability mass function

for the beta-binomial, that is, the distribution of the number of pre-
dicted successes s out of n attempts when θ ∼ beta(α, β):

p(s | n) =
(
n

s

)
B(α+ s, β + n− s)

B(α, β)
.

Entering s = 1 and n = 1 simplifies the formula to

p(s = 1 | n = 1) =
B(α+ 1, β)

B(α, β)
=

α

α+ β
.

The astute reader will realize that the mass that the beta-binomial dis-
tribution assigns to a specific predicted outcome (i.e., s successes out of
n attempts) equals the marginal probability for that outcome (i.e., the
integral from the second method).

Appendix B: ‘Conforming Observations Need Not Be
Confirming’

In Chapter 6, we briefly mentioned the idea of ‘corroborating the con-
sequent’. The famous mathematician George Pólya termed this the
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fundamental inductive pattern: The verification of a consequence renders
a conjecture more credible. Moreover, Pólya considered this to be self-
evident to the point of triviality; the fundamental inductive pattern
“says nothing surprising. On the contrary, it expresses a belief which no
reasonable person seems to doubt” (Pólya 1954b, p. 5). However, closer
inspection reveals that the verification of a consequence does not always
renders a conjecture more credible – it may even render it less credible.
We will not do a deep dive into the relevant theory, but instead content
ourselves with a few concrete examples.8 8One such example was already given in

Chapter 6.

Example 1: Two Worlds

Statistician and World War II code breaker Jack Good was particularly
adept at providing counterexamples to the fundamental inductive pat-
tern.9 Here is the first one: 9We will revisit Good’s work in Chap-

ter 23.
“Suppose that we know we are in one or other of two worlds, and the
hypothesis, H, under consideration is that all the crows in our world are
black. We know in advance that in one world there are a hundred black
crows, no crows that are not black, and a million other birds; and that
in the other world there are a thousand black crows, one white one, and
a million other birds. A bird is selected equiprobably at random from
all the birds in our world. It turns out to be a black crow. This is strong
evidence (…) that we are in the second world, wherein not all crows
are black. Thus the observation of a black crow, in the circumstances
described, undermines the hypothesis that all the crows in our world are
black.” (Good 1967, p. 322)

Example 2: The White Crow

The hypothesis under consideration holds that all crows are black. Now
suppose we observe a white raven. Even though this observation ad-
heres to the rule, it is intuitively obvious that it actually undercuts it,
because crows and ravens are biologically similar (Good 1960, p. 149;
see also Rosenkrantz 1982, pp. 82-83). The knowledge that ravens can
be white greatly increases the probability that the same holds for crows.

Example 3: The Baby

The hypothesis under consideration holds that all crows are black. The
observation of a white shoe seems to conforms to this hypothesis (or at
least not violate it), but...

“(…) in very special circumstances, the sight of a white shoe can actually
undermine the hypothesis that all crows are black. Suppose that a child
had seen black crows, black shoes, and no other black objects, and that
all the crows and shoes had been black. He now sees a white shoe and he
says, ‘How surprising! Apparently objects that are supposed to be black
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can sometimes be white instead.’ On the information available to the
child this may be a very rational thing for him.” (Good 1961, p. 64)10 10Note the conceptual similarity between

the baby example and the white crow
example.

Example 4: Convicts

Here is yet another one of Good’s counterexamples to the fundamental
inductive pattern:

“Suppose we are told that all men in Ealing whose surnames end with
the letter z are escaped convicts. We take a random sample of the citi-
zens of Ealing, and, after a very short time, we find one whose surname
ends with z. Then the fact that we found such a one so quickly tends to
undermine the hypothesis, for this evidence by itself suggests that there
are more people whose surnames end with z than we had previously
supposed.” (Good 1961, p. 64)

Example 5: Rosenkrantz’s Hats

Howson and Urbach (2006) summarize an example introduced by
Rosenkrantz (1977, p. 35):

“Three people leave a party, each with a hat. The hypothesis that none
of the three has his own hat is confirmed, according to Nicod11, by the 11 “Hypotheses of the form ‘All Rs are B’

are confirmed by evidence of something
that is both R and B. (Hempel called this
Nicod’ Condition, after the philosopher
Jean Nicod.)” (Howson and Urbach 2006,
p. 100; italics in original).

observation that person I has person 2’s hat and by the observation that
person 2 has person 1’s hat. But since the hypothesis concerns only three,
particular people, the second observation must refute the hypothesis, not
confirm it.” (Howson and Urbach 2006, p. 102; italics in original)

Example 6: Grasshoppers

The hypothesis states that “All grasshoppers are located in parts of the
world other than Pitcairn Island.” (Swinburne 1971, p. 326). Consider
then the following:

“Finding by chance a grasshopper somewhere else than on Pitcairn Island
as such (that is, in the absence of further information, e.g., that it was
found in a region where grasshoppers were already known to abound)
only suggests that grasshoppers are more abundant than we supposed
and so in view of the similarities between things located and things not
located on Pitcairn Island, more likely than we supposed to be located
on Pitcairn Island. We can see the point yet more clearly if we consider
the effect on the hypothesis of the discovery of a large number of (…)in-
stances. Discovery that the rest of the world was swarming with grasshop-
pers clearly casts grave doubt on the hypothesis. But the discovery of
a large number n of grasshoppers can be represented as the discovery
of n individual grasshoppers in succession. Either each discovery dis-
confirms slightly or at some stage there is a sudden large increment of
disconfirmation. The latter is implausible, for any choice of m, such that
although observation of m grasshoppers did not disconfirm, observation
of the m + 1th grasshopper discontinued substantially, would seem ar-
bitrary. Hence, I conclude, each instance is separately disconfirmatory.”
(Swinburne 1971, p. 326)12 12Note the conceptual similarity between

Swinburne’s grasshopper example and
Good’s convict example.
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Example 7: Giants and Other Surprises

For 25 years, the mathematician Martin Gardner (1914–2010) kept the
readership of Scientific American spellbound through his ‘Mathematical
Games’ columns, which were subsequently bundled into several books.
In the 1988 book ‘Time Travel and Other Mathematical Bewilderments’,
the chapter ‘Induction and Probability’ (a reprint of the original Gard-
ner 1976 column) presents a series of exceptions to the fundamental
inductive pattern. Here we highlight the simplest case:

“(…) there are situations in which confirmations make a hypothesis less
likely. Suppose you turn the cards of a shuffled deck looking for confir-
mations of the guess that no card has green pips. The first ten cards are
ordinary playing cards, then suddenly you find a card with blue pips. It is
the eleventh confirming instance, but now your confidence in the guess is
severely shaken.” (Gardner 1988, p. 244)

The crux of the example is that the critical observation is conforming
but also surprising. In this context Gardner refers to a one-page article
by Paul Berent from which we quote at length:

“Consider the following example: the statement ‘All men are less than
100 feet tall’ would decrease in probability upon discovery of a man
99 feet tall (almost a negative instance). If subsequent men were found
to be either normal or else exactly 99 feet tall then new giants would
disconfirm the generalization less and less until a low point would be
reached (when?) whereupon the probability would increase and eventually
reach the original level (when?). At this point a new giant would confirm,
whereas had he been the first giant he would have disconfirmed, although
the probability given the old evidence would have been the same.

A second way a positive instance can disconfirm is by being in an un-
suspected place, e.g. a normal man on Mars. A third way is by breaking a
pattern, e.g. a man 98 feet tall after a long sequence of normal men and
men exactly 99 feet tall. A fourth way is by disconfirming a background
theory which supports the generalization. An example of this type of
case would be given by a normal size yogi with ability to get by on little
oxygen; for this would render less plausible an important biological argu-
ment against the occurrence of giants: volume increases more rapidly than
surface area (we breathe on the surface of our lungs).” (Berent 1972, p.
522; italics in original)

As an aside, the Berent article does not seem to get the recognition it
deserves.13 For instance, Rosenkrantz presents the following example, 13 Apparently it has been cited just once

(Google Scholar, June 13, 2023).but without crediting Berent:

“the existence of a man 199 years old and in perfect health is consis-
tent with the hypothesis that no man (past, present, or future) attains
the age of 200, but can hardly be thought to confirm that hypothesis.”
(Rosenkrantz 1982, p. 84)

In addition, Jack Good mentions the example hypothesis “that no
man weighs more than 2000lbs” in several of his writings (e.g., Good
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1986; 1989) – he cites the 1976 Gardner column but mentions the
Berent article only indirectly: “Essentially this example was attributed
to Paul Berent by Gardner (1976)” (Good 1989, p. 121), which falsely
suggests that Berent conveyed the example to Gardner in conversation.
At any rate, a similar example can be constructed for the Laplacean

hypothesis that the sun will rise tomorrow. Suppose we wake up to find
the sun has risen. This is a conforming observation. However, the sun is
ten times its usual size, dark-blue in color, and pulsating rapidly. Even
though the observation is conforming, it also signals impending solar
doom, and therefore severely undercuts our confidence that the sun will
rise again tomorrow: it disconfirms the hypothesis. Both Gardner and Rosenkrantz believe

that the philosopher Rudolf Carnap
was well aware of the exceptions to the
fundamental inductive pattern (cf. Car-
nap 1950, Chapter 6). Unfortunately, a
serious study of Carnap demands con-
siderable time and effort. To paraphrase
Napoleon when Laplace handed him his
monograph on celestial mechanics: we
will study Carnap as soon as we have six
months of free time at our disposal.

Example 8: Mathematics

George Pólya concerned himself with induction as relevant for mathe-
matics. It seems appropriate therefore to present a counterexample in
that discipline.
Suppose you are tasked to evaluate the hypothesis ‘The function f(x)

is non-negative, that is, f(x) ≥ 0 for any real number x.’ You are not
given f(x) directly, but you can issue queries – in other words, you
may provide a number of input values and observe the resulting output
values. You decide to input five values, x = {0, 60, 90, 150, 180}, and you
are then informed that f(x) is non-negative for all of them. In other
words, you obtain a sequence of five conforming observations for f(x).
This may increase your confidence that f(x) is indeed non-negative.
But now consider that you are given additional information – not just
whether or not f(x) ≥ 0, but the precise outcome. The outcome values
are f(x) = {0,

√
3/2, 1, 1/2, 0}. A mathematician will recognize that

these are exactly the output values of the sine function (with the input
x provided in arc degrees). However, the sine function ranges from −1
to 1 and hence conflicts with the hypothesis that f(x) is non-negative.
Note that the precise outcomes are consistent with an infinite num-

ber of hypotheses. For instance, f(x) may just be zero outside of the
0 − 180 interval, and this function would be non-negative. Or the
function may be cos(x) + 1 for all values of x other than 0, 60, 90, 150,
and 180. But such hypotheses seem much less plausible than the sim-
ple sine function. We suspect that even the single input-output pair
f(60) =

√
3/2 will prompt mathematicians to assign the sine func-

tion a relatively high probability: the conforming value of
√
3/2 acts to

disconfirm the hypothesis.
As the examples above demonstrate, the fundamental inductive pat-

tern does not hold across the board. In particular, background knowl-
edge may play a decisive role. Arch-Bayesians Harold Jeffreys, Dennis
Lindley, and Ed Jaynes realized the importance of prior knowledge and
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explicitly conditioned on it in their notation – they would never write
p(θ | data), but always p(θ | data,K), where K represents prior knowl-
edge. Throughout this book we omit this conditioning in order to keep
the notation succinct, but it is important to keep in mind that our prob-
abilistic inference is based on a web of background assumptions on how
the data may have been generated – as the examples in this appendix
serve to underscore.
Jack Good has suggested that the fundamental inductive pattern

may hold when the observations are reported through a ‘stooge’. The
stooge reports not the actual observation, but merely whether or not
it is conforming.14 It is obvious from the examples that such stoogian 14 “If he gives any other information he

will be shot dead and knows it.” (Good
1960, p. 148)

observations sometimes omit crucial information and may be highly
misleading (Good 1989).
This appendix has underscored the conclusion drawn by Rosenkrantz

in 1982: “In short, from a Bayesian point of view, conforming observa-
tions need not be confirming (Rosenkrantz 1982, p. 84; italics in original).



10 The Problem of Points

[with Jiashun Wang]

Neglecting the trifling hints which may be found in preceding writers we may
say that the Theory of Probability really commenced with Pascal and Fermat;
and it would be difficult to find two names which could confer higher honour
on the subject.

Todhunter, 1865

Chapter Goal

This chapter illustrates the difference between aleatory and epistemic
uncertainty with the iconic ‘Problem of Points’: given that a game has
been interrupted and cannot be resumed, how should the stakes be
divided?

Interrupting a Game of Chance

Blaise Pascal (1623–1662). Portrait
painted in 1691 by François II Quesnel.

The field of statistics and probability theory was born around 1654, in
a famous correspondence between Blaise Pascal and Pierre de Fermat.
These two French mathematicians concerned themselves with a prob-
lem in gambling: suppose players A and B are engaged in a match –
for concreteness, suppose they are repeatedly tossing a fair coin. When-
ever the coin lands heads, player A wins a point; whenever it lands tails,
player B wins a point. It is agreed that the first player to reach six points
wins the match and receives a stake of $100. When the score is 5−3 in
favor of player A the match is interrupted, never to be resumed. How
can the stakes be divided fairly?
This ‘Problem of Points’ had been studied previously, but without

resulting in a satisfactory answer. Some mathematicians even concluded
that the problem was unsolvable! A detailed history of the problem can
be found elsewhere (cf. Devlin 2008, pp. 16-18; Edwards 1987/2019;
Todhunter 1865; see also Diaconis and Skyrms 2018, Chapter 1); here
we proceed straight to the solution. The key idea is that the stake
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should be divided according to the probability of winning the match in
case it had continued. For our present scenario, the computation is sim-
ple: the only way in which player B could win is when the coin lands
tails on three consecutive tosses. This probability is 1/2 × 1/2 × 1/2 = 1/8,
so player B should receive 100× 1/8 = $12.5 and player A should receive
100× 7/8 = $87.5. In hindsight, it seems mysterious that this straightfor-
ward idea totally escaped the mathematicians who studied the problem
before Pascal and de Fermat.
The Problem of Points becomes more complicated, however, when

there are multiple ways for player B to win. For instance, the score
could be 4-3 rather than 5-3. Now player B wins in the following se-
quences of outcomes (H stands for heads, T for tails):
TTT (probability 1/2× 1/2× 1/2 = 1/8)
TTHT (probability 1/2× 1/2× 1/2× 1/2 = 1/16)
THTT (probability 1/2× 1/2× 1/2× 1/2 = 1/16)
HTTT (probability 1/2× 1/2× 1/2× 1/2 = 1/16)

The sum of these four sequences is 5/16, so player B ought to receive
100 × 5/16 = $31.25, with the remaining 100 × 11/16 = $68.75 going to
player A.
Enumerating the winning sequences is tedious, and Pascal invented

his famous ‘triangle’ to facilitate the computation. A discussion of Pas-
cal’s triangle will lead us too far afield, and instead we refer the inter-
ested reader to Chapters 28 and 29 for details. Here we will focus on
a different method to obtain the solution: JASP.1 After opening JASP 1 See also the blog post “Teaching the

problem of points with JASP” on https:
//jasp-stats.org.

and activating the Learn Bayes module, navigate to The Problem of Points
and select Game of Chance. We then set up the scenario described above:
‘Points needed to win the game’ equals 6, and ‘Points gained’ is 4 for
player A and 3 for player B.2 The corresponding JASP output is shown 2 In the JASP input panel, the fields

for ‘p(win 1 point) are set to 1 for both
players; these numbers are normalized
(i.e., divided by their sum) to yield the
corresponding probabilities. Here the
probability of a fair coin landing heads
equals 0.5, so the default ‘1-1’ setting
need not be changed.

in Figure 10.1.
The Summary Table confirms the result obtained earlier, that is, the

probability of winning the match is 11/16 = 0.6875 for player A and
5/16 = 0.3125 for player B. In addition, the table also reports the results
of a simulation, the details of which are presented in the lower panel
of Figure 10.1. For the simulation, a set of 500 synthetic matches are
played, of which 347 were won by player A, for a winning percentage
of 0.6940. In the figure, the wiggly black line shows how the propor-
tion of wins by player A fluctuates as the number of simulated matches
increases. To quantify the uncertainty in this proportion, the steel blue
area shows the 95% (highest posterior density) credible interval. The
horizontal red line shows the analytical result; as the number of simu-
lated matches increases, the win percentage increasingly approximates
the theoretical result.

https://jasp-stats.org
https://jasp-stats.org
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Figure 10.1: Screenshot from the JASP module Learn Bayes → The Problem of Points →
Game of Chance, for the scenario where the score is 4−3 for player A in a race to six. See
text for details.

In the highly recommended book ‘Do dice play God?’, mathematician
Ian Stewart provides a birds-eye view of the work by Pascal and de
Fermat:

“Their key insight is that what matters is not the past history of the
play – aside from setting up the numbers – but what might happen over
the remaining rounds. If the agreed target is 20 wins and the game is
interrupted with the score 17 to 14, the money ought to be divided in
exactly the same way as it would be for a target of 10 and scores 7 to 4.
(In both cases, one player needs 3 more points and the other needs 6. How
they reached that stage is irrelevant.) The two mathematicians analysed this
set-up, calculating what we would now call each player’s expectation – the
average amount they would win if the game were to be repeated many
times. The answer for this example is that the stakes should be divided in
the ratio 219 to 37, with the player in the lead getting the larger part. Not
something you’d guess.” (Stewart 2019, p. 31; italics added for emphasis –
we will return to this statement in the next section)
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We can confirm Stewart’s answer with JASP; entering the suggested
number of points and the target value yields a probability of about
0.1445 that the player who trails ends up winning the match. This is in
line with Stewart’s answer, as 37/(37+219) ≈ 0.1445.
The scenario above may be generalized in several ways. For instance,

one may consider a game that has more than two players, or a game
where the probability of winning a point is not the same for each player.
Another generalization is to consider not a game of chance (such as
tossing coins), but a game of skill (such as tennis). As we will see in the
next section, this changes the nature of the results in a fundamental
way.

Pierre de Fermat (1607–1665), a French
lawyer and mathematician who con-
tributed to number theory, analytic
geometry, optics, and probability theory.
Fermat sometimes teased his fellow math-
ematicians by omitting the proofs of his
propositions. ‘Fermat’s Last Theorem’
holds that, for positive integers n, a, b,
and c, the equation an + bn = cn has
no solution for n > 2. Around 1637,
Fermat wrote in the margin of a copy
of Diophantus’s Arithmetica that “I have
discovered a truly marvelous proof of
this, which this margin is too narrow
to contain.” (“(...) cuius rei demonstra-
tionem mirabilem sane detexi. Hanc
marginis exiguitas non caperet”). It
took until 1994 before Andrew Wiles
first presented a correct proof, using
modern mathematical techniques that
were unavailable to Fermat at the time.
It is generally considered unlikely that
Fermat actually had a correct proof: he
never published his ‘truly marvelous
proof’ during his lifetime, and we know
of it only because Fermat’s note was pub-
lished posthumously by his son. Portrait
by an unknown artist.

Interrupting a Game of Skill

In the previous section we considered a simple game –tossing a fair
coin– where the uncertainty about the outcome is fully aleatory, that is,
solely the result of sampling variability. In other words, the binomial
success probability θ was known with absolute certainty and therefore
stayed constant throughout the duration of play.
However, now consider a scenario in which points are earned in a

game of skill, and the players’ relative skill level θ is not known exactly.
For instance, let’s revisit the scenario in which we have a race to six
and the score is 5−3 in favor of player A; the game at hand is a version
of pocket billiards known as pool. The fact that the score is 5−3 sug-
gests that A is the better player, so more likely to win the match than
if it were a game of chance; consequently, the fair share of the stake
for player B should be lower. From a Bayesian perspective, the lack
of knowledge concerning the relative skill of the players is usually ex-
pressed by means of a beta distribution. In other words, the game of
skill features not only aleatory uncertainty, but also epistemic uncertainty.
Inserting epistemic uncertainty complicates the problem, and it was

Pierre-Simon Laplace who presented the solution at 25 years of age
(Laplace 1774/1986, p. 369). Here we approach the problem conceptu-
ally, making use of two important rules:

1. Conjugacy: Observing s successes and f failures updates a beta(α, β)
prior distribution to a beta(α + s, β + f) posterior distribution (cf.
Chapter 8).

2. The Beta Prediction Rule: Given a beta(α, β) distribution, the prob-
ability that the next observation is a success equals the mean of that
distribution, that is, p(y = 1) = α/α+β and p(y = 0) = β/α+β (cf.
Chapter 9).

Now suppose that the probability of A beating B on any one game
is θ, and that θ is assigned a beta(1, 1) prior distribution. When the
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score is 5−3 in favor of player A, the prior distribution is updated to a
beta(5+1, 3+1) = beta(6, 4) posterior distribution (by conjugacy).
Given this posterior distribution and the fact that the score is 5−3 is a

race to six, what is the probability of player B winning the match? Let’s
take things one step at a time. First, the probability that player B wins
the ninth game is 4/10 (by the Beta Prediction Rule).
Next suppose player B wins that hypothetical game, narrowing the

scores to 5−4. This would yield a beta(6, 5) distribution for θ (by conju-
gacy), and the associated probability of player B winning the tenth game
is 5/11 (by the Beta Prediction Rule).
Finally, supposing that player B also wins the tenth game, evening

the scores at 5−5. This yields a beta(6, 6) distribution for θ (by conju-
gacy), and the associated probability of player B winning the decisive
eleventh game is 6/12 = 1/2 (by the Beta Prediction Rule and according to
intuition3). 3 If the prior distribution does not

express a preference for either player and
the scores are tied, both players must
have the same probability of winning the
next point.

In order for player B to win the match, all three successive points
need to be won, so this gives 4/10 × 5/11 × 6/12 = 1/11. To summarize,
with a beta(1, 1) prior distribution on the probability θ of player A
beating player B on any single game of pool, and with the score 5−3 in
favor of player A in a race to six, we have that:

p(Player B wins ninth point | θ ∼ beta(6, 4)) = 4/10.

p(Player B wins tenth point | θ ∼ beta(6, 5)) = 5/11.

p(Player B wins eleventh point | θ ∼ beta(6, 6)) = 6/12.

which then yields:

p(Player B wins the match | θ ∼ beta(6, 4)) = 4/10× 5/11× 6/12

= 120/1320 = 1/11.

This means player B, who was trailing player A by a score of 5−3
in a ‘first to six’ game of pool, stands to receive 1/11 × $100 ≈ $9.09

when the game is interrupted. Note that this fair share of the stakes
is somewhat less than what player B would have been entitled to if
engaged in a game of chance, which would have resulted in a payout
of 1/8 × $100 = $12.50. This confirms our earlier remark that the very
fact that B is trailing suggests that B might be the inferior player and
hence less likely to win future points, more likely to lose the match, and
consequently not deserving the $12.50 cut that would be fair if we knew
with certainty that the players were exactly evenly matched.
We continue our pool playing scenario and now consider a scoreline

of 4−3 rather than 5−3. As explained in the section on the game of
chance, there are four sequences that result in player B winning the
match: {B,B,B}, {B,B,A,B}, {B,A,B,B}, and {A,B,B,B} (where A and B
stand for a point gained by player A and B, respectively). The associated
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probabilities for these sequences can be obtained sequentially, using
conjugacy and the Beta Prediction Rule, as we demonstrated for the case
of the 5−3 score – we leave this as an exercise for the reader.
After opening JASP and activating the Learn Bayes module, we nav-

igate to The Problem of Points and now select Game of Skill. We set up
the scenario described above: ‘Points needed to win the game’ equals 6,
and ‘Points gained’ is 4 for player A and 3 for player B. For two players,
the ‘Prior skill parameter’ refers to the corresponding parameters of
the beta distribution for θ. The default setting is to assign θ a beta(1, 1)
prior distribution. The result is shown in Figure 10.2.

Figure 10.2: Screenshot from the JASP module Learn Bayes → The Problem of Points →
Game of Skill, for the scenario where the score is 4−3 for player A in a race to six. See text
for details.

The Summary Table indicates that player B has a probability of win-
ning the game that equals about 0.2727 – as expected, this is somewhat
lower than the probability of 0.3125 from the game of chance (cf. Fig-
ure 10.1). The lower panel of Figure 10.2 confirms the analytical result
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with a small simulation of 500 synthetic matches, 141 of which were
won by player B, for a percentage of 0.2820.
We now return to the quotation by Ian Stewart at the end of the

section on the game of chance. Steward stressed that the past history
of play is irrelevant, in the sense that it does not matter whether the
score is 7−4 in a race to 10 or 17−14 in a race to 20; in both cases player
A is three points ahead of player B, and three points away from the
target number. However, this ‘key insight’ by Pascal and de Fermat is
fallacious as soon as we consider the game of skill. The reason is that
for the game of skill, the history of past outcomes provides valuable
information about θ. This is illustrated in Table 10.1, which features
five possible scorelines; for each scoreline, player A is ahead by three
points and requires three more points to reach the target number. The
right-most column confirms that for the game of chance (with θ = 1/2)
the probability that player A wins the match is about 0.8555 (i.e., 219/256)
which does not depend on the number of points that were played in
the past. For the game of skill, however, the past number of plays does
matter. With a scoreline of 3−0 and a beta(1, 1) prior distribution for
θ, the predictions about future play follow from a beta(4, 1) posterior,
which reflects the opinion that player A might well be superior, and
the most likely outcome is a ‘sweep’, that is, 6−0. With a scoreline of
997−994, on the other hand, the predictions about future play follow
from a beta(998, 995) posterior, which is highly peaked around θ = 1/2,
reflecting the opinion that players A and B are equally strong. In this
scenario, the probability that player A wins the match is almost the
same as if it was a game of chance and θ was known to equal 1/2 exactly.

Table 10.1: In a game of skill, the history of past outcomes is informative about the skill
difference θ, and this affects the expectation that the player in the lead will win the match.
This is not the case for a game of chance, where θ is known. See text for details.

p (A wins match)

Score A−B Race to Game of skill Game of chance

3−0 6 0.9697 0.8555

7−4 10 0.9151 0.8555

17−14 20 0.8824 0.8555

97−94 100 0.8605 0.8555

997−994 1000 0.8560 0.8555

Exercises

1. This is the ‘exercise for the reader’ mentioned above: consider a
game of pool where player A leads player B by a score of 4−3 when
the game is interrupted. What is the fair proportion of the stake that
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should go to player B? NB. Four outcome sequences result in player
B winning the match: {B,B,B}, {B,B,A,B}, {B,A,B,B}, and {A,B,B,B}.
Use conjugacy and the Beta Prediction Rule to obtain the relevant
probability.

2. Consider a game of skill. Player A has 3 points, Player B has 5 points,
and both require 6 points to win. With a uniform distribution on θ,
the fair proportion of the stake for player A is 1/11. In the game of
chance, the fair proportion is 1/8. Use the Learn Bayes module and
adjust your prior assumptions about the relative skill level θ such that
the fair proportion of the stake approximates 1/8.

3. Someone approaches you and proposes to throw a fair die; when the
die lands five or six, you win a point, else you lose a point. The game
is a race to 10. How many points do you think you would need as a
head start to make this a fair game? And how about when the game
is a race to 100, or a race to 1000? Test your intuition with the Learn
Bayes module.

4. Bonus question, generalizing the previous one: suppose your chance
of winning any point is θ < 1/2. In a race to n points, what propor-
tion of points do you need as a head start to make the game fair?
[hint: try out some values in JASP first, and then try to guess or de-
rive the general result]

5. Consider a game of skill, with player A having two points and player
B having four points. The winner either has to obtain six points, or
60 points. What game is B more likely to win? Can you explain why?

6. The Problem of Points may or may not be relevant for law, as illus-
trated by two fictitious court cases:

6.1. Don and Harriet find themselves in a car collision. Harriet gets a
whiplash which temporarily prevents her from working. Her total
damages are estimated to be around $ 150,000. What proportion
of Harriet’s damages should Don’s insurance company be obliged
to cover? Note that there is an 80% probability that the collision
was caused by Don; there is a 95% probability that Harriet’s com-
plaints were caused by the collision. Moreover, Harriet was con-
sidering to switch jobs. There is a 60% probability that she would
have stayed in her current job (which pays a net annual salary of
$150,000), and a 40% probability that she would have taken a less
stressful job (which pays a net annual salary of $60,000). In light
of this information, what do you consider to be fair compensation
for Harriet?

6.2. John was walking his dog when he was hit in the head by an iron
ball that came flying over a hedge. On the other side of the hedge,
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Olympic athletes Don and Bob had been practicing their hammer
throws. No witnesses were present to identify who threw the fatal
hammer, and both Don and Bob claim that the other one was the
culprit. The judge rules that the penalty for negligent homicide in
this case would be 6 months in jail and a fine of $10,000. Should
Don and Bob each get 3 months in jail, and a fine of $5,000?

Chapter Summary

The original Problem of Points featured two players engaged in a game
of chance. For instance, a fair coin is tossed – ‘heads’ yields a point for
player A, ‘tails’ yields a point for player B. Play continues until one of
the players first reaches a target number of points. At some stage the
game is interrupted, never to be resumed – how should the stakes be
divided?
Through a correspondence between Blaise Pascal and Pierre de Fer-

mat, the Problem of Points gave birth to probability theory and statis-
tics. The main idea is that the stakes ought to be divided in proportion
to the probability of each player winning the game. For instance, with
the scoreline 5−3 for player A in a race to six, and the probability of
player A winning a point equal to θ = 1/2, player B can only win if suc-
cessful on three consecutive plays, such that the fair proportion of the
stake which should go to player B equals 1/2 × 1/2 × 1/2 = 1/8. Note
that in the game of chance, θ is known precisely, and all uncertainty is
therefore aleatory (i.e., sampling variability).
This is different in the game of skill, where the true value of θ (i.e.,

the probability of player A beating player B on any one play) is un-
known. Hence, the game of skill also has epistemic uncertainty. For
instance, players A and B may be engaged in a game of pool. When
player A leads player B by a score of 5−3 in a race to six, this may be
because player A is simply better than player B, and hence more likely
to win the match. Under a beta(1, 1) prior on θ, the probability that
player B comes back from 5−3 to win the match is only 1/11.
One paradoxical feature of the game of skill is that adding the epis-

temic uncertainty about the players’ relative skill acts to reduce the
uncertainty about the identity of the likely winner.

Want to Know More?

3 Devlin, K. (2008). The Unfinished Game: Pascal, Fermat, and the
Seventeenth-Century Letter that Made the World Modern. New York:
Basic Books.

“Opening the final section of his letter, Pascal makes it clear that he
fully realizes Fermat is by far the better mathematician. Although he
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himself solved the problem of the points, much of his long letter is de-
voted to his attempt to understand Fermat’s clearly superior (because
simpler and more insightful) method. He appreciates that whereas he
labored long and hard to find a solution, Fermat almost certainly saw
at once how to set about it. Such is the mark of a truly great mathe-
matician, of which history has seen but a handful.” (Devlin 2008, p.
85)

3 Todhunter, I. (1865). A History of the Mathematical Theory of Prob-
ability From the Time of Pascal to That of Laplace. Cambridge:
MacMillan and Co. The Problem of Points was studied by Pascal
and Fermat, but also later by James Bernoulli, Lagrange, Trembley,
and Laplace. The Todhunter book is a classic text that provides an
in-depth and authoritative overview. “The history of the theory of
probability, from the celebrated question as to the equitable division
of the stakes between two players on their game being interrupted,
proposed to Pascal by the Chevalier de Méré in 1654, embracing, as it
does, contributions from almost all the great names of Europe during
the period, down to Laplace and Poisson, is elaborately and admirably
given by Mr Todhunter in his History of the subject, now a classical
work.” (Crofton 1885, p. 769).

“We see then that the Problem of Points was the principal question
discussed by Pascal and Fermat, and it was certainly not exhausted by
them. For they confined themselves to the case in which the players
are supposed to possess equal skill; and their methods would have
been extremely laborious if applied to any examples except those of
the most simple kind. Pascal’s method seems the more refined (...)
(Todhunter 1865, p. 17)

3 Edwards, A. W. F. (1987/2019). Pascal’s Arithmetical Triangle: The
Story of a Mathematical Idea. Mineola, NY: Dover Publications.
Appendix I, “Pascal and the Problem of Points” provides an in-depth
overview. Reprint of Edwards1982. From abstract 1982 paper:

“ The Pascal-Fermat correspondence and Pascal’s Traité du triangle
arithmétique are re-examined with special reference to the Problem
of Points. It is concluded that, contrary to the views of some modern
commentators, Pascal was responsible for the modern solution to
the Problem, and that, in demonstrating it, he made use not only of
mathematical induction, but of the concepts of expectation and of the
binomial distribution for equal chances.” (Edwards 1982, p. 259)



11 Interlude: Buffon’s Needle

[with Quentin F. Gronau and Jiashun Wang]

The mathematical ability evinced by Buffon may well excite surprise; that one
whose life was devoted to other branches of science should have had the sagacity
to discern the true mathematical principles involved in a question of so entirely
novel a character, and to reduce them correctly to calculation by means of the
integral calculus, thereby opening up a new region of inquiry to his successors,
must move us to admiration for a mind so rarely gifted.

Crofton, 1869

Chapter Goal

Georges-Louis Leclerc, Comte de Buffon
(1707–1788). Portrait by François-Hubert
Drouais. “This famous portrait of Buffon
has been copied and engraved time and
time again. The naturalist is shown here
in all his glory, at the age of 53. In his
rich embroidered clothes, he breathes
dignity, opulence, self-confidence, and a
certain good-heartedness all at the same
time. To see him, it is understandable
that his contemporaries had spoken of
the “imposing” air of the naturalist,
and it is easy to forget that this athlete
stood barely five feet five [1.65 m –
EWDM]. Diderot greatly admired this
portrait, “where the nobility and the
vigor of the truly picturesque head of
this philosopher can be seen.” ” (Roger
1997, p. 222)

Take a needle, toss it randomly on a floor with parallel planks, and keep
track of whether or not the needle crosses one of the cracks. Surpris-
ingly, this procedure can be used to estimate π, the ratio of a circle’s
circumference to its diameter. For instance, when the needle is half as
long as the plank is wide, one point estimate of π is simply the number
of tosses divided by the number of crosses. In this chapter we cast this
procedure in a Bayesian light. We translate the posterior distribution
for the proportion of crosses θ to the corresponding posterior distribu-
tion for π. Application to previously collected data underscore the value
of reporting the entire posterior distribution instead of only a point
estimate.

Buffon’s Natural History

Before we turn to his needle, we should say a few words about the
Count of Buffon himself. Early in life, Buffon inherited a small for-
tune, allowing him to dedicate his time to the pursuit of his scientific
interests. And these interests concerned a wide range of topics. Buffon
is remembered mostly as an ecologist, a zoologist, and an anthropologist,
but initially, Buffon was fascinated by mathematics1 and the mechanical 1 As witness the needle problem below,

and his correspondence with the mathe-
matician Gabriel Cramer (1704-1752).

properties of wood (for the construction of ships). Buffon translated
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Isaac Newton’s Method of Fluxions and Infinite Series into French, and
speculated that our Solar System was created when a comet collided
with our sun, a hypothesis that bears similarity to the tidal theory which
was proposed much later.2 Buffon conducted experiments on gravita- 2 The tidal theory holds that the planets

were created through interaction be-
tween the sun and another star passing
nearby. It was first proposed by Sir James
Jeans (1877-1946) and further developed
by Sir Harold Jeffreys, the hero of this
book, who explicitly acknowledged the
similarity: “These considerations led
both Jeans and me to abandon any idea
of gradual development and to examine
a tidal theory on the lines of that of
Buffon” (Jeffreys 1952, p. 282)

tional pull, pendulum movements, ballistics, and optical phenomena –
in fact, in an experiment on human color perception Buffon irreparably
damaged his own eyesight (Fellows and Milliken 1972, p. 80).
Buffon also suggested that the earth was much older than 4004 BC,

the date of creation calculated by the Archbishop of Armagh, James
Ussher (1581-1656):

“The first attempt at measurement [of the earth’s age] that could be
called remotely scientific was made by the Frenchman Georges-Louis
Leclerc, Comte de Buffon, in the 1770s. It had long been known that the
Earth radiated appreciable amounts of heat – that was apparent to anyone
who went down a coal mine – but there wasn’t any way of estimating
the rate of dissipation. Buffon’s experiment consisted of heating spheres

Buffon’s theory of the earth “freed
geology from the Bible and opened an
unfathomable past to the imagination.”
(Roger 1997, p. 105)

until they glowed white-hot and then estimating the rate of heat loss by
touching them (presumably very lightly at first) as they cooled.3 From 3 See also Fellows and Milliken (1972, p.

74), who cite a “scandalous” account by
the Chevalier Aude: “To determine the
epoch of the formation of the planets
and to calculate the cooling time of the
terrestrial globe, he had resort to four or
five pretty women, with very soft skin; he
had several balls, of all sorts of matters
and all sorts of densities, heated red hot,
and they held these in turns in their
delicate hands, while describing to him
the degrees of heat and cooling.”

this he guessed the Earth’s age to be somewhere between 75,000 and
168,000 years old. This was of course a wild underestimate; but it was
a radical notion nonetheless, and Buffon found himself threatened with
excommunication for expressing it. A practical man, he apologized at
once for his thoughtless heresy, then cheerfully repeated the assertions
throughout his subsequent writings.” (Bryson 2004, p. 105)4

4 Buffon himself had said, “It is better to
be humble than hung.” (Roger 1997, p.
188)

Buffon was admitted to the prestigious French Academy of Sciences
in 1734, and to the literary Académie française in 1753. In 1739 Buf-
fon was appointed intendent of the Jardin du Roi –the Royal Botanical
Garden– in Paris, which now goes under the name of Jardin des Plantes.
Buffon enlarged the Jardin du Roi and gradually transformed it to a re-
search center and a museum. The zeal with which Buffon expanded the
Jardin du Roi can be appreciated from the following anecdote:

“In Paris, one rainy morning early in September, 1782, the monks of
the Abbey of Saint-Victor, who had refused to vacate a building Buffon
wanted to demolish, as part of his plan for enlarging the Jardin du Roi,
awoke to find that Buffon’s laborers were busily ripping their roof off.”
(Fellows and Milliken 1972, p. 144)

Buffon’s magnum opus was an encyclopedia titled Histoire naturelle
générale et particulière avec la description du Cabinet du Roi.5 During Buf- 5 “Buffon soon added to his duties the

project of publishing a descriptive cata-
logue of the reorganized and enlarged
Cabinet du Roi, and this proposed
catalogue quickly developed into his
monumental Histoire Naturelle” (Fellows
and Milliken 1972, p. 55).

fon’s life, this encyclopedia consisted of 36 volumes – with 8 more
published after his death. The topics covered in Histoire naturelle mostly
dealt with minerals, birds, and quadrupeds. The entries often came
with detailed tables of measurements, lively descriptions, and beauti-
ful engravings. The Histoire was a big hit. As summarized by one of
Buffon’s biographers:
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“The first three volumes of the Natural History were an immediate and
resounding success in sales. (…) This success continued during the entire
time the work was published; we know that the Natural History was
the most widespread work of the eighteenth century, beating the abbé
Pluche’s Spectacle of Nature, Diderot’s and d’Alembert’s Encyclopédie, and
even the better-known works of Voltaire and Rousseau. Buffon had
wanted to touch the general public; he had succeeded completely.” (Roger
1997, p. 184)

The popularity of the Histoire was arguably driven by two main
factors: Buffon’s writing style and the nearly 2,000 engravings that
enliven the work. An example set of engravings is shown in Figure 11.1.

Figure 11.1: Two example illustrations from the sixth volume of Buffon’s magnum opus Histoire naturelle générale et particulière avec
la description du Cabinet du Roi (1756, p. 138). Left panel: ‘Le cerf’ (stag red deer). This retouched version was obtained from https:
//en.wikipedia.org/wiki/Histoire_Naturelle; the original source is http://gallica.bnf.fr/ark:/12148/btv1b2300253d/
f11.item. Red panel: the deer skeleton. Note the letters that identify different parts. Source: https://gallica.bnf.fr/ark:
/12148/bpt6k10672421/f187.item. Both illustrations were designed by Jacques De Sève; the left panel was engraved by Claude Donat
Jardinier; the right panel was engraved by Pierre-Etienne Moitte.

Buffon’s writing style was considered flowery and unscientific by
some of his colleagues; we present a few examples and have the reader
decide for themselves. Firstly, here is how Buffon introduces the do-
mestic cat, at the start of the sixth volume of Histoire naturelle générale et
particulière:

https://en.wikipedia.org/wiki/Histoire_Naturelle
https://en.wikipedia.org/wiki/Histoire_Naturelle
http://gallica.bnf.fr/ark:/12148/btv1b2300253d/f11.item
http://gallica.bnf.fr/ark:/12148/btv1b2300253d/f11.item
https://gallica.bnf.fr/ark:/12148/bpt6k10672421/f187.item
https://gallica.bnf.fr/ark:/12148/bpt6k10672421/f187.item
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“The cat is a faithless domestic, and only kept through necessity to op-
pose to another domestic which incommodes us still more, and which we
cannot drive away; for we pay no respect to those who, being fond of all
beasts, keeps cats for amusement. Though these animals are gentle and
frolicksome when young, yet they even then possess an innate cunning,
and perverse disposition, which age increases, and which education only
serves to conceal. They are naturally inclined to theft, and the best educa-
tion only converts them into servile and flattering robbers; for they have
the same address, subtilty [sic], and inclination for mischief or rapine.
Like all knaves they know how to conceal their intentions, to watch, wait,
and choose opportunities for seizing their prey; to fly from punishment,
and to remain away until the danger is over and they can return with
safety.

Le chat domestique – the domestic cat.
Illustration from the sixth volume of
Buffon’s Histoire naturelle générale et
particulière avec la description du Cabinet du
Roi (1756, p. 48). Design by Jacques De
Sève, engraving by Pierre Charles Baquoy.
Source: https://gallica.bnf.fr/ark:
/12148/bpt6k10672421/f65.item.

They readily conform to the habits of society, but never acquire its
manners; they have only the appearance of attachment, as may be seen
by the obliquity of their motions, and the duplicity of their looks; they
never look in the face of those who treat them best and of whom they
seem to be the most fond, but either through fear, or falsehood, they
approach him by windings to seek for those caresses they have no pleasure
in but only to flatter those from whom they receive them. Very different
from that faithful animal the dog, whose sentiments are all directed to the
person of his master, the cat appears only to feel for himself, only to love
conditionally, only to partake of society that he may abuse it; and by this
disposition he has more affinity to man than the dog, who is all sincerity.”

Secondly, the fragment below concerns the state of a pristine nature,
a wilderness unspoiled by human intervention. In contrast to what one
may expect from a ‘naturalist’ today, Buffon is less than enthusiastic:

“Enormous serpents trace wide furrows on this swampy earth: crocodiles,
toads, lizards, and a thousand other reptiles with broad feet knead the
mire; millions of insects multiplied by the humid heat lift up the sludge
from it, and this entire corrupt population slithers in the silt or hums
in the air that it obscures; all this vermin with which the earth swarms
attracts flocks of voracious birds whose raucous cries, multiplied by and
mixed with the croakings of the reptiles, trouble the silence of these
awful wastes and seem to add fear to the horror in order to repel man and
forbid the entry of other sentient beings.” (as cited in Roger 1997, p. 239)

Almost automatically Buffon’s words spawn an image in the reader’s
mind, painting a scene of a world that lies beyond personal experience.
A drier, more scientific style would only have served to blur that image.
Much more can be said about Buffon, and the interested reader is

referred to two biographies for details (i.e., Fellows and Milliken 1972,
Roger 1997).6 We cannot restrain ourselves and present one more exam- 6Unfortunately, both biographies are

currently out of print.ple about Buffon’s scientific exploits before moving to his needle.

https://gallica.bnf.fr/ark:/12148/bpt6k10672421/f65.item
https://gallica.bnf.fr/ark:/12148/bpt6k10672421/f65.item
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Buffon’s Demonstration of the Archimedes Death Ray

Early in his career Buffon had successfully carried out a single exper-
iment that instantly made him famous. As described by Fellows and
Milliken (1972),

Cover page of the Histoire Naturelle
as displayed in the Grande Galerie de
l’Évolution at the Jardin des Plantes,
Paris, France (October 2022).

“But Buffon’s fame was also due in part to his remarkable public relations
sense. He had reached the height of fame very early in his career, in 1747,
prior to the publication of the first volumes of the Histoire Naturelle,
on the strength of a single experiment, artfully chosen for its dramatic
possibilities.

To disprove Descartes’ theoretical demonstration of the impossibil-
ity of constructing a burning lens or mirror capable of setting fires at
a considerable distance by concentrating the sun’s rays on a target area,
the device which Archimedes was said to have used against the Roman
fleet at Syracuse, Buffon set out to construct such a machine, and suc-
ceeded. After a number of failures, he hit upon the device of an upright
wooden grid on which a large number of small, flat mirrors were attached
by adjustable screws that permitted each individual mirror to be aimed
by hand, and with this device he was able to ignite wood at a distance
of more than two hundred feet [61 meter – EWDM]. The spectacle of
a modern scientist recreating one of the fabled marvels of antiquity, in
defiance of a theoretical pronouncement by the great Descartes him-
self, stirred imaginations across all of Europe. Spectators flocked to the
demonstrations, and even King Louis XV condescended to view the new
marvel in operation. Frederick the Great of Prussia sent the hitherto little
known French physicist his personal congratulations. Buffon had made
his name, the name he had chosen for its simplicity and euphony, for the
ease with which it could be remembered, a household word throughout
Europe.” (Fellows and Milliken 1972, pp. 56-57; see Buffon 1747 for
the original paper and Vol. 10, pp. 193–244 in Buffon 1797–1807 for an
English rendition)

Roger (1997) describes Buffon’s death ray as follows:

“In Greek history, Archimedes set fire to Roman vessels that were attack-
ing Syracuse by using concave mirrors that concentrated the sun’s rays.
According to Descartes, these mirrors “had to be extremely large, or more
likely mythical.”7 Not allowing that opinion to influence him, Buffon 7 La Dioptrique, Discours huitième, in

Descartes 1987, p. 119.built several square concave mirrors made up of smaller, slightly curved
mirrors. The largest mirror, which measured 6 feet on one side (about
1.8 meters) was made of 360 small mirrors. With it, Buffon was indeed
able to set fire to buildings made of wood at a distance of 10 to 200 feet
(from 3 to about 65 meters). At a distance of 10 feet, he could melt iron.”
(Roger 1997, p. 52)

This is not, however, where the story ends. The Archimedes death
ray has continued to capture the imagination, but attempts to recreate
it have met with mixed success. In particular, the ‘Mythbuster’ show in
the USA failed multiple times to construct a death ray of mirrors that
could set a wooded ship ablaze.8 However, Mythbusters ignored the fact 8 The last time that Mythbusters tried

was at the suggestion of US president
Barack Obama.
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that in antiquity the wood of ships would have been waterproofed with
tar, and that setting fire to the sails would also have been an effective
strategy.9 Nevertheless, modern consensus seems to be that Archimedes’ 9 As an aside, it is strange that Myth-

busters did not seek to rebuild Buffon’s
apparatus, which was well documented to
work.

death ray –if it was ever really employed– would not have constituted
a serious military deterrent. Details on the Archimedes death ray can
be found both online and in the literature (e.g., Africa 1975, Knowles
Middleton 1961, Kreyszig 1994, Mills and Clift 1992, Scott 1869).

Buffon’s Vanity

Buffon was never shy about his accomplishments. Fellows and Mil-
liken (1972) describe the account by one of Buffon’s guests at Mont-
bard castle, Marie-Jean Hérault de Séchelles:

“From the first, Hérault was impressed by his host’s singularly frank
vanity. Asked immediately which of Buffon’s writings he had most
recently read, Hérault named the Vues sur la nature, and Buffon
remarked, “There are in it passages of the most sublime eloquence.”
Vanity was the shortcoming Hérault commented upon most often in
his account of Buffon. Again and again he was frankly flabbergasted
by his host’s serene confidence in his own immortal genius. Advising
Hérault to confine his reading largely to the few, truly great writers
that mankind has produced, Buffon listed the five greatest as follows:
“Newton, Bacon, Leibnitz, Montesquieu, and Myself.” In the end
Hérault was more dazzled than amused by this trait. Buffon received
a great deal of fan mail from an admiring literary public, kept it all,
and showed much of it to Hérault. Confronted by several letters
written to Buffon by Catherine the Great of Russia, filled with such
assurances as “Newton took the first step, you have taken the
second” and “You haven’t yet emptied your pockets on the subject
of Man,” and a similar letter from Prince Henry of Prussia, Hérault
enthused, “Glory seemed to take on visible form before my eyes; I
felt that I could reach out and touch it, lay my hands upon it, and
this admiration from Crowned Heads, compelled to bow down in
this way before a greatness in no way specious, pierced my heart,
homage of superhuman proportions.…” ” (Fellows and Milliken 1972,
pp. 32–33; fragments taken from Hérault’s ‘Voyage à Montbard’)

Buffon’s Needle

After a long introduction on Buffon the man, we have now arrived at
the topic of this chapter: Buffon’s needle. Just as the Problem of Points,
the Problem of the Needle originates from gambling:

“I suppose that in a room where the floor is simply divided by parallel
joints one throws a stick in the air, and that one of the players bets that
the stick will not cross any of the parallels on the floor, and that the
other in contrast bets that the stick will cross some of these parallels; one
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asks for the chances of these two players. One can play this game on a
checkerboard with a sewing needle or a headless pin.” (Hey et al. 2010, p.
277, translated from Buffon 1777b).

For concreteness, Figure 11.2 shows an example of fictitious results
where 100 tosses of a needle result in 41 crosses (in brown), with a
needle length that is two-thirds of the distance between two seams (i.e.,
the width of the plank).10 10 To follow along the reader may activate

the Learn Bayes JASP module and select
‘Buffon’s Needle’→ ‘Simulating Buffon’s
Needle’ and adjust the default settings to
match those in the text.

-10

0

10

-10 0 10

Figure 11.2: One hundred needles are thrown onto a planked floor. The length of each
needle equals two-thirds of the distance between two seams. The 41 needles that cross
a seam are colored brown, and the 59 needles that do not cross a seam are colored blue.
Figure from the JASP module Learn Bayes.

Let ℓ be the length of the needle, and d ≥ ℓ be the distance between
two seams. Let θ be the probability that the randomly tossed needle
crosses a seam. Buffon showed that

θ =
2 · ℓ
π · d

, (11.1)

with π ≈ 3.14159 the ratio of a circle’s circumference to its diameter. “What hurt Buffon’s mathematical career
was surely not a lack of competence or
imagination but more likely a certain
impatience that did not adapt itself well
to the meticulousness of the discipline.”
(Roger 1997, p. 19)

Laplace (1812, p. 360) later suggested that by actually carrying out
the experiment it is possible to obtain an estimate of π. Let θ̂ denote
the maximum likelihood point estimate for θ, that is, the fraction of
needles that cross a seam. Then the corresponding point estimate π̂ is
obtained as follows:

π̂ =
2 · ℓ
θ̂ · d

. (11.2)
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If the length of the needle is half of the distance between the seams
(i.e., ℓ = 1/2 · d), the point estimate π̂ is simply 1/θ̂, that is, the total
number of tosses divided by the total number of crosses.
At this stage, three misconceptions should be cleared up:

◦ The express purpose of Buffon was to demonstrate that problems
in probability could be solved using geometry (cf. Gorroochurn
and Levin 2013, Kendall and Moran 1963). His goal was therefore
loftier and more abstract than the solution to the gambling problem
may suggest. In fact, Buffon can rightly be considered the father of
geometric probability.

◦ Buffon himself did not estimate π using needle-tossing.11 11 As an aside, Buffon did conduct what is
possibly the first experiment in statistics,
when he had a child simulate the St.
Petersburg paradox by tossing a coin
for 2,048 uninterrupted sequences of
‘heads’.

◦ Buffon’s derivation differs from the ones that are usually given in
textbooks (Gorroochurn and Levin 2013).

The appeal of Buffon’s needle is partly in its surprise value: “The
fact that π can be approximated from a technique as crude as dropping
a needle on the floor will amaze the students every time!” (Schroeder
1974, p. 184). However, the needle also finds practical application. This
was already anticipated by Buffon himself:

“These examples suffice to give an idea of the games that one can imag-
ine on the relationships of size; one could propose several other problems
of this type, which do not cease to be interesting and even useful: if one
asked, for example, how much one risks passing a river on a more or less
narrow plank; what must be the fear one must have of lightning or of a
bomb drop, and a number of other problems of conjecture where one
must consider only the ratio of the size, and that consequently belong to
geometry as much as to analysis.” (Hey et al. 2010, p. 279, translated from
Buffon 1777a).

In the modern era of science, it has been suggested that Buffon’s
needle algorithm is used by ants:

“(…) ants can measure the size of potential nest sites. Nest size assess-
ment is by individual scouts. (…) Experiments indicated that individual
scouts use the intersection frequency between their own paths to assess
nest areas. These results are consistent with ants using a ‘Buffon’s needle
algorithm’ to assess nest areas.” (Mallon and Franks 2000, p. 765)

In another example, Newman (1966) showed that the length of a root
can be estimated by the number of intersections with random lines:

“(…) a rectangular area within which some straight lines lie at random. If
a root is laid within the area, we should expect that the longer the root
the more intersections it will make, on average, with the straight lines.
Thus the number of intersections can be used to estimate the length of
the root.” (Newman 1966, p. 139)
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Tossing the Needle: Foul Play?

Neither Buffon nor Laplace actually tossed any needles. However, sev-
eral later scientists did. Table 11.1 provides an overview, updated from
Gridgeman (1960, p. 190). A quick glance at the table suggests that
many attempts were relatively successful in approximating π.

Table 11.1: Results from several needle-throwing experiments. NB. π = 3.1415926....
The data from Wolf (1850) are reported in Edgeworth (1911, p. 387); those of Smith (1855)
are reported in De Morgan (1915, p. 283); those of De Morgan (c. 1860) are reported in
De Morgan (1915, p. 284); those of Fox (1884) are reported in Hall (1872); those of Reina
(1925) are reported in Gridgeman (1960) (with the earliest reference to a 1925 work by
Castelnuovo); those of Mathematica (2008) are reported by Siniksaran (2008) who used
his ‘BuffonNeedle’ Mathematica program; Padilla (2012) refers to the ‘Numberphile’
YouTube channel, episode ‘Pi and Buffon’s Matches’; JASP (2023) refers to the outcome
of a computer simulation conducted with the Learn Bayes module. The value of π̂ is
computed through Equation 11.2.

Experimenter Needle Tosses Crosses π̂

length

Wolf (1850) 0.8 5000 2532 3.1596

Smith (1855) 0.6 3204 1218.5 3.1553

De Morgan (c. 1860) 1.0 600 382.5 3.137

Fox (1884) 0.75 1030 489 3.1595

Lazzarini (1901) 5/6 3408 1808 3.1415929

Reina (1925) 0.5419 2520 859 3.1795

Gridgeman (c. 1960) 0.7857 2 1 3.143

Schroeder (1974) 2/3 100 41 3.3

Mathematica (2008) 0.91 10,000 5855 3.10845

Padilla (2012) 0.5 163 52 3.1346

JASP (2023) 0.75 99,999 47,961 3.1275

However, Gridgeman (1960) was skeptical of some of these earlier
tossing experiments, finding their results suspiciously close to the true
value. To lampoon these “malodorous” experiments, Gridgeman (1960)
proposes the following method to obtain a close approximation with
only two tosses:

“When Laplace wrote, the concept of probability as a limiting frequency
was unknown, and the theory of errors was still in parturition. Today we
can see that the commonly cited needlecasting trials were not heuristic
but teleologic. Out of the casters’ zeal has emerged a zero. The sole value
remaining in their work is its furnishing material to illustrate paralogy,
humbug, and gullibility. But, as H. L. Mencken found when he tried to
kill his own bathtub hoax, legend dies hard.12 Fox and Lazzerini [sic] 12 EWDM: In 1917, the journalist H.

L. Mencken published a history of
the American bathtub (“A Neglected
Anniversary”). The article was entirely
false, but this did not prevent it from
being widely cited.

will continue, we may be reasonably sure, to attract laudatory attention
for years to come. I can only hope that my own Buffon-Laplace trial will
be treated with similar esteem; and, as it is not yet on record, it may
appropriately serve as a finale:
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Handing my pupil a needle, I explained the problem to him. An
able and willing youth, he at once bared some floor space and threw the
needle down. It fell clear of the edges of the floorboards. He threw again,
and this time it fell athwart two boards. Then he measured the boards,
which were 31/2 inches wide, and the needle, which was 2 3/4 inches long,
fetched his slide rule, and presently announced: “I estimate P = 1/2, and
therefore π to be 3.143.” ” (Gridgeman 1960, pp. 194-195)

The most suspicious result is that by Mario Lazzarini, probably an
Italian math teacher, whose approximation to π is almost spot on.13 13 As indicated by Mantel (1953, p. 675),

Lazzarini’s estimate had “an error
of only 0.0000003. Terminating the
experiment one fall sooner or later would
inevitably have lost half the decimal
places of accuracy.”

Lazzarini’s result has been met with widespread disbelief (e.g., Coolidge
1925, p. 82; Gridgeman 1960; Mantel 1953), and was subjected to a de-
tailed statistical take-down by Badger (1994). Based on Badger’s analysis,
Nature editor John Maddox issued a stern verdict:

“The truth is that if Lazzarini’s result had been published in 1994 and
not in 1901, it would be called a barefaced fraud. Indeed, Badger himself,
after elegantly demonstrating that Lazzarini’s good luck must somehow
have been contrived, himself uses the word “hoax” to describe how an
even better approximation to π might be obtained. In short, Badger’s
tale should be a warning to all those who pollute the literature that their
misdeeds will follow them to the grave.” (Maddox 1994)

Recently, Dutch journalist Hans van Maanen has suggested that Laz-
zarini was not being serious when he presented his results:

“Surely it is inconceivable that any of Lazzarini’s colleagues took this
result seriously? Everything, but everything, points toward a joke, per-
fectly usable in math classes. Especially when students have just learned
the miraculous approximation of pi found by the Chinese mathematician
Zu Chongzhi, 355/113, back in the fifth century.” (van Maanen 2018;
translated to English by DeepL)14 14 According to van Maanen, the sug-

gestion that Lazzarini was joking is
supported not just by the extreme preci-
sion of the outcome, but also by the fact
that Lazzarini claimed to have obtained
the data with help of a machine whose
operation is physically impossible.

In order to demonstrate that the Lazzarini approximation is too good
to be true, we may consider in advance how much needles need to be
tossed in order to obtain an accurate result. Laplace already showed that
the optimal needle length is ℓ=d; thus, if the goal is to determine the
value of π as accurately as possible, it is best to select a needle that is as
just as long as the distance between the seams is wide (cf. Crofton 1885,
p. 784; Todhunter 1865, p. 591; Santaló 1976, p. 72).
Now suppose we toss a needle with optimal length, that is, ℓ=d.

Then Gridgeman (1960) approximates the number of tosses required to
correctly attain the Dth decimal of π in 95% of the cases as 90× 102D. A
reasonable shot at correctly identifying the first decimal of π therefore
already requires about 9,000 tosses:

“Evidently as many as 10,000 casts could do no more than establish the
first decimal place of π with reasonable confidence. We can now tell our
waiting needlecaster that if he works at a continuous day-and-night rate
of one cast per second for 3 years, his final [results] will yield π to the
third decimal.” (Gridgeman 1960, pp. 190-191)
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Clearly the massive effort required to reach accurate results stands in
stark contrast to the modest number of tosses that populate Table 11.1.

Bayesian Inference with Buffon’s Needle

Those researchers who conducted a needle-throwing experiment usu-
ally report only π̂, the maximum likelihood point estimate as computed
using Equation 11.2. Such a report ignores the uncertainty that ac-
companies the point estimate. More fundamentally, the report is not
Bayesian.
Here we outline a Bayesian analysis as instantiated in JASP. In order

to follow along the reader may activate the Learn Bayes module and se-
lect Buffon’s Needle→ Manipulating Buffon’s Needle. We will first analyze
the data reported by Schroeder (1974) (cf. Figure11.2 and Table 11.1):
with a needle length of ℓ = 2/3 Schroeder observed 41 crosses out of 100
tosses, for a point estimate of π̂ = 3.3.
In the JASP interface, we set ‘Proportion of needle length to interline

distance’ to 67%, the ‘Number of tosses’ to 100, and the ‘Number of
crosses’ to 41. We assign a prior distribution to θ, the probability of any
needle crossing a seam. For illustrative purposes, we assign θ a uniform
beta(α=1, β=1) prior distribution.15 The data then cause an update 15 Additional reflection may suggest prior

distributions that are more reasonable.of knowledge that yields a beta(42, 60) posterior distribution for θ, as
shown in Figure 11.3.
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Figure 11.3: Data from the Schroeder (1974) needle-tossing experiment cause an update
of beliefs for the proportion θ of needles that cross a seam (i.e., from a uniform beta(1, 1)
prior distribution to a beta(42, 60) posterior distribution). A 95% posterior credible
interval for θ ranges from 0.32 to 0.51. Figure from the JASP module Learn Bayes.

Now assume that we have no knowledge concerning π except for
its relation to θ as given by Equation 11.2. This means that our uncer-
tainty about θ translates completely to our uncertainty about π – and
this holds both for the prior and for the posterior distribution. These
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induced distributions of uncertainty for π are shown in Figure 11.4. A
95% posterior credible interval for π extends from 2.64 to 4.24, which is
so wide as to render the results almost completely uninformative.

95% CI: [2.64, 4.24]
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Figure 11.4: Prior and posterior beliefs for π induced by the prior and posterior beliefs for
θ shown in Figure 11.3. A 95% posterior credible interval for π ranges from 2.64 to 4.24.
The red line indicates the true value of π. Figure from the JASP module Learn Bayes.

We may now examine the other needle-tossing results reported in
Table 11.1 in similar fashion. For every experiment, we carried out
a Bayesian analysis where the proportion of crosses θ was assigned a
uniform beta distribution, which was then updated by the data and
transformed to the matching posterior distribution for π. Table 11.2
shows the results. By and large, these results confirm the pattern shown
in Figure 11.4: the uncertainty is much larger than is suggested by the
close correspondence between the point estimates and the true value.
Consistent with the analysis of Gridgeman (1960), the JASP simulation
with 99,999 virtual tosses is the only result that nails the first digit, in
the sense that a 95% credible interval falls entirely inside the range from
3.0999 . . . to 3.1999 . . . (so that we can be more than 95% certain that
the true value of π starts with 3.1).
We conclude this chapter with two remarks. Firstly, the preceding

analyses assume that you know nothing about π other than its rela-
tion to θ given by Equation 11.2; your prior knowledge was therefore
expressed in terms of θ – specifically, we assumed that each value of
θ was equally likely a priori. We designed the inference problem this
way in order to demonstrate how uncertainty about one unknown
(i.e., parameter θ) can be transformed into uncertainty about a related
unknown (i.e., ‘parameter’ π). However, it may well be that there is
advance knowledge about π, and therefore you may wish to assign a
prior distribution directly to π (e.g., a uniform distribution from 2 to 4).
The appendix to this chapter shows how this can be accomplished using
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Table 11.2: Bayesian inference for the needle-throwing experiments listed in Table 11.1.
Shown are the maximum likelihood point estimate π̂, the posterior median for π, and the
lower and upper bound of a 95% credible interval for π. The analysis is conducted with a
uniform beta prior distribution on the proportion of crosses θ. Fractional outcomes were
handled by averaging. Needle proportions were rounded to the nearest integer percentage,
which is the main source of discrepancy between π̂ and the posterior median.

Experimenter π̂ Posterior Lower Upper
Median 95% CI 95% CI

Wolf (1850) 3.1596 3.1596 3.0754 3.2485

Smith (1855) 3.1553 3.1556 3.0213 3.3006

De Morgan (c. 1860) 3.137 3.1365 2.9609 3.34085

Fox (1884) 3.1595 3.1596 2.9687 3.3759

Lazzarini (1901) 3.1415929 3.1290 3.0333 3.2312

Reina (1925) 3.1795 3.1687 3.0042 3.3489

Gridgeman (c. 1960) 3.143 3.1600 1.6205 63.200

Schroeder (1974) 3.3 3.2731 2.6409 4.2405

Mathematica (2008) 3.10845 3.1084 3.0581 3.1607

Padilla (2012) 3.1346 3.1419 2.5488 4.0015

JASP (2023) 3.1275 3.1275 3.1074 3.1478

sampling-based inference techniques that we will not cover in the rest
of this book.
Secondly, suppose you find yourself confronted with a posterior dis-

tribution for π that is as wide as the one shown in Figure 11.4. What
should you conclude? Well, the most obvious conclusion is that you are
left with a considerable amount of uncertainty about the true value of π.
This may prompt you to toss the needle many more times, causing the
posterior distribution to become more narrow. One of the wonderful
(and often poorly understood) properties of Bayesian inference is that
you may quantify your uncertainty at any time during the needle toss-
ing process, and you may stop whenever your uncertainty is sufficiently
reduced or you run out of time, money, or patience (whichever comes
first; Berger and Wolpert 1988, Edwards et al. 1963, Wagenmakers et al.
2018b).

Exercises

1. You are given money to bet on whether or not a needle, tossed at
random, will cross a seam. Find the line length ℓ, expressed as a
proportion of the distance between the seams d, which makes you
indifferent between betting on the needle crossing vs. not crossing a
seam.
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2. A needle, half the length of the distance between the seams, is tossed
n times, and crosses a seam k times. Using a flat prior on the propor-
tion of crosses, use the Learn Bayes module to obtain the probability
that the true value of π falls in between 3.130 and 3.150.

3. In the setup discussed in the previous exercise, what beta prior distri-
bution on the proportion of crosses roughly corresponds to the prior
knowledge that π is likely to fall in the interval from 3.0 to 3.2?

4. Perlman and Wichura (1975) examine how the data from a Buffon’s
needle experiment should be analyzed to provide the best (non-
Bayesian) estimate of π. Specifically, Perlman and Wichura (1975)
“apply the concepts of sufficiency and completeness, efficiency, and
ancillarity, in the guise of the Rao-Blackwell-Lehmann-Scheffe theo-
rems [4, 12], the Cramer-Rao lower bound [15], and the principle of
conditionality [1, 2, 3, 5], to obtain alternate estimators which utilize
the available statistical information as fully as possible.” But we are
Bayesians, and for Bayesians there is only a single estimator that is
possible – which one is it?

Stamp “Comte de Buffon” (N◦ Yvert
& Tellier 856) by George Louis Leclerc.
Reproduced with permisson of ©La
Poste.

5. Consider the needle tossing data from Fox (1884), as reported in
Table 11.1. Under consideration is the hypothesis ‘did Fox cheat to
obtain these results?’ Sketch the elements of a Bayesian answer to
this question.

Chapter Summary

It is surprising how many lessons can be learned when tossing a needle
on a floor with parallel planks. First, we have learned that π is om-
nipresent in nature; second, we have learned that researchers are often
unable to withstand the Siren song of selective reporting, even when
throwing needles on a floor; third, we have learned that when reporting
a result, it is crucial to go beyond a point estimate and instead report all
of the uncertainty – the Bayesian estimate is the entire posterior distribution;
fourth, we have learned that uncertainty can be quantified and updated
even though the target of inference is itself certain (i.e., it is easy to ob-
tain the first 100 digits of π with the help of a computer; however, from
the point of view of uncertainty reduction, this fact is irrelevant if you
do not have access to a computer – see also Gronau and Wagenmakers
2018); fifth, we have learned that uncertainty in one unknown can be
transformed into uncertainty in a related unknown.

Want to Know More?

3 When in Paris, we recommend a visit to the beautiful Jardin des
Plantes. The grounds cover 28 hectares and includes gardens, a zoo,
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and four large galleries: The Grande Galerie de l’Évolution, the Ga-
lerie de Minéralogie et de Géologie, the Galerie de Paléontologie et
d’Anatomie comparée, and the Galerie de Botanique (which contains
close to eight million samples of plants).

“Buffon assis dans son fauteuil” (Buffon
seated in his armchair). This statue in
bronze and stone was created in 1907
by Jean-Marius Carlus (1852–1930)
and stands opposite the Grande Ga-
lerie de l’Évolution of the Jardin des
Plantes, Paris, France (October 2022).
The Grande Galerie itself houses yet
another statue of Buffon – commissioned
by Louis XVI in 1776, it is an exuber-
ant, Greco-Roman marble sculpture
by Augustin Pajou. The base of the
statue features the inscription “Majes-
tati Naturae par Ingenium” (a genius
equal to the majesty of nature) and con-
tains…Buffon’s cerebellum! Pajou was
also responsible for the bust of Buffon
that can be seen overlooking the Rue
Buffon.

3 Buffon spent most of his life in his native village of Montbard, which
he much preferred over Paris. Buffon’s castle in Montbard is now
a museum. The nearby village of Buffon features giant ironworks
established by Buffon, the ‘Forges de Buffon’.

Poor Joseph

“In Montbard the day started early. Buffon, however, enjoyed his
sleep, and early mornings were painful to him. “I loved sleep in my
youth,” he said of himself, “it relieved me of a lot of time.” He tells
how, because he was “unhappy with himself,” he had asked Joseph,
an elderly servant, to wake him before six o’clock, promising him
a crown each time he succeeded. One morning, having run out of
arguments, Joseph pulled off the bedclothes and poured a bowl of
cold water on his master. He received his crown, and Buffon ends
the story by saying, “I owe ten to twelve volumes of my works to
poor Joseph.”[Corr., 1971, I, p. 34.] Buffon was, and would remain
until his death, a formidable machine for work: fourteen hours a day
for forty years.” (Roger 1997, p. 28)

3 A Shiny app that tosses Buffon’s needle and conducts Bayesian infer-
ence is available at https://qfgronau.shinyapps.io/BuffonsNeedle/.

3 Another unexpected way to estimate π is presented on the YouTube
channel of 3Blue1Brown: “The most unexpected answer to a count-
ing puzzle” (https://youtu.be/HEfHFsfGXjs).

3 Buffon, G.–L. (1749-1788). Histoire Naturelle Générale et Particulière
(Vols. 1-36). Paris: Imprimerie Royale. With eight additional vol-
umes published posthumously, this encyclopedia is the result of a
herculean effort. Verbal descriptions are accompanied by tables with
measurements and by detailed engravings.

3 Buffon, G.–L. (1797-1807). Buffon’s Natural History (Vols. 1-10).
London: T. Gillet. The English translation of the French original. A Paris metro station is named after

Louis Jean-Marie Daubenton (1716–
1800), a co-author and close collaborator
of Buffon (Roger 1997, p. 337).

3 Todhunter, I. (1865). A History of the Mathematical Theory of Prob-
ability From the Time of Pascal to That of Laplace. Cambridge:
MacMillan and Co. The go-to reference, authoritative and complete.
On p. 347, Todhunter mentions that Buffon solves the parallel lines
problem correctly, but provides an incorrect solution for the tiles
problem. Buffon also gives the incorrect result for throwing a cube
instead of a needle.

https://qfgronau.shinyapps.io/BuffonsNeedle/
https://youtu.be/HEfHFsfGXjs
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3 Laplace, P.–S. (1812). Théorie Analytique des Probabilités. Paris:
Courcier. On pp. 359-362, Laplace solves Buffon’s needle prob-
lem (without mentioning Buffon). Todhunter (1865, pp. 590-591)
mentions that in the 1812 first edition, Laplace presents the correct
analysis of efficiency (p. 360): the estimation of π is most efficiently
achieved when the needle length ℓ equals the distance between the
seams d. Curiously, Laplace replaced this correct analysis by an in-
correct analysis in the two later editions of his book, “thus causing a
change from truth to error” (Todhunter 1865, p. 591). “Paris is hell” (Buffon, in a letter from

1738, as cited in Roger 1997, p. 30)
3 Wohl, R. (1960). Buffon and his project for a new science. Isis, 51,

186-199. This article clarifies Buffon’s vision on science.
“Probably no figure in the history of the natural sciences is more
shrouded in ambiguity than Georges Louis Leclerc de Buffon. The
uncertainty of his present reputation stands in all the greater contrast
with the eminence he attained in his own age. Philosopher of Nature,
biologist, anthropologist, mathematician, translator of Newton, en-
trepreneur and builder of iron forges, haughty administrator of the
Jardin du Roi, austere academician – Buffon was one of the most fa-
mous of savants in a century that esteemed intellect above all other
virtues. Yet even in his own time Buffon’s claim to scientific stature
was severely questioned. Despite the vast popularity of his work – or,
even more likely, because of it – many of Buffon’s fellow scientists
thought his forty-four volume Histoire naturelle more a romance for
young ladies than a serious contribution to natural history.” (p. 186)

3 Doron, C.–O. (2012). Race and genealogy. Buffon and the formation
of the concept of “race”. Humana. Mente Journal of Philosophical
Studies, 22, 75–109. Doron argues that racism was an integral part of
Buffon’s philosophy. Additional sources include Roger (1997, p. 178
and pp. 181-182), Fellows and Milliken (1972, p. 140-141), and (for
instance) Buffon (1797–1807, pp. 38-39, Vol. 7 and pp. 6-7, Vol. 8).

3 Dugatkin, L. A. (2019). Buffon, Jefferson and the theory of New
World degeneracy. Evolution: Education and Outreach, 12, 15. A mod-
ern reader may be puzzled by Buffon’s strong opinion on animals,
habits, places, and people with whom he was almost entirely unfa-
miliar. A good example is the Theory of New World Degeneracy.16 The 16 See also https://www.

americanscientist.org/article/
jefferson-buffon-and-the-moose.

main premise of this ‘theory’ is perhaps best explained by Buffon
himself:

“Horses have multiplied nearly as much in the hot as in the cold coun-
tries throughout America; but have diminished in size, a circumstance
which is common to all animals transported from Europe to America;
and what is still more singular, all the native animals of America are
much smaller in general than those of the old continent. Nature in
their formation seems to have adopted a smaller scale, and to have
formed man alone in the same mould.” (Buffon 1797–1807, p. 15, Vol.
7)

and

https://www.americanscientist.org/article/jefferson-buffon-and-the-moose
https://www.americanscientist.org/article/jefferson-buffon-and-the-moose
https://www.americanscientist.org/article/jefferson-buffon-and-the-moose
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“Animated nature, therefore, is in this portion of the globe less active,
less varied, and even less vigorous; for by the enumeration of the
American animals we shall perceive, that not only the number of
species is smaller, but that in general they are inferior in size to those
of the old continent; not one animal throughout America can be
compared to the elephant, rhinoceros, hippopotamus, dromedary,
buffalo, tiger, lion, &c.” (Buffon 1797–1807, p. 27, Vol. 7)

Le chameau – the camel. Illustration
from the eleventh volume of Buffon’s
Histoire naturelle générale et particulière
avec la description du Cabinet du Roi (1764,
p. 276). Design by Jacques De Sève,
engraving by Pierre Charles Baquoy.
Source: https://books.openedition.
org/mnhn/3079.

Buffon’s put down of the New World greatly annoyed Thomas Jef-
ferson, who issued a rebuttal of Buffon’s claims in his ‘Notes on the
State of Virginia’ (Jefferson 1787). Conversations with Franklin and
Jefferson ultimately had Buffon abandon the theory of New World
degeneracy (see also Fellows and Milliken 1972, p. 146).

3 Eymard, P., & Lafon, J.-P. (2004). The Number π. Providence,
Rhode Island: American Mathematical Society. Everything you always
wanted to know about π.

3 Hey, J. D., Neugebauer, T. M., & Pasca, C. M. (2010). George-Louis
Leclerc de Buffon’s ‘Essays on moral arithmetic’. In Ockenfels, A., &
Sadrieh, A. (Eds.), A Collection of Essays in Honor of Reinhard Selten,
pp. 245-282. Berlin: Springer. An English translation of Buffon’s
published needle work (Buffon 1777b). The relevant part is article
XXIII, pp. 275-279.

3 Velasco, S., Román, F. L., González, A., & White, J. A. (2006). Sta-
tistical estimation of some irrational numbers using an extension of
Buffon’s needle experiment. International Journal of Mathematical
Education in Science and Technology, 37, 735-740. “(…) replacing
the needle by a square, a regular pentagon and a regular hexagon in
Buffon’s experiment will give an estimate of

√
2, the golden ratio,

Φ = (1 +
√
5)/2, and

√
3, respectively.”

3 We include this note for completeness. If the uncertainty for θ =

2 · ℓ/(π · d) is quantified by a beta(α, β) distribution, then the cor-
responding uncertainty for π is quantified by a beta-prime(β, α)
distribution (shifted and scaled). In particular, we have that

p(π | ℓ, d) = 2ℓ

π2d

Γ(α+ β)

Γ(α)Γ(β)

(
2ℓ

πd

)α−1 [
1− 2ℓ

πd

]β−1

,

where Γ denotes the gamma function ; for integer n, Γ(n) = (n− 1)!.

3 Many articles and books discuss Buffon’s needle (and geometric
probability more generally). For instance, Crofton (1885, p. 784)
contains an early summary; Ellenberg (2014, pp. 202-212) provides
an intuitive derivation; Gorroochurn and Levin (2013) provides his-
torical background; Arnow (1994) describes Laplace’s solution to
an extension where the needle is tossed on a floor with rectangular
tiles; Kendall and Moran (1963, pp. 70-77) discuss various exten-
sions; Ramaley (1969) considers tossing a wet noodle instead of a

https://books.openedition.org/mnhn/3079
https://books.openedition.org/mnhn/3079
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straight needle; Schroeder (1974) presents a clear proof and some
example data; Solomon (1978) describes a series of estimators of
varying efficiency; Perlman and Wichura (1975) compare different
estimators and designs; they conclude that for estimating π, a tiled,
double-grid floor is more efficient than a parallel plank, single-grid
floor, but less efficient than a diamond-patterned, triple-grid floor;
Wood and Robertson (1998) expand on the previous result by adding
the honeycomb, hexagonal grid; after enforcing equal grid density,
the single grid turns out to yield the most efficient estimate of π
when ℓ ≥ 0.9 d; finally, Siniksaran (2008) introduces the Mathemat-
ica program ‘BuffonNeedle’ that tosses a digital needle in different
scenarios.

Honor
“Western civilization has known few men of letters and even fewer
scientists who were as singularly honored during their lives as
France’s Georges-Louis Leclerc, comte de Buffon, scientist and
belletrist, whose published work seemed to lay claim to science as a
new branch of the humanities. So unimpeded was his rise to fame,
so great the weight of his authority, so imposing his very presence,
that few among his contemporaries dared to attack him frankly and
openly. It seemed far easier to honor him, and he was showered with
honors.” (Fellows and Milliken 1972, p. 15)

Appendix: An Excursion to MCMC

In this chapter we assigned a prior distribution to the proportion of
crosses θ, updated it by means of the data, and then translated the poste-
rior uncertainty to π, which was the target of inference. But what if we
wanted to assign a prior to π directly? This prior may take on all sorts of
shapes, but for simplicity let’s say that all we are happy to assume is that
π falls in the interval from 2 to 4, and that every value inside this inter-
val is equally likely. This knowledge does not translate to a beta prior
on the proportion of crosses θ exactly. But it is nevertheless possible to
use JASP and assign a prior to π directly – we just cannot do it using the
Learn Bayes module. Instead, we have to use the JAGS module.
The JAGS module is based on the ‘JAGS’ program (Plummer 2003),

which itself was inspired by the ‘BUGS’ program (Lunn et al. 2012).
Both JAGS and BUGS are probabilistic programming languages. They
allow users to specify how the data are generated, and what the prior
distributions are on the model parameters. With the model specified
and the data given, JAGS and BUGS are then able to obtain the result-
ing posterior distributions – not by deriving them analytically, but by
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repeatedly drawing samples from them. The histogram of those sam-
ples approximates the analytical result to any desired degree of accuracy
(i.e., more accurate results can always be obtained by drawing more val-
ues). This sampling process is known as ‘Markov chain Monte Carlo’
(MCMC), and it has transformed the field of Bayesian statistics from the
1990s onward.17 At first glance, MCMC may come across as dark magic: 17 It is often remarked that with MCMC,

Bayesian model specification is limited
only by the user’s imagination.

if we cannot express the posterior distribution analytically, how can we
draw samples from it?
Here we take the dark magic for granted and illustrate the flexibility

of MCMC with an example. For concreteness, we will analyze the
Schroeder (1974) needle-tossing experiment with ℓ = 2/3 · d that yielded
41 crosses out of 100 tosses, for a point estimate of π̂ = 3.3. We open
the JAGS module in JASP and specify the following model code in the
syntax window:

model{
L <- 2; d <- 3;
mypi ~ dunif(2,4)
crosses ~ dbinom(theta,tosses)
theta <- 2*L/(d*mypi)
}

The first line of this code18 specifies the line length as ℓ = 2/3 · d; 18 Consistent with common coding
practice, we write the letter ‘l’ in upper
case to avoid visual confusion with the
digit ‘1’.

the second line assigns π (called ‘mypi’ in the code, to avoid confusion
with the true value of π) a prior distribution that is uniform from 2 to
4, as desired; the third line indicates that ‘crosses’ follows a binomial
distribution dictated by chance parameter θ and ‘tosses’; the fourth
line provides the relation between the binomial chance parameter θ
and π. Note that the assignment operator← specifies a deterministic
relationship (i.e., ‘is given by’) whereas the tilde operator ∼ specifies a
stochastic relationship (i.e., ‘is distributed as’).
After specifying the syntax, JAGS needs to be informed about the

values for ‘crosses’ and ‘tosses’. Open the tab ‘Observed Values’, define
‘crosses’ as 41 and ‘tosses’ as 100. Return to the syntax window and
press ‘control + enter’ to run the analysis. Then go to the box ‘Param-
eters in model’ and select ‘mypi’ as the parameter for which results
should be shown. We then open the tab ‘Plots’ and select ‘Histogram’.
The results ought to be similar to those displayed in Figure 11.5. The
output table gives the posterior median as 3.2944, and a 95% credible
interval ranging from 2.6885 to 3.9213. The histogram is based on the
6,000 MCMC draws from the posterior distribution. Note that all sam-
ples obey the prior restriction that π lies in between 2 and 4.
As a fun aside, the JAGS code can easily be adjusted to address a

slightly different (and arguably more useful) problem: suppose we know
the value of π exactly, but we wish to learn ℓ/d, the needle length ℓ ex-
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Figure 11.5: Bayesian MCMC-style inference for π based on the needle-tossing experiment from Schroeder (1974). Left input panel: the
JAGS model syntax assigns a uniform prior directly to π. Right output panel: the samples are plotted as a histogram. Note that the samples
respect the restriction imposed by the prior distribution (i.e., there are no samples that exceed 4). Screenshot from the JAGS module in
JASP.

pressed as a proportion of the interseam distance d. In order to achieve
our goal we can arbitrary set d = 1 and assign ℓ a prior distribution on
the 0−1 interval, which is then updated to a posterior distribution based
on the observed number of tosses and crosses:

model{
d <- 1
L ~ dunif(0,1)
pi <- 3.14159265359
crosses ~ dbin(theta,tosses)
theta <- (2*L)/(d*pi)
}

The second line assigns ℓ a uniform prior; if strong prior knowledge is
available we might prefer an informed beta distribution instead. The
third line yields an approximate value for π; if a more precise value is
needed we can use the following expression instead:

pi <- 4 * atan(1)
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Executing this code will yield posterior samples for ℓ. The examples
from this appendix serve to illustrate how probabilistic programming
languages allow users to change their models almost at will, without
first having to do the mathematical derivations.19 19 This should not be interpreted as an

invitation to spurn mathematics.We have hardly scratched the surface of MCMC sampling, and we
will not return to it in this book. Excellent resources on MCMC are
available both online and in the literature.





12 The Pancake Puzzle

[with Charlotte Tanis]

When two persons who consider themselves equally competent assign different
subjective probabilities to certain gambles and one can observe them a sufficient
number of times, it is often possible to decide which of the two is superior so
far as their judgement is concerned.

Borel, 1909/1965

Chapter Goal

This chapter showcases the predict-update Bayesian learning cycle for
a real-life binomial data set involving eight pancakes. We emphasize
the predictive aspect of the learning cycle by first having individual
people assign a prior beta distribution to the chance θ that any pan-
cake will come with bacon. Each individual person therefore acts as a
probabilistic bacon forecaster, with their beta prior as the quantitative
device to formalize the forecasts. As the pancakes accumulate, consec-
utive prediction errors drive a continual adjustment of beliefs, such
that the posterior distribution after the nth pancake becomes the prior
distribution for pancake n + 1. The predict-update cycle is first shown
for a single forecaster, and then for several rival forecasters. Bayes’ rule
specifies how the relative adequacy of the individual forecasters can be
quantified, and how one may arrive at a joint prediction by computing a
weighted average across all forecasters.

Data collection in action.

The Problem

One of us [EJ] was going to bake pancakes for his family. From the
sample proportion of bacon pancakes we wish to learn about EJs bacon
proclivity θEJ , that is, the probability that any one of his pancakes will
have bacon. We also wish to predict whether future pancakes will have
bacon.
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A Standard Solution

The observed sequence of pancakes was as follows: y = {v, v, v, b, b, v, b, v},
where ‘v’ stands for a ‘vanilla’ pancake and b stands for a bacon pancake.
So EJ baked eight pancakes, three of them with bacon. We may adopt
Laplace’s Principle of Insufficient Reason (see Chapter 8) and assign a
uniform prior distribution to the chance θEJ that any pancake comes
with bacon (i.e., θ ∼ beta(1, 1)). Updating this prior distribution with
the observed data y yields a beta(4, 6) posterior distribution, which is
depicted in Figure 12.1. The mean of this posterior distribution is 4/10,
which also equals the probability that the next pancake will come with
bacon (see the ‘beta prediction rule’ outlined in Chapter 9). To summa-
rize the posterior distribution we may, for instance, report that the 95%
central credible interval ranges from .14 to .70. We may also compute
the posterior probability that θEJ lies in any interval of interest (e.g.,
p(θEJ ∈ [.4, .6] | y) ≈ .38) or the posterior probability that θEJ is larger
than 1/2 (i.e., p(θEJ > 1/2 | y) ≈ .25).

mean =  0.400;  P(0.4 £ q £ 0.6) = 38%
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Figure 12.1: Standard solution for Bayesian inference about EJ’s bacon proclivity θEJ .
A uniform beta(1,1) prior has been updated by the data (i.e., three bacon pancakes, five
vanilla pancakes) to a beta(4,6) posterior distribution. The posterior mean is 4/10, which,
by the beta prediction rule outlined in Chapter 9, is also the probability that the next
pancake will have bacon. The gray area visualizes the posterior probability that θEJ is in
between .40 and .60. Figure from the JASP module Learn Bayes.

Below we explore the consequences of (1) assigning θEJ an informed
beta prior distribution rather than the Laplacean flat beta(1,1) distribu-
tion; (2) updating the informed prior distribution one pancake at a time;
(3) contrasting and combining multiple rival informed prior distribu-
tions, which may be considered as competing forecasting systems.
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Sequentially Updating an Informed Prior

As part of a course assignment, all 34 students (henceforth forecasters)
in our 2019 Research Master class ‘Bayesian inference for psychological
science’ each had to specify and motivate their own ‘informed’ beta
prior for EJ’s bacon proclivity θEJ , before learning the outcome of his
pancake dinner. The 34 informed beta priors are listed in Appendix A
of this chapter. For educational purposes, here we focus on just four
forecasters: Tabea, Sandra, Elise, and Vukasin. Their beta priors and
posteriors are listed in Table 12.1 and shown in Figure 12.2.

Table 12.1: Informed beta priors for EJ’s bacon proclivity θEJ , and their associated poste-
riors after updating with the data (i.e., three bacon pancakes out of eight total), for four
forecasters.

Beta prior Beta posterior

Forecaster α β α β

Tabea 4 4 7 9

Sandra 4 7 7 12

Elise 9 3 12 8

Vukasin 10 1 13 6
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Figure 12.2: Prior and posterior beta distributions for EJ’s bacon proclivity θEJ . The top
panel shows the beta priors for Sandra (‘S’), Tabea (‘T’), Elise (‘E’), and Vukasin (‘V’). The
bottom panel shows the beta posteriors based on updating the priors with the information
in the sample (i.e., three bacon pancakes and five vanilla pancakes, for a bacon sample
proportion of 3/8 = .375). See also Table 12.1.
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Here we first demonstrate the details of the sequential updating pro-
cess with one of the prior distributions, the beta(4, 4) prior by Tabea.
The Tabea-prior pancake-by-pancake updating process is shown in Fig-
ure 12.3 and it proceeds from top to bottom. The top distribution is
Tabea’s beta(4,4) prior, and the bottom distribution is her beta(7,9) pos-
terior distribution after having observed all eight pancakes. The rows in
between visualize the intermediate beta distributions that obtain when
the observed pancake sequence y = {v, v, v, b, b, v, b, v} is encountered
and analyzed one pancake after the other. For instance, the second row
shows a beta(4,5) distribution: Tabea’s posterior distribution after learn-
ing that the first pancake is vanilla. Note that each vanilla pancake pulls
the distribution to the left, whereas each bacon pancake pulls it to the
right. Also note that, as the pancakes accumulate, the distributions tend
to become more narrow, signifying increased confidence about the most
plausible values of θEJ .
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Figure 12.3: The Tabea-prior pancake-by-pancake updating process. The distribution on
top is Tabea’s beta(4,4) prior. The rows below show the updated beta distributions when
going through the observed pancake sequence y = {v, v, v, b, b, v, b, v} one pancake
at a time. For instance, the second row gives the beta(4,5) posterior distribution after
observing that the first pancake was vanilla, and the bottom row is the final beta(7,9)
distribution after having observed all eight pancakes.

The same updating process is shown in Table 12.2, but here we also
show the predictive success for Tabea at each step. For instance, before
observing the first pancake, Tabea’s belief about θEJ was quantified by
a beta(4,4) prior distribution. From the beta prediction rule (Chapter 9)
it follows that the predicted probability is 4/8 for the occurrence of
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a bacon pancake and 4/8 for the occurrence of a vanilla pancake. A
vanilla pancake is observed, and this means the predictive success for
the observed data is 1/2 (i.e., right-most column, ‘Probability’). The
observation that the first pancake is vanilla also leads to an update of
the beta(4,4) prior distribution to a beta(4,5) posterior distribution. This
posterior distribution is the prior distribution before the arrival of the
second pancake. From this beta(4,5) prior distribution it follows that the
predicted probability is 4/9 for the occurrence of a bacon pancake and
5/9 for the occurrence of a vanilla pancake. The second pancake turns
out to be vanilla, and this means the predictive success for the observed
data is 5/9. This process is repeated until all eight pancakes have been
observed. The total predictive score is 1/2× 5/9× 6/10× 4/11× 5/12× 7/13×
6/14× 8/15 = 4/1287 ≈ .0031.

Table 12.2: The predict-update sequential analysis of Tabea’s beta prior based on the
pancake order {v, v, v, b, b, v, b, v}. Predictions for the next pancake are based on the
beta prediction rule outlined in Chapter 9. Eight pancakes were baked, so the row for the
ninth pancake contains a prediction but no outcome.

Pancake Prior Prediction Outcome Probability

1 beta(4,4) p({b}) = 4/8

p({v}) = 4/8 vanilla 1/2

2 beta(4,5) p({b}) = 4/9

p({v}) = 5/9 vanilla 5/9

3 beta(4,6) p({b}) = 4/10

p({v}) = 6/10 vanilla 6/10

4 beta(4,7) p({b}) = 4/11 bacon 4/11

p({v}) = 7/11

5 beta(5,7) p({b}) = 5/12 bacon 5/12

p({v}) = 7/12

6 beta(6,7) p({b}) = 6/13

p({v}) = 7/13 vanilla 7/13

7 beta(6,8) p({b}) = 6/14 bacon 6/14

p({v}) = 8/14

8 beta(7,8) p({b}) = 7/15

p({v}) = 8/15 vanilla 8/15

9 beta(7,9) p({b}) = 7/16 ?
p({v}) = 9/16 ?

We now compute the predictive score for all pancakes at once, using
the beta-binomial distribution. The beta-binomial distribution gives
the probability of observing k successes out of n trials, given that the
binomial chance parameter θ follows a beta distribution with param-
eters α and β. Applying the beta-binomial with k = 3, n = 8, and
α = β = 4, we find that the probability that is returned equals .174,
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much larger than the value of .0031 obtained from Table 12.2.1 The 1 Example R code:
library(extraDistr);N.bacon<-3;
N.total<-8; alpha<-4; beta<-4;
dbbinom(N.bacon,N.total,alpha,beta).

discrepancy occurs because the beta-binomial takes into account that
the three bacon pancakes and five vanilla pancakes could be arranged
in any order. As explained in Chapter 28, ‘Jevons Explains Permuta-
tions’, the possible number of different orders is 56.2 When we mul- 2 That is, 8!/(3! 5!).

tiply the number of orders with Tabea’s predictive score, we obtain
56 × 4/1287 = 224/1287 ≈ .174, which matches the result from the
beta-binomial.
The result can also be obtained from the JASP Learn Bayes module.

Go to ‘Counts’→ ‘Binomial Testing’. Enter the observed data and spec-
ify Tabea’s beta(4,4) prior under ‘Hypothesis’. Then, under ‘Predictive
Performance’, select ‘Prior predictive distribution’. To highlight the
data that were actually observed, also tick ‘Observed number of suc-
cesses’. The result is shown in Figure 12.4.
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Figure 12.4: Tabea’s predicted number of pancakes that come with bacon, out of a total
of eight. The beta-binomial predictions are based on Tabea’s beta(4,4) prior distribution
on θEJ . The highlighted bar corresponds to the observed data and its height, 0.174,
quantifies Tabea’s predictive success. Figure from the JASP module Learn Bayes.

As we have discussed in previous chapters, the end-result of the
Bayesian updating process does not depend on the specific order of
the observations. This can be seen immediately from the fact that s
successes and f failures update a beta(α, β) prior distribution for a bino-
mial chance θ to a beta(α+ s, β + f) posterior distribution – the end re-
sult depends only on the total numbers s and f , not their order. A con-
crete demonstration of this fact is offered in Table 12.3, which shows
the sequential updating steps for an alternative pancake order, namely
{b, b, v, v, v, v, v, b}. We note that the final posterior is a beta(7, 9) dis-
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tribution, as was the case for the original order. Also, for the original
order the overall predictive success was 1/2 × 5/9 × 6/10 × 4/11 × 5/12 ×
7/13×6/14×8/15 = 4/1287 ≈ .0031. For the shuffled order, the total predic-
tive score is 1/2× 5/9× 4/10× 5/11× 6/12× 7/13× 8/14× 6/15 = 4/1287 ≈ .0031:
many individual elements in the multiplication differ, but the end re-
sult is identical.

Table 12.3: The predict-update sequential analysis of Tabea’s beta prior based on a differ-
ent pancake order, namely {b, b, v, v, v, v, v, b}. The end-result is identical to that of the
original order.

Pancake Prior Prediction Outcome Probability

1 beta(4,4) p({b}) = 4/8 bacon 1/2

p({v}) = 4/8

2 beta(5,4) p({b}) = 5/9 bacon 5/9

p({v}) = 4/9

3 beta(6,4) p({b}) = 6/10

p({v}) = 4/10 vanilla 4/10

4 beta(6,5) p({b}) = 6/11

p({v}) = 5/11 vanilla 5/11

5 beta(6,6) p({b}) = 6/12

p({v}) = 6/12 vanilla 6/12

6 beta(6,7) p({b}) = 6/13

p({v}) = 7/13 vanilla 7/13

7 beta(6,8) p({b}) = 6/14

p({v}) = 8/14 vanilla 8/14

8 beta(6,9) p({b}) = 6/15 bacon 6/15

p({v}) = 9/15

9 beta(7,9) p({b}) = 7/16 ?
p({v}) = 9/16 ?

A Rival Forecaster

We now consider a rival forecaster, Elise, who had assigned θEJ a
beta(9,3) prior (cf. Figure 12.2). Similar to our pancake-by-pancake
analysis of Tabea, Table 12.4 shows the updating process for Elise’s
prior. As the table shows, we start with a beta(9,3) prior and finish with
a beta(12,8) posterior distribution. This updating process is accompanied
by a total predictive score of 3/12 × 4/13 × 5/14 × 9/15 × 10/16 × 6/17 ×
11/18 × 7/19 = 2494800/3047466240 = 55/67184 ≈ .0008. As was the case
for Tabea, this result is for a specific pancake order; because there are
56 different orders of three bacon pancakes and five vanilla pancakes,
the predictive score for Elise in terms of the number of bacon pancakes,
irrespective of the pancake order, is 56 × 55/67184 = 385/8398 ≈ .046.
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This result can be confirmed using the JASP Learn Bayes module. As be-
fore, go to ‘Counts’→ ‘Binomial Testing’. Enter the observed data and
specify Elise’s beta(9,3) prior under ‘Hypothesis’. Under ‘Predictive Per-
formance’, select ‘Prior predictive distribution’ and also tick ‘Observed
number of successes’. The result is shown in Figure 12.5.

Table 12.4: The predict-update sequential analysis of Elise’s beta prior based on the
pancake order {v, v, v, b, b, v, b, v}. Predictions for the next pancake are based on the
beta prediction rule outlined in Chapter 9. Eight pancakes were baked, so the row for the
ninth pancake contains a prediction but no outcome.

Pancake Prior Prediction Outcome Probability

1 beta(9,3) p({b}) = 9/12

p({v}) = 3/12 vanilla 3/12

2 beta(9,4) p({b}) = 9/13

p({v}) = 4/13 vanilla 4/13

3 beta(9,5) p({b}) = 9/14

p({v}) = 5/14 vanilla 5/14

4 beta(9,6) p({b}) = 9/15 bacon 9/15

p({v}) = 6/15

5 beta(10,6) p({b}) = 10/16 bacon 10/16

p({v}) = 6/16

6 beta(11,6) p({b}) = 11/17

p({v}) = 6/17 vanilla 6/17

7 beta(11,7) p({b}) = 11/18 bacon 11/18

p({v}) = 7/18

8 beta(12,7) p({b}) = 12/19

p({v}) = 7/19 vanilla 7/19

9 beta(12,8) p({b}) = 12/20 ?
p({v}) = 8/20 ?

Who Predicted Better?

So far we have considered two forecasters, Tabea and Elise, and it may
be of interest to compare their predictive performance. Similar to the
scenario discussed in Chapter 10, The Problem of Points, there may be
a stake to divide –a prize for the best bacon forecaster– and it seems
fair to divide that stake in proportion to the forecasters’ relative predic-
tive success for the past pancakes. Also, we might need to hire a single
bacon forecaster – whom should we pick, and how confident should
we be about our choice? Finally, as we will elaborate upon later, we
might desire a forecast for unseen pancakes that is a weighted average
of the individual forecasts from Tabea and Elise, with averaging weights
determined by past predictive performance (cf. Figure 7.4).
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Figure 12.5: Elise’s predicted number of pancakes that come with bacon, out of a total
of eight. The beta-binomial predictions are based on Elise’s beta(9,3) prior distribution
on θEJ . The highlighted bar corresponds to the observed data and its height, 0.046,
quantifies Elise’s predictive success. Figure from the JASP module Learn Bayes.

As indicated above, the predictive score for Tabea is .174 (cf. Fig-
ure 12.4), whereas the predictive score for Elisa is .046 (cf. Figure 12.5).
We conclude that Tabea outpredicted Elise by a factor of .174/.046 = 3.78.
Formally, we can use the odds form of Bayes’ rule and write

p(Tabea | y)
p(Elise | y)︸ ︷︷ ︸
Posterior odds

=
p(Tabea)
p(Elise)︸ ︷︷ ︸
Prior odds

× p(y | Tabea)
p(y | Elise)︸ ︷︷ ︸

Evidence

.
(12.1)

The ‘Evidence’ in this equation is the degree to which the data change
our beliefs about the relative ability of the rival forecasters: the change
from prior to posterior odds. This change is generally known as the
Bayes factor and here it equals the extent to which Tabea outpredicted
Elise.3 In the present example, each forecaster’s predictive performance 3When the forecasters base their pre-

dictions on a single value for EJ’s bacon
proclivity, the Bayes factor reduces to the
likelihood ratio.

is obtained by averaging predictive performance over the possible values
of the binomial chance parameter, with the prior distributions provid-
ing the averaging weights.4 For this particular example we therefore 4 As explained in Chapter 9, the averag-

ing step is the statistical underpinning for
the beta-binomial predictions shown in
Figure 12.4 and 12.5.

have

p(y | Tabea)
p(y | Elise)︸ ︷︷ ︸

Evidence

=

∫
p(y | θ) p(θ) dθ∫
p(y | ζ) p(ζ) dζ

, θ ∼ beta(4, 4), ζ ∼ beta(9, 3)

≈ 0.174

.046
= 3.78.
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Four Forecasters

We now return to our initial scenario, summarized in Table 12.1, which
features four rival forecasters: Tabea, Sandra, Elise, and Vukasin. For
completeness, Figure 12.6 shows the beta-binomial predictions from
Sandra, and Figure 12.7 shows the beta-binomial predictions from
Vukasin. Because Vukasin’s beta prior assigned a lot of mass to rela-
tively high values of θEJ , Vukasin predicted that many pancakes would
have bacon. This did not happen, however, and therefore Vukasin’s
predictions were relatively poor.
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Figure 12.6: Sandra’s predicted number of pancakes that come with bacon, out of a total
of eight. The beta-binomial predictions are based on Sandra’s beta(4,7) prior distribution
on θEJ . The highlighted bar corresponds to the observed data and its height, 0.211,
quantifies Sandra’s predictive success. Figure from the JASP module Learn Bayes.

The results for all four forecasters are summarized in Table 12.5. A
comparison between prior and posterior probability shows that Tabea
(i.e., .25 → .40) and Sandra (i.e., .25 → .48) both gain credibility,
whereas Elise (i.e., .25 → .11) and especially Vukasin (i.e., .25 → .01)
both lose credibility. This is a direct consequence of the fact that Tabea
and Sandra predicted the data relatively well, whereas Elise and Vukasin
predicted the data relatively poorly.
Despite the fact that Sandra predicted the data best, and therefore has

the highest posterior probability, this probability is still a modest .48.
This means that if an all-or-none decision were made to award Sandra
the title ‘best bacon forecaster’, there is a 1 − .48 = .52 probability that
this decision is wrong.5 Alternatively, imagine there is a $100 prize for 5Note that a Bayesian posterior prob-

ability may be interpreted as the prob-
ability of not making an error, if the
associated hypothesis were selected as
being the best. The error probability is
conditional on the observed data and
applies to the specific case at hand, in
contrast to the error rates in frequen-
tist statistics. For details see the blog
post “Error rate schmerror rate” on
BayesianSpectacles.org.

the best bacon forecaster; one may award the entire prize to Sandra, but

BayesianSpectacles.org
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Figure 12.7: Vukasin’s predicted number of pancakes that come with bacon, out of a
total of eight. The beta-binomial predictions are based on Vukasin’s beta(10,1) prior
distribution on θEJ . The highlighted bar corresponds to the observed data and its height,
0.005, quantifies Vukasin’s predictive success. Figure from the JASP module Learn Bayes.

this decision seems rash (it is more likely to be incorrect than correct).
One way to respect the remaining uncertainty is to ‘chop’ the prize
according to the posterior probability. Thus, Tabea would receive $40,
Sandra $48, Elise $11, and Vukasin $1. This procedure is similar in spirit
to the Problem of Points discussed in Chapter 10.
Of course, the posterior probabilities for the forecasters may also be

computed sequentially, one pancake after the other. Table 12.6 shows
how the posterior probabilities unfold as the pancakes accumulate.
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Table 12.5: Prior probability, predictive success, and resulting posterior probability for
bacon forecasters Tabea, Sandra, Elise, and Vukasin. The ‘F ’ denotes ‘forecaster’, and ‘y’
denotes the observed data.

Forecaster
Prior
p(F )

Predictive
success
p(y | F )

Posterior
p(F | y)

Tabea .25 .174 .40
Sandra .25 .211 .48
Elise .25 .046 .11
Vukasin .25 .005 .01

Table 12.6: Sequential analysis of the pancake sequence {v, v, v, b, b, v, b, v}. Top row:
prior model probabilities for each of the four forecasters; bottom row: posterior model
probabilities after having observed all eight pancakes.

Pancake Tabea Sandra Elise Vukasin

0 0.250 0.250 0.250 0.250
1 (v) 0.338 0.431 0.169 0.062
2 (v) 0.350 0.534 0.097 0.019
3 (v) 0.339 0.598 0.056 0.007
4 (b) 0.371 0.513 0.101 0.015
5 (b) 0.386 0.428 0.158 0.028
6 (v) 0.387 0.497 0.103 0.013
7 (b) 0.401 0.424 0.153 0.022
8 (v) 0.399 0.484 0.105 0.012

Bacon Forecasting: Silly?

The example of bacon forecasting is admittedly silly. However, the
core Bayesian concepts involved carry over to forecasts that are of
great societal importance: election forecasting, economic growth fore-
casting, climate change forecasting, etc. More generally, all Bayesian
statistical models may be conceived of as probabilistic forecasting
systems (Dawid 1984). This is not immediately obvious when a
Bayesian model is specified in a probabilistic programming language
such as WinBUGS (Lunn et al. 2012), JAGS (Plummer 2003), or
Stan (Carpenter et al. 2017) and is then fit to the data in a single
step. But behind the scenes, Bayes’ rule governs the knowledge up-
dates with an iron first, and dictates that these updates are driven by
relative predictive success: hypotheses and parameters that predict
the data well enjoy a boost in credibility, whereas hypotheses and pa-
rameters that predict the data poorly suffer a decline (Wagenmakers
et al. 2016a).
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Figure available at BayesianSpectacles.
org under a CC-BY license.

Will the Ninth Pancake Have Bacon?

The previous section focused on the relative predictive performance of
the rival forecasters. Now suppose we are interested in predicting the
identity of the next pancake. For our prediction, it is perhaps tempting
to select forecaster Sandra, who predicted the past pancakes best, and
forget about her competitors. Sandra has a beta(7, 12) posterior distri-
bution for θEJ after having seen the first eight pancakes, so by the beta
prediction rule Sandra assigns probability 7/19 ≈ .37 to the proposition
that the ninth pancake will have bacon. However, by basing our predic-
tions solely on Sandra we throw away information: we ignore the fact that
her rivals Tabea, Elise, and Vukasin also have posterior credibility, and
make predictions that differ from that of Sandra.
In order to take into account all uncertainty in our predictions we

use the law of total probability and ‘model-average’ across the four rival
forecasters. Figure 12.8 shows a tree diagram with all four forecasters
and their predictions for the ninth pancake (cf. Figure 7.4). To obtain
the probability that the ninth pancake will have bacon we simply sum
the probability of all four branches that result in a bacon pancake. For
the data at hand this results in .40 ·7/16+ .48 ·7/19+ .11 ·12/20+ .01 ·13/19 ≈
.42. Compared to Sandra’s prediction of .37, the overall prediction
that the ninth pancake will have bacon is slightly higher, as it is driven
upwards by the more bacon-enthusiastic predictions from the other
forecasters.
In general terms, the marginal prediction that the next pancake has

bacon is p({b}) = p({b} |Tabea) p(Tabea) + p({b} | Sandra) p(Sandra) +
p({b} |Elise) p(Elise)+ p({b} |Vukasin) p(Vukasin).6 This shows that the 6 For readability, this notation omits to

condition on the fact that eight pancakes
were already observed. For instance, it
is implied that p(Tabea) is not the prior
probability for Tabea (i.e., .25), but the
posterior probability (i.e., .40).

overall prediction is a combination of the predictions from each fore-
caster, weighted by their posterior credibility. The posterior credibility,
in turn, is determined by a combination of their prior credibility and
their predictive success for the first eight pancakes. This is reminiscent
of the ‘wisdom of crowds’ phenomenon, where the averaged prediction
across many forecasters is superior to that of most individual forecasters.
In its Bayesian formulation, the averaging across the ‘crowd’ does not
occur blindly; instead, individual forecasts are weighted by expertise, an
assessment of which is based on a combination of prior knowledge and
previously established predictive success.

BayesianSpectacles.org
BayesianSpectacles.org
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Figure 12.8: To obtain the probability that the ninth pancake has bacon, use the law
of total probability and add the probability of the four branches that result in bacon:
.40 · 7/16 + .48 · 7/19 + .11 · 12/20 + .01 · 13/19 ≈ .42.

A Trio of Priors

In this chapter we have used the terms ‘prior distribution’ and ‘poste-
rior distribution’ in three different ways, and it is important to distin-
guish between them sharply.

Case I: Bacon Proclivity (i.e., Parameters)

Consider Tabea and forget about the other forecasters for a moment.
Tabea’s initial uncertainty about EJ’s bacon proclivity θEJ was quanti-
fied by a beta(4,4) prior distribution, and the observation of three bacon
pancakes and five vanilla pancakes requires that her prior distribution
was updated to a beta(7,9) posterior distribution (cf. Figure 12.3). Be-
cause of its continuous nature, θEJ is usually considered a parameter.
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Case II: Forecaster Quality (i.e., Models and Hypotheses)

Consider our four forecasters and forget about specific values of θEJ

for a moment. The prior credibility of the forecasters is quantified by a
uniform prior distribution (i.e., .25 for each). This prior distribution is
updated by the forecasters’ relative predictive success to a posterior dis-
tribution (i.e., .40, .48, .11, and .01 for Tabea, Sandra, Elise, and Vukasin,
respectively). Because of its discrete nature, the forecasters are usually
considered rival models or hypotheses.

Case III: Pancakes (i.e., Data)

Predictions about data can be issued in several ways. We can focus on a
specific forecaster such as Tabea and obtain her prior predictive distribu-
tion (cf. Figure 12.4). This prior predictive distribution depends on the
desired number of hypothetical observations and on the prior distribu-
tion for bacon proclivity θEJ : together with the intended sample size,
the prior beta distribution gives rise to a prior predictive beta-binomial
distribution. Depending on the specifics of the data-generating process,
the prior predictive distribution can be discrete (as it is here) or continu-
ous.7 In the same way, predictions about future data can be made from 7 Continuous prior predictive distribu-

tions will feature in later chapters.the posterior distribution, giving rise to a posterior predictive distribu-
tion.
Predictions can also be made across all forecasters, as demonstrated

above in Figure 12.8. Predictions that average over one or more nui-
sance factors are called ‘marginal’8 For example, Figure 12.9 shows a 8 The terminology comes from 2 × 2

contingency tables, where the column
and row sums are known as the ‘table
margins’.

‘marginal posterior predictive distribution’: it is marginal because it does
not refer to any specific forecaster – this is a nuisance factor that has
been averaged out according to the law of total probability; it is poste-
rior because it is based on the posterior distributions for θEJ from the
four forecasters, taking into account the knowledge gained from the
observed eight pancakes; finally, it is predictive because it concerns the
predicted number of bacon pancakes out of a total of 20 new, unob-
served pancakes.
Thus, there is uncertainty at different levels. We do not know who

has the most knowledge about EJ’s bacon proclivity, and this induces
epistemic uncertainty on the level of forecasters. In turn, each forecaster
is uncertain about the value of the bacon proclivity θEJ , and this is
reflected in a forecaster-specific beta prior distribution for θEJ . This
epistemic uncertainty propagates to predictions, where it is augmented
with aleatory uncertainty (cf. Chapter 2). Depending on what we are
interested in, we may zoom in on a particular factor and use the law
of total probability to average out the nuisance factors. Even though
there are various levels of uncertainty, the Bayesian principles stays the
same: parameters and hypotheses that predict the data relatively well
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Figure 12.9: Posterior predictive distribution for the number of pancakes that come with
bacon, out of a requested total of 20 unobserved pancakes. Predictions are based on the
forecasters’ posterior distributions for θEJ and weighted by each forecaster’s posterior
probability. Figure from the JASP module Learn Bayes.

experience a gain in credibility, whereas parameters and hypotheses that
predict the data relatively poorly suffer a decline.

Prior Distributions as Bets
“There are practical difficulties in assess-
ing the prior probability in many cases as
they actually arise. This is not a situation
to evade, but one to face.’’ (Jeffreys 1931,
p. 34)

When a forecaster assigns the binomial chance θ a relatively narrow
prior distribution, this induces a relatively precise prediction for to-be-
observed data (i.e., a relatively narrow prior predictive distribution).
When the incoming data are consistent with this precise prediction, this
empirical validation will generally enhance the forecaster’s credibility.
However, when the incoming data are inconsistent with the precise
prediction, this often greatly undermines the forecaster’s credibility.9 9 These regularities are not universally

true, as the reallocation of credibility
for any particular forecaster depends on
the predictive performance of the rival
forecasters.

An informed prior distribution can therefore be conceived of as an
indirect bet, a way to distribute prior resources across a range of possible
data-generating processes θ with the goal to maximize expected reward
(i.e., maximize the predictive score).10 Conservative forecasters hedge 10 The bet is indirect because the payout

is determined by the predictive mass
that is assigned to the observed data;
in other words, the direct bet is in the
space of possible data, not in the space of
parameters.

their bets and assign θ a vague prior distribution that gives rise to a
broad prior predictive distribution. Aggressive forecasters, on the other
hand, use prior knowledge to specify a narrow prior distribution on θ
that gives rise to a narrow prior predictive distribution. The aggressive
forecaster will outpredict the conservative forecaster whenever the
data validate the riskier prediction. This occurs because the aggressive
forecaster did not have to waste prior resources by ‘betting’ on values
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of θ with a low probability of generating the observed data. This theme
will become increasingly prominent in the next chapters.

Exercises

1. Consider the list of all 34 priors shown in Appendix A. Select an
interesting subset and then (1) compute the posterior probabilities
for all forecasters in your subset; (2) obtain the associated marginal
posterior predictive distribution for 20 new pancakes. How does it
compare to Figure 12.9?

2. The text states, “However, the core Bayesian concepts involved carry
over to forecasts that are of great societal importance: election fore-
casting, economic growth forecasting, climate change forecasting,
etc.” Mention some of these core Bayesian concepts.

3. Consider Equation 12.1. How would you interpret p(Tabea) and
p(Elise)? Would this interpretation be helpful for statistical models in
general?

4. The text mentions that the fictitious $100 prize for ‘best bacon fore-
caster’ can be divided according to the posterior probability. “Thus,
Tabea receives $40, Sandra $48, Elise $11, and Vukasin $1. This pro-
cedure is similar in spirit to the Problem of Points discussed in Chap-
ter 10.” Nevertheless, there is a difference – what is it?

5. From Figure 12.8 it follows that the probability is .42 that the ninth
pancake will have bacon. Confirm this result with the Learn Bayes
module.

6. The text states “The aggressive forecaster will outpredict the conser-
vative forecaster whenever the data validate the riskier prediction.”
Convince yourself that this is true by constructing a concrete exam-
ple in the Learn Bayes module in JASP.

7. In 2022, EJ produced a sequence of five vanilla pancakes: y =

{v, v, v, v, v}. Four Research Master students assigned different prior
beta distributions to θEJ : Lisa specified a beta(70, 30) prior, Seymour
a beta(1, 1) prior, Moe a beta(2, 8) prior, and Krusty a beta(4, 20)
prior. Assuming the four students are deemed equally good at pan-
cake forecasting a priori, compute the resulting posterior probability
for each forecaster. Then compute the probability that the sixth
pancake is a bacon pancake.
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Chapter Summary

This chapter provided a perspective on Bayesian inference as proba-
bilistic sequential forecasting. When data accumulate, prediction errors
drive a continual adjustment of beliefs, as was illustrated with the case
of eight pancakes with or without bacon. The predict-update cycle of
learning holds on all levels – it holds within each forecaster individually
(i.e., prior distributions for pancake proclivity θ are updated to posterior
distributions for θ in a pancake-by-pancake fashion; see Figure 12.3 and
Table 12.2) but also across rival forecasters (i.e., prior probabilities con-
cerning relative forecasting ability are updated to posterior probabilities
in a pancake-by-pancake fashion; see Table 12.6). Predictions concern-
ing new pancakes ought to take into account both the uncertainty about
pancake proclivity within a specific forecaster, and uncertainty about the
relative predictive prowess of the rival forecasters.

Want to Know More?

3 An informative post by Fabian Dablander: https://fabiandablander.
com/r/Bayes-Potter.html.

3 Dawid, A. P. (1984). Present position and potential developments:
Some personal views: Statistical theory: The prequential approach
(with discussion). Journal of the Royal Statistical Society Series A, 147,
278-292. This classic paper is inspired by the work of both Bruno de
Finetti and Harold Jeffreys. “The prequential approach is founded
on the premiss that the purpose of statistical inference is to make
sequential probability forecasts for future observations, rather than to
express information about parameters.”

3 Hinne, M., Gronau, Q. F., van den Bergh, D., & Wagenmakers, E.–
J. (2020). A conceptual introduction to Bayesian model averaging.
Advances in Methods and Practices in Psychological Science, 3, 200-
215. Worth looking up if only for the drawing of the pandemonium.

3 Veen, D., Stoel, D., Schalken, N., Mulder, K., & van de Schoot, R.
(2018). Using the data agreement criterion to rank experts’ beliefs.
Entropy, 20, 592. “By letting experts specify their knowledge in the
form of a probability distribution, we can assess how accurately they
can predict new data, and how appropriate their level of (un)certainty
is.”

https://fabiandablander.com/r/Bayes-Potter.html
https://fabiandablander.com/r/Bayes-Potter.html
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Appendix A: Prior Distributions From the 2019 Class

Figure 12.10: The list of 34 beta prior distributions for EJ’s bacon proclivity θEJ . Low
values for beta parameters α and β indicate large uncertainty (i.e., a wide prior). Students
were informed that their prior choices could be used for this book; they were free to use
pseudonyms.

Appendix B: Mixture Distributions

The section ‘Will the Ninth Pancake Have Bacon?’ illustrated how
the predictions of the four forecasters (i.e., Tabea, Sandra, Elise, and
Vukasin) may be combined to yield a single overall prediction for the
upcoming pancake – a weighted average of the individual predictions,
with the averaging weights informed by the forecasters performance on
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pancakes from the past (cf. Figure 12.8). The interest was on the pre-
diction, and the identity of the forecaster is a nuisance factor that was
averaged out using the law of total probability.
Essentially the same process can be used when interest centers on

the prior and posterior distribution for bacon proclivity θEJ , with the
forecasters averaged out. The results are easily obtained in the Binomial
Testing routine of the Learn Bayes module in JASP. For simplicity we will
take into consideration only the four forecasters Tabea, Sandra, Elise,
and Vukasin. Figure 12.11 shows a screenshot of the input GUI, with
the data specified in the top panel (i.e., three bacon pancakes and five
vanilla pancakes) and the four forecasters specified in the bottom panel,
both in terms of their prior probabilities (in this case, 1/4) and in terms
of the beta prior distributions they assign to θEJ .

Figure 12.11: JASP screenshot of two input panels from the Binomial Testing routine
of the Learn Bayes module. The input panels control the inference across four pancake
forecasters. Top panel: specification of the data; bottom panel: specification of the four
forecasters. See text for details.

The resulting ‘marginal’ prior distribution for θEJ is a four-component
mixture of beta distributions, with the prior probabilities for the in-
dividual forecasters acting as mixture weights. This mixture distri-
bution represents the knowledge of the four forecasters combined.
Figure 12.12 displays the mixture prior distribution; the multimodal
shape11 is a clear indication of the underlying mixture. 11 A multimodal distribution has more

than one maximum or ‘bump’.This mixture prior distribution is then updated by means of the data
to yield a mixture posterior distribution. The mixture weights for the
components in the posterior distribution are the posterior probabilities
for the individual forecasters; just as for the prediction of the ninth pan-
cake, the shape of the posterior for θEJ is determined mostly by those
forecasters that proved to be most reliable in the past. The mixture
posterior is shown in Figure 12.13.
It is noteworthy that –in contrast to the prior distribution– the pos-

terior distribution shows little outward sign of actually being based on
a mixture; it is unimodal and (somewhat) bell-shaped. In general, all
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Figure 12.12: Marginal prior distribution for EJ’s bacon proclivity θEJ across the four
forecasters as specified in Figure 12.11. Figure from the JASP module Learn Bayes.

posterior distributions will become bell-shaped (and symmetric around
the maximum likelihood estimator) as sample size increases – this is
known as the Bayesian central limit theorem or the Bernstein-von Mises the-
orem (e.g., van der Vaart 1998).12 The theorem holds under ‘regularity 12 This observation dates back to Laplace.

conditions’ and these imply that the true parameter is not located on
the boundary of the space. For instance, if the data are generated from
θ = 1 or θ = 0 then the posterior will obviously not be bell-shaped.13 13 The doubtful reader may convince

themselves by using JASP to analyze a
large data set comprised of only successes
or only failures.

Even though the posterior distribution shown in Figure 12.13 looks
much more bell-shaped than the prior distribution, it is still noticeably
asymmetric: the lingering impact of the prior is reflected in a right-
skew, which expresses a preference for relatively high values of θEJ .
Foreshadowing the material from the next chapter, we will now pretend
that ten times more pancakes were observed, for a total of 30 bacon
pancakes and 50 vanilla pancakes. The resulting posterior distribution
is shown in Figure 12.14. The additional observations have caused the
posterior distribution to narrow and to become more symmetric around
the maximum likelihood estimate (i.e., the sample proportion).
For a summary of the ways in which the opinion of different fore-

casters (or experts) may be combined we refer the interested reader to
Wilson and Farrow (2018) and Stefan et al. (2022). The idea of a mix-
ture prior distribution will resurface in Chapter 27.
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Figure 12.13: Marginal posterior distribution for EJ’s bacon proclivity θEJ across the
four forecasters as specified in Figure 12.11. The cross denotes the sample proportion of
3/8 = .375. Figure from the JASP module Learn Bayes.
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Figure 12.14: Marginal posterior distribution for EJ’s bacon proclivity θEJ across the four
forecasters as specified in Figure 12.11, with the exception that the number of bacon and
vanilla pancakes has increased tenfold (i.e., to 30 and 50, respectively). The cross denotes
the sample proportion of 30/80 = .375. Figure from the JASP module Learn Bayes.



13 A Plethora of Pancakes

[with Charlotte Tanis and Alexander Ly]

An accurate statement of the prior probability is not necessary in a pure
problem of estimation when the number of observations is large.

Jeffreys, 1939

Chapter Goal

We continue the example from the previous chapter and add more
pancake observations. Three facts are demonstrated: (1) As the pancakes
accumulate, the posterior distributions become increasingly peaked
around the value of θ that predicts the data best, which equals the
sample proportion: ‘the data overwhelm the prior’ (e.g., Wrinch and
Jeffreys 1919); (2) A forecaster’s overall predictive performance can be
obtained by multiplying their performance for separate batches, but
only when the beta distributions are updated appropriately after each
batch (e.g., Jeffreys 1961, pp. 332-334); (3) As the pancakes accumulate,
the difference in predictive performance between the rival forecasters
is bounded – even an infinite number of pancakes does not suffice to
identify the best bacon forecaster with certainty.

The Data Overwhelm the Prior

The analysis from the previous chapter involved forecasters Tabea, San-
dra, Elise, and Vukasin, who each expressed their prior uncertainty
about EJ’s bacon proclivity θEJ by their own beta distribution. The ob-
served data consisted of three bacon pancakes and five vanilla pancakes.
We decide to collect more information, and force EJ to bake another

few hundred pancakes. For educational purposes, we fix the sample
ratio of bacon to vanilla pancakes at 3:5; our extended (fictional) data set
now has 300 bacon pancakes and 500 vanilla pancakes. Figure 13.1 and
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Table 13.1 show the prior and posterior beta distributions for each of
the four forecasters.

Sandra

0 0.2 0.4 0.6 0.8 1

Elise

0 0.2 0.4 0.6 0.8 1

Vukasin

Tabea

Figure 13.1: Prior and posterior beta distributions for EJ’s pancake proclivity θEJ , for four
forecasters. The ‘prior’ distributions, shown in light gray, have already been updated to
include the information from the previous chapter (i.e., the fact that EJ baked three bacon
pancakes and five vanilla pancakes). The posterior distributions, shown in dark gray, are
based on a fictitious new pancake stack consisting of 297 bacon pancakes and 495 vanilla
pancakes. The sample proportion of bacon pancakes is 3/8 = .375.

In Figure 13.1, the light-gray distributions represent the priors that
were obtained by updating the forecasters’ initial beliefs with the infor-
mation from the earlier eight pancakes. In other words, the light-gray
distributions represent each forecaster’s belief after having seen the
results from the eight pancakes discussed in the previous chapter. In
general, these prior distributions are relatively wide, indicating consid-
erable uncertainty on the part of the forecasters. Also, the prior distri-
butions are markedly different across the forecasters: Tabea and Sandra
assign most prior belief to low and middle values of bacon proclivity
θEJ , whereas Elise and Vukasin assign more belief to higher values of
θEJ .
The dark-gray distributions in Figure 13.1 represent the posteriors

obtained from updating each forecaster’s initial belief with the infor-
mation from 800 pancakes, 300 of which have bacon and 500 of which
are vanilla. The posterior distributions are relatively peaked, indicat-
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Table 13.1: Prior and posterior beta distributions for EJ’s pancake proclivity θEJ , for four
forecasters. The ‘prior’ distributions have already been updated to include the information
from the previous chapter (i.e., the fact that EJ baked three bacon pancakes and five
vanilla pancakes). The posterior distributions are based on a fictitious new pancake stack
consisting of 297 bacon pancakes and 495 vanilla pancakes.

Beta prior Beta posterior

Forecaster α β α β

Tabea 7 9 304 504

Sandra 7 12 304 507

Elise 12 8 309 503

Vukasin 13 6 310 501

ing a high level of certainty about θEJ . In addition, the four posterior
distributions are relatively similar to one another. That this should
be the case is apparent from Table 13.1: the α and β parameters that
define the beta posteriors are dominated by the fact that hundreds of
pancakes have been observed, and prior differences between forecast-
ers are drowned out by the impact of the data. In other words, Tabea’s
beta(7, 9) prior distribution may be noticeably different from Vukasin’s
beta(13, 6) prior distribution, but Tabea’s beta(304, 504) posterior dis-
tribution is virtually identical to Vukasin’s beta(310, 501) posterior
distribution.
Intuitively, the posterior distribution is a compromise between the

forecasters’ prior convictions and the information coming from the data,
as described in Chapter 7 (Jeffreys 1939, p. 46):

Posterior ∝ Prior× Likelihood.

Each forecaster may have prior beliefs that are unique, but the data are
common property. With every observation that comes in, the ‘posterior
compromise’ will be influenced more by the data and less by the prior.
Eventually, the deluge of data will cause the posterior to concentrate
near the θEJ value that corresponds to the proportion of bacon pan-
cakes in the sample, 300/800 = .375. This can also be explained from a
predictive perspective. Recall that every time an observation arrives, the
prior distribution is updated such that values for θEJ that predict that
observation relatively well receive a boost in plausibility, whereas values
for θEJ that predict that observation relatively poorly suffer a decline.
Now consider a value such as θEJ = 1/2. This value assigns considerable
mass to the outcome of three bacon pancakes and five vanilla pancakes;
such data are not surprising under θEJ = 1/2, and hence it retains a
reasonable degree of credibility. Specifically, the predictive probability
of three bacon pancakes and five vanilla pancakes is .22 under θEJ = 1/2

and .28 under θEJ = 3/8 – a minute predictive advantage of .28/.22 = 1.3
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for the value that was cherry-picked to provide the best predictive per-
formance.1 However, the situation changes dramatically when we con- 1 In frequentist statistics, this is known as

the maximum likelihood estimate (MLE),
the value of θ that predicts the data best
(i.e., it assigns the largest probability to
the observed data).

sider the larger data set. Under the best predicting value, θEJ = 3/8, the
probability of observing 300 bacon pancakes and 500 vanilla pancakes
is .03; under θEJ = 1/2, the predictive probability is a shockingly low
.00000000000031; that is, θEJ = 3/8 outpredicted θEJ = 1/2 by a factor
of .03/.00000000000031 = 96, 774, 193, 548. Thus, θEJ = 1/2 does an
abysmal job in predicting 300 bacon pancakes and 500 vanilla pancakes;
such data would be highly surprising under θEJ = 1/2, and compared to
values of θEJ close to 300/800, θEJ = 1/2 loses almost all credibility.
The continual impact of the data therefore pushes forecasters with

clearly different prior beliefs towards an almost identical posterior be-
lief, centered on the sample proportion (i.e., the MLE). This posterior
convergence is emphasized in almost every Bayesian textbook, and the
associated adage is ‘the data overwhelm the prior’. This idea goes back
at least to Wrinch and Jeffreys (1919), who concluded: “Thus, unless
the distribution of prior probability (…) is very remarkable, its precise
form does not produce much effect on the probability that the true
value lies within a certain range determined wholly by the constitution
of the sample itself.” (p. 728).2 In later work, Jeffreys argued that it 2 As summarized by Jeffreys (1933b,

p. 84), “When the sample is large the
variation of f(r) [the prior distribution]
produces no important disturbance of
the theory, as has already been pointed
out, since it is overwhelmed by the vari-
ation of h(r) [the likelihood], but for
small samples the difference is con-
siderable.” (italics ours) Also, Jeffreys
(1955, p. 280) concluded: “Wrinch and
I showed in 1919 that in the estimation
of a chance, where the possible values
form a continuous set the precise form
of the prior probability distribution
taken for it has very little effect on the
posterior probability, and consequently
quite crude forms are quite good enough.
This can be extended to most estimation
problems.”

was this Bayesian regularity that provided a firm foundation for maxi-
mum likelihood estimation, ironically the main method advocated by
the thoroughly anti-Bayesian Sir Ronald Fisher:

“The whole reason for attaching any importance to Fisher’s “likelihood”
is that it is proportional to the posterior probability given by Laplace’s
theory, and it has no meaning outside the original sample except in terms
of this theory.” (Jeffreys 1933b, p. 87)

and

“Professor Fisher seems to set up his use of likelihood in opposition to
the theory of probability. I cannot see why he does this, since the theory
of probability provides the use of likelihood with its best justification.”
(Jeffreys 1935b, p. 70)

and

“Again, provided the number of observations is large and the prior prob-
ability is not very unevenly distributed with the parameters to be found,
the posterior probability in any range where it is appreciable is distributed
nearly in proportion to the likelihood. This was proved for sampling by
Wrinch and me in 1919, but the argument is obviously capable of wide
extension. Thus subject to one condition Fisher’s principle of maximum
likelihood is an immediate consequence of my theory.”(Jeffreys 1937b, p.
258)

and
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“Subject to a negligible correction, therefore, the posterior probability
density (…) is proportional to the likelihood (…)

This result was given for sampling by Wrinch and me in 1919; we
did not extend it in the above way, thinking that the extension would
be obvious and that the method of maximum likelihood was already in
general use, though Fisher did not introduce the name till 1921 ; and
indeed it was in use for the problems of sampling and estimates for
normal distributions that interested us at the time.” (Jeffreys 1938c, p.
147)

and

“The method of maximum likelihood has been vigorously advocated by
Fisher; the above argument [i.e., the data overwhelm the prior] shows
that in the great bulk of cases its results are indistinguishable from those
given by the principle of inverse probability [i.e., Bayesian inference],
which supplies a justification of it. An accurate statement of the prior
probability is not necessary in a pure problem of estimation when the
number of observations is large. What the result amounts to is that
unless we previously know so much about the parameters that the obser-
vations can tell us little more, we may as well use the prior probability
distribution that expresses ignorance of their values (…)” (Jeffreys 1961, p.
194)

and

“In the same paper [Wrinch & Jeffreys, 1919] we (…) showed that if n
[sample size] is large the posterior probabilities are nearly in the ratios
of the direct probabilities (…). This was in fact the method of maximum
likelihood, first given that name by Fisher a few years later. We did not
think it at all remarkable at the time, thinking that all statisticians used it
already.” (Jeffreys 1974, p. 1)

and finally, for good measure:

“It is shown that in a wide class of problems where there are many obser-
vations the posterior probability depends almost entirely on the observa-
tions and very little on the prior probability. This justifies the method of
maximum likelihood, given that name later by R. A. Fisher.” (Jeffreys and
Swirles 1977, p. 251)

“The likelihood takes us a long way, but
the theory of probability finishes the
job.” (Jeffreys 1935b, p. 71)

Pancakes Galore

Not satisfied with a mere 800 pancakes, you up the ante and force EJ
to increase the stack to a total of 8000 pancakes. We retain the 3:5
bacon to vanilla ratio, which means that our stack now consists of 3,000
bacon pancaked and 5,000 vanilla pancakes. Figure 13.2 and Table 13.2
show the prior and posterior beta distributions for each of the four
forecasters.
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Figure 13.2: Prior and posterior beta distributions for EJ’s pancake proclivity θEJ , for four
forecasters. The ‘prior’ distributions, shown in light gray, have already been updated to
include the information from the previous stack (i.e., the fact that EJ baked 300 bacon
pancakes and 500 vanilla pancakes). The posterior distributions, shown in dark gray,
are based on a fictitious new pancake stack consisting of 2700 bacon pancakes and 4500
vanilla pancakes. The sample proportion of bacon pancakes is 3/8 = .375. The posterior
distributions are so peaked that they do not fit on the graph.

As expected, the effect of the additional pancakes is to increase the
forecasters’ certainty about θEJ still further. The dark gray posterior
distributions are now so narrow that their peaks do not fit on the graph,
like the top of a mountain hidden from view above the clouds. One
key difference with respect to the first update in this chapter (shown
in Figure 13.1) is that this time, the light gray ‘prior’ distributions are
highly similar between the forecasters. After a few hundred pancakes
had been observed, the forecasters had already converged to the same
opinion. This may prompt the speculation that the new set of pancakes
does little to discriminate the good forecasters from the poor forecasters,
even though this set is thousands of pancakes in size. We elaborate on
this speculation in the next sections.
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Table 13.2: Prior and posterior beta distributions for EJ’s pancake proclivity θEJ , for
four forecasters. The ‘prior’ distributions have already been updated to include the
information from the previous stack (i.e., the fact that EJ baked 300 bacon pancakes and
500 vanilla pancakes). The posterior distributions are based on a fictitious new pancake
stack consisting of 2700 bacon pancakes and 4500 vanilla pancakes.

Beta prior Beta posterior

Forecaster α β α β

Tabea 304 504 3004 5004

Sandra 304 507 3004 5007

Elise 309 503 3009 5003

Vukasin 310 501 3010 5001

Combining the Evidence

At this point we have collected a stack of 8000 pancakes, and we wish
to compare the predictive performance of Tabea (who assigned θEJ

a beta(4,4) prior) against that of Elise (who assigned θEJ a beta(9,3)
prior). Recall that the evidence, that is, the data-induced change from
prior to posterior odds, is generally known as the Bayes factor, which
we abbreviate as ‘BF’. The Learn Bayes module informs us that BFte ≈
23.73, that is, Tabea predicted the composition of the 8000 pancakes
almost 24 times better than Elise.3 3 The subscript ‘te’ conveys that ‘Tabea’

is the forecaster in the numerator and
‘Elise’ is the forecaster in de denominator
of the Bayes factor; hence, BFte stands
for p(data |Tabea)/p(data |Elise).

However, the complete stack arrived in three separate batches. The
first batch consisted of three bacon and five vanilla pancakes; the second
batch consisted of 297 bacon and 495 vanilla pancakes (for a running
total of 800 pancakes); and the third batch consisted of 2700 bacon
pancakes and 4500 vanilla pancakes, bringing the total up to 8000. Let’s
assume that we wish to combine the evidence across the three batches –
how should this be accomplished?
A tempting, but incorrect procedure to combine the evidence works

as follows. For the first batch, we compare predictive performance of
the Tabea beta(4,4) prior versus the Elise beta(9,3) prior and find that
BFbatch1te ≈ 3.80. For the second batch, we also compare predictive
performance of the Tabea beta(4,4) prior versus the Elise beta(9,3) prior
and find that BFbatch2te ≈ 22.76. For the third batch, we again compare
predictive performance of the Tabea beta(4,4) prior versus the Elise
beta(9,3) prior and find that BFbatch3te ≈ 23.71. To obtain the overall
evidence across all three batches, we then multiply the batch-specific
Bayes factors and obtain 3.80 × 22.76 × 23.71 ≈ 2051. This is clearly
wrong – from analysing all 8000 pancakes simultaneously we already
know that the correct answer is approximately 23.73.
What went wrong here is that the priors were used three times, once

of each batch. For the first batch, this was correct; so it is true that
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BFbatch1te ≈ 3.80. For the analysis of the second batch, however, the
initial prior beta distributions are no longer relevant. Instead, the rel-
evant prior distributions are now a beta(7,9) for Tabea and a beta(12,8)
for Elise. Comparing predictive performance of these updated priors
on the data from the second batch yields BFbatch2te ≈ 6.0. The same
updating principle applies to the third batch. We now compare predic-
tive performance of Tabea’s updated beta(304,504) distribution versus
Elise’s updated beta(309,503) distribution for the data from the third
batch, which yields BFbatch3te ≈ 1.04. Notice that, in contrast to the
incorrect computation, the successive Bayes factors become increas-
ingly smaller, reflecting the forecasters’ converging opinion. After the
data from the second batch have been accounted for, Tabea and Elise
make highly similar predictions, such that additional data are hardly
diagnostic. Multiplying the three updated Bayes factors we find that
3.80 × 6.0 × 1.04 ≈ 23.71, which recovers the result from analyzing all
8000 pancakes at once.4 Therefore, in the words of Harold Jeffreys: 4 The slight remaining numerical differ-

ence is due to rounding.
“We cannot therefore combine tests by simply multiplying the values of
K [the Bayes factor]. This would assume that the posterior probabilities
are chances, and they are not. The prior probability when each sub-
sample is considered is not the original prior probability, but the posterior
probability left by the previous one. We could proceed by using the sub-
samples in order in this way, but we already know (…) what the answer
must be. The result of successive applications of the principle of inverse
probability [Bayesian inference] is the same as that of applying it to the
whole of the data together, using the original prior probability (…) Thus
if the principle is applied correctly, the probabilities being revised at each
stage in accordance with the information already available, the result
will be the same as if we applied it directly to the complete sample (…)”
(Jeffreys 1961, p. 334; see also Jeffreys 1938a, pp. 190-192)

In order to drive the point home, consider a scenario involving the
following two hypotheses: Hx holds that a stack of ten pancakes is
baked either by the vegetarian Charly (i.e., θC = 0) or by the carnivore
Sidney (i.e., θS = 1), with both candidates equally likely a priori to
be the baker. The competing hypothesis, Hy, holds that the pancakes
are baked by Jackie, whose pancake proclivity is θJ = 1/2. The first
pancake in the stack is observed, and it has bacon. The probability of
this datum is 1/2 under both hypotheses, and consequently BFxy = 1:
the datum is completely uninformative with respect to the relative
predictive performance of the rival hypotheses. Now assume that we
examine the entire stack and observe that all ten pancakes have bacon.
If we multiply evidence without updating, and apply the same prior
ten consecutive times, once for each pancake, then BFxy = 1 for every
pancake, and the overall result would be 1×1×1×1×1×1×1×1×1×1 =

1. Clearly something is amiss, because a stack of ten bacon pancakes
should provide evidence in support of Hx.
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The correct analysis proceeds as follows. After the first pancake,
which yields BFxy = 1, the hypothesis Hx is updated: we now know
that Charly cannot be the baker, so all posterior probability is now on
Sidney being the baker. For the second pancake, therefore, we compare
Hx : Sidney is the baker (i.e., θS = 1) versus Hy : Jackie is the baker
(i.e., θJ = 1/2). A bacon pancake is twice as likely to be produced by
Sidney than by Jackie, and hence, after two pancakes, BFxy = 1 × 2 =

2. Each consecutive pancake is twice as likely under Hx than under
Hy, and the total Bayes factor across all ten pancakes therefore equals
1× 2× 2× 2× 2× 2× 2× 2× 2× 2 = 29 = 512.5 5Note that after the first pancake, our

competing hypotheses consist of chances
(i.e., fixed beliefs that are not subject
to updating: θS = 1 for Sidney and
θJ = 1/2 for Jackie) so that we are
allowed to multiply the likelihood ratios.

Finally, another intuition is provided by the law of conditional prob-
ability. Let y1 and y2 denote two observations. We wish to obtain the
predictive performance of a given model for the complete data set, that
is, we desire the probability p(y1, y2). But by the law of conditional
probability this is the same as p(y1) × p(y2 | y1), that is, the probability
for the first observation multiplied by the probability for the second ob-
servation, given that the knowledge of the first observation has been properly
taken into account. Chapter 26 examines this important issue in more
detail.

A Bound on the Evidence

In the previous section we showed that the predictive performance of
Tabea and Elise was virtually identical for the final batch of 2700 +

4500 = 7200 pancakes (i.e., BFbatch3te ≈ 1.04). In other words, after the
first 800 pancakes were in, the remaining 7200 did almost nothing to
change our opinion on who is the better bacon forecaster. This suggests
that there may be an upper bound on the evidence in Tabea’s favor. We
first explore this possibility by systematically increasing the number of
pancakes while retaining the 3:5 bacon to vanilla ratio. The results are
shown in Table 13.3.
The left two columns of Table 13.3 show how the number of bacon

and vanilla pancakes increase; the column ‘Evidence’ shows the cor-
responding Bayes factor in favor of Tabea, and the rightmost column
shows the associated posterior probability that Tabea is a better bacon
forecaster than Elise.6 The table provides support for our intuition that 6 This is calculated under the assumption

that Tabea and Elise are equally likely to
be the better bacon forecaster a priori.

the evidence is bounded. For example, after 80,000 pancakes the Bayes
factor in favor of Tabea is 23.83, whereas after 800,000 pancakes it is
23.84: a minuscule increase after adding 720,000 pancakes.
From a mathematical perspective, however, the demonstration in

Table 13.3 means little: who is to say that the evidence will not continue
to increase, albeit very slowly? As demonstrated in the Appendix Chap-
ter 30, the intuition from Table 13.3 is in fact correct. That is, when the
predictive performance of two beta distributions are compared, there is
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Table 13.3: Relative predictive performance for Tabea’s beta(4,4) prior distribution on
θEJ versus Elise’s beta(9,3) prior distribution as the number of pancakes increases while
maintaining a 3:5 bacon to vanilla ratio. The column ‘Evidence’ refers to the Bayes factor
in favor of Tabea over Elise, and the column ‘Posterior probability’ refers to the associated
posterior probability that Tabea is a better bacon forecaster than Elise.

Bacon Vanilla Evidence
Posterior
probability

3 5 3.80 0.79

30 50 15.96 0.94

300 500 22.77 0.96

3000 5000 23.73 0.96

30000 50000 23.83 0.96

300000 500000 23.84 0.96

an upper bound for the evidence. For the scenario involving Tabea and
Elise, Equation 30.16 produces an upper limit of 23.84, consistent with
the largest value from Table 13.3. The upper bound on the evidence im-
plies an upper bound on the posterior probabilities. This upper bound
is visualized in Figure 13.3, which shows how the posterior probabilities
for each of four bacon forecasters approaches an asymptotic value as the
number of pancakes increases.
In conclusion, the evidence for the comparison of any number of

beta distributions is necessarily limited. Posterior convergence means
that, after the data have overwhelmed the prior, forecasters with differ-
ent initial opinions will have come to agree with one another a posteriori.
From this point onward, the rival forecasters will make indistinguish-
able predictions, and consequently no amount of additional data has any
diagnostic value whatsoever. This then is the price of vagueness: by as-
signing mass across all values of θEJ , as any beta distribution does, each
forecaster hedges their bets to some degree – even when their initial
prior distribution is wildly inconsistent with the data, this distribution,
when updated with incoming information, will eventually transform to
a posterior distribution that is highly peaked on the value that is most
consistent with the observed data. Consequently, in the case of compet-
ing beta distributions, the question who is the better forecaster cannot
be answered to any desired degree of certainty, even when the data ac-
cumulate indefinitely.7 In the next chapters we will see that, in order 7 In statistical jargon, this means that

the procedure is inconsistent: as sample
size increases, the best option cannot be
identified with certainty. For details see
Ly and Wagenmakers (2022).

that infinite data may provide infinite evidence, the forecasters need to
be willing to make riskier predictions.

Exercises

1. Figure 13.3 shows some initial noisy fluctuations. What could explain
these fluctuations?
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Figure 13.3: Posterior probability of four bacon forecasters as the total number of pan-
cakes n increases while keeping the bacon to vanilla ratio fixed at 3:5 (i.e., every new
batch of eight pancakes has three bacon and five vanilla pancakes). In this particular
scenario, the posterior probabilities stabilize after a few hundred pancakes.

2. It is the 21st of September, 2021. All across the University of Amster-
dam a mask mandate is in place to curtail the COVID-19 pandemic.
What concerns us here is θ, the probability that any one student in-
side the main building on the Roeterseiland campus is wearing their
face mask correctly (i.e., covering both mouth and nose). (a) Propose
three beta prior distributions for θ. Have the first distribution be
relatively uninformative, have the second distribution reflect your
knowledge as you read these lines, and then create the third distri-
bution to incorporate the additional information that three stewards
were present at the building entrance to monitor mask-wearing com-
pliance. (b) Download the mask data at https://osf.io/4yevk/
and use the Learn Bayes module in JASP to conduct a comprehensive
Bayesian analysis along the lines sketched in the last two chapters.
What is the evidence bound?8 8 A note for teachers: this general exer-

cise type lends itself well to an in-class
activity. Divide students in to a few
groups and have each group construct
their own beta prior for a particular
phenomenon of interest. Then analyse
the data sequentially and monitor relative
predictive performance.

Chapter Summary

This chapter illustrated how the data overwhelm the prior, that is, how
data force initial divergent opinions towards posterior agreement. This
chapter also showed that the quantification of overall predictive success
may occur simultaneously, for a complete data set at once, or it may
occur sequentially, batch by batch. In the latter case, in order to ob-

https://osf.io/4yevk/
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tain the correct result it is essential that the posterior distribution after
batch n becomes the prior distribution for the assessment of predic-
tive performance on batch n + 1. Finally, the comparison of predictive
performance for rival beta distributions may never give a decisive re-
sult, even when sample size grows infinitely large – the convergence of
posterior opinion implies a bound on the evidence.

Want to Know More?

3 Ly, A., & Wagenmakers, E.-J. (2022). Bayes factors for peri-null hy-
potheses. TEST, 31, 1121–1142. This paper presents a proof that the
Bayes factor for overlapping distributions is bounded: this is the price
of vagueness.

Appendix: A Learn Bayes Demonstration

The main message of this chapter –the data overwhelm the prior– can
be experienced more directly by using the Learn Bayes module in JASP.
The reader is encouraged to open JASP and follow along. We start by
activating the Learn Bayes module and selecting Binomial Estimation.
Figure 13.4 shows how to specify the data (top panel: three bacon

pancakes and five five vanilla pancakes, in the order in which they were
baked) and the four models (middle panel: the beta prior distributions
for Tabea, Sandra, Elise, and Vukasin). The bottom panel shows that
the tab ‘Sequential Analysis’ contains several options for visualizing how
knowledge is updated as the pancakes accumulate.
Ticking the option ‘stacked distributions’ produces the output shown

in Figure 13.5. In each panel, the top row visualizes the prior distribu-
tion of θEJ and the bottom row visualizes the posterior distribution
after all pancakes have been taken into account. The change across the
rows –from top to bottom– reflect how incoming pancakes gradually
update the forecaster’s knowledge about the relative plausibility of the
different values of θEJ . For instance, the panels show that as more pan-
cakes are observed, the distributions generally become more narrow,
indicating an increase in knowledge about θEJ .
A comparison across the four panels illustrates how the data drive

together opinions that are initially highly divergent. This effect where
the ‘data overwhelm the prior’ is not so clearly present with strong prior
opinions and only eight pancakes. Although the forecasters’ posteriors
are more similar to one another than their priors, the posterior distribu-
tions for Tabea and Sandra (top two panels, centered near 0.4) are still
markedly different from those of Elise (centered near 0.6) and Vukasin
(centered near 0.7).
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Figure 13.4: JASP screenshot of three input panels from the Binomial Estimation routine
of the Learn Bayes module. The input panels control the sequential estimation of pancake
proclivity θEJ under four different models. Top panel: EJ’s pancake data, in order; middle
panel: the prior distributions from Tabea, Sandra, Elise, and Vukasin; bottom panel: the
options for a sequential analysis.

To highlight the convergence in opinion with increasing data we
copy-paste the data row with the original data set nine times, resulting
in a total of 80 pancakes, 50 of which are vanilla. The associated se-
quential analysis with stacked distributions is shown in Figure 13.6. The
posterior distributions are now relatively similar across the four pancake
forecasters, despite the fact that the prior distributions were relatively
dissimilar. The 80 pancakes provide information that is sufficiently
strong to drive together the initially divergent beliefs, and these data
can therefore be said to have overwhelmed these priors.
The Sequential Analysis tab offers additional options that the reader is

encouraged to explore. For instance, Figure 13.7 below shows how the
posterior mean for θEJ changes as the pancakes accumulate. The figure
confirms that the mean of the distribution converges – the prior means
vary considerably between the forecasters, but the posterior means are
relatively similar: the data overwhelm the prior. Note that the change
in the posterior mean is more pronounced for Vukasin and for Elise
than it is for Tabea and Sandra; the reason is that the prior distributions
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Sequential Analysis: Stacked 

Tabea             Sandra 

 

Elise             Vukasin 

 

Figure 13.5: Sequential analyses for four forecasters of pancake proclivity θEJ . After eight
pancakes, the posterior distributions still show the impact of the prior distribution. The
data were not sufficiently informative to overwhelm these particular priors. Figure from
the JASP module Learn Bayes.

of Vukasin and Elise put relatively much mass on high values of θEJ ,
values that are unlikely in light of the data.
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Sequential Analysis: Stacked 

Tabea       Sandra 

 

Elise       Vukasin 

 

Figure 13.6: Sequential analyses for four forecasters of pancake proclivity θEJ . After
80 pancakes (of which the last 72 are fictitious), the posterior distributions no longer
show much impact of the prior distribution. These particular data can be said to have
overwhelmed these particular priors. Figure from the JASP module Learn Bayes.

Figure 13.7: Sequential analyses for four forecasters of pancake proclivity θEJ . After 80
pancakes (of which the last 72 are fictitious), the posterior means for θEJ have converged
and are relatively close. Note that the effect of repeating the original data set nine times
is visible in the repeated sawtooth pattern with which the posterior mean changes. Figure
from the JASP module Learn Bayes.
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14 A Crack in the Laplacean Edifice

[The Laplace rule] therefore expresses a violent prejudice against any general
law, a totally unacceptable description of the scientific attitude.

Jeffreys, 1974

Chapter Goal

This chapter exposes the Achilles heel of Laplacean inference: the Prin-
ciple of Insufficient Reason, also known as the Principle of Indifference.
Although this principle appears neutral and innocuous –probability
mass is divided evenly across all parameter values and events– it implies
a denial without evidence that a general law is ever true. Universal gen-
eralizations that involve a necessary cause (e.g., “all AIDS patients have
been exposed to HIV”) are deemed false from the outset, in violation of
both common sense and scientific practice.

Problems with the Principle of Indifference

For historical and educational reasons, we first consider the Principle
of Indifference as it applies to binomial data governed by an unknown
chance θ. The Principle of Indifference dictates that θ be assigned a
uniform prior distribution, indicating that all possible values for θ are
deemed equally plausible a priori.
For instance, suppose that, as discussed in earlier chapters, θEJ rep-

resents EJ’s tendency to bake his pancakes with bacon. The uniform
prior distribution on θEJ (cf. Figure 8.3) induces a prior predictive
distribution that assigns equal probability to each possible number of
bacon pancakes (out of a total of n to-be-observed pancakes).1 For a 1One of the exercises from the next

chapter is to prove this result.to-be-observed stack of four pancakes, Figure 14.1 shows that the uni-
form distribution on θEJ produces five equally likely outcomes for the
number of pancakes that have bacon.2 2NB. Four pancakes yield five possible

outcomes, as the outcome that none of
the four pancakes has bacon is also in the
cards.

At first sight, the uniform prior assignment across θEJ appears neu-
tral and ‘objective’, untarnished by prior knowledge that may push
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Figure 14.1: Predicted number of pancakes that come with bacon, out of a total of four.
The beta-binomial predictions are based on the uniform beta(1,1) prior distribution on
bacon proclivity θEJ motivated by the Principle of Indifference. Figure from the JASP
module Learn Bayes.

the posterior distribution in the direction of the analyst’s expectations.
However, deeper reflection reveals that the uniform assignment harbors
an extreme bias: it rules out the possibility of universal generalizations
such as ‘all ravens are black’.
In particular, the uniform θEJ ∼ beta(1, 1) distribution assigns proba-

bility zero to any specific value of θEJ , including the value θEJ = 1 (i.e.,
‘All of EJ’s pancakes come with bacon’). As a result, when the stack of
to-be-observed pancakes increases, the prior predictive probability that
all pancakes have bacon decreases, as it equals 1/(n+1): the prior prob-
ability that all pancakes will have bacon approaches zero as the stack
grows large.
This prejudice against θEJ = 1 is also evident from Laplace’s Rule

of Succession. Recall from Chapter 9 that if θ ∼ beta(1, 1) and an
unbroken string of s successes has been observed, the probability of a
further unbroken string of k successes equals

s+ 1

s+ k + 1
.

It is clear that, as k increases and the sequence of predicted successes
lengthens, its probability decreases towards zero. Thus, no matter how
long the initial unbroken sequence of s successes, one would remain
firmly convinced that, with sufficient patience (i.e., sufficiently high k),
an exception would eventually occur. This firm conviction is unshaken
by changing the parameters that define the shape of the beta prior



a crack in the laplacean edifice 245

distribution. For general α and β, the probability of a future unbroken
string of k successes, after having observed s successes in the past, is

k−1∏
i=0

α+ s+ i

α+ s+ i+ β
, (14.1)

a product where each successive term represents the probability of
observing another success in the predicted sequence of k successes.
When k grows large the product of probabilities inevitably approaches
zero, irrespective of the values for s, α, and β.3 3 As long as β > 0 and s < ∞. See the

exercises for mathematical details.Thus, the Principle of Indifference denies the possibility that a gen-
eral law or universal generalization can ever be true. Irrespective of the
extent of previous experience, an exception is deemed certain to occur
at some point in the future. Deviating from the ‘indifferent’ beta(1, 1)
prior by changing α and β does nothing to alter the belief that excep-
tions are inevitable.
In pure induction, however, an unbroken sequence of confirmatory

instances has been observed, and a key question of interest is how much
evidence the observed instances offer in support of the general law
that all instances will be confirmatory. For instance, a mathematician
may observe that several even integers greater than four can be decom-
posed as the sum of two odd prime numbers. For instance, 6 = 3 + 3,
8 = 3 + 5, 10 = 3 + 7 = 5 + 5, 12 = 7 + 5, etc. After working through
enough instances, the mathematician may feel sufficiently confident to
conjecture that all instances follow the rule. The problem above is the
famous Goldbach conjecture, a puzzle in number theory that remains
unsolved to this day. Despite the fact that a mathematical proof has
remained elusive, the conjecture has been confirmed for all integers up
to 4 × 1018, a relatively strong level of inductive support.4 One may 4 http://sweet.ua.pt/tos/goldbach.

htmlapply Laplace’s Principle of Indifference to the Goldbach conjecture
and assign a beta(1, 1) prior distribution to θ, the chance that any even
number greater than four can be decomposed as the sum of two odd
primes. However, this implies a denial without evidence that the Gold-
bach conjecture may be true. According to the Principle of Indifference,
an exception is sure to arise if only sufficient numbers are subjected to
inspection, an opinion that is manifestly absurd.5 5 Readers interested in learning more

about the role of induction in mathe-
matics are referred to Pólya (1954a) and
Gronau and Wagenmakers (2018).

Similarly, a team of medical doctors may hypothesize that Alzheimer’s
disease is caused by a fungal infection of the central nervous system
(e.g., Pisa et al. 2015). This hypothesis entails that every patient who
has died of Alzheimer’s should have traces of the fungus in their brains.
Clearly, every new Alzheimer’s patient found to have such a fungus
infection provides support for the doctors’ hypothesis. Indeed, if the
fungus is a necessary condition for Alzheimer’s to develop, then all pa-
tients with Alzheimer’s will have the fungus – a possibility that the
Laplacean Principle of Indifference steadfastly denies. Likewise, the

http://sweet.ua.pt/tos/goldbach.html
http://sweet.ua.pt/tos/goldbach.html
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Principle of Indifference would have one believe that if only enough
patients with AIDS were examined, it is inevitable that in due time an
AIDS patient is found who has not been infected with HIV. Because HIV
is the virus that actually causes AIDS, this opinion is again manifestly
absurd.
Finally, suppose that under regular circumstances (e.g., room tem-

perature, normal air pressure) you drop a small cube of sugar into a
large, boiling cup of tea. You stir the cup with a spoon. The sugar cube
will dissolve – every single time. By rejecting this notion, the Principle
of Indifference denies the validity of physical laws of nature, while re-
maining silent on the mysterious processes that would produce such a
remarkable exception. It is safe to say that even the staunchest propo-
nents of the Principle of Indifference were uneasy about the implicit
denial of any general law. For instance, De Morgan considered it “at
variance with all our notions”:

“If as before, the first m Xs observed have all been Ys, and we ask what
probability thence, and thence only, arises that the next n Xs examined
shall all be Ys, the answer is that the odds in favour of it are m + 1 to n,
and against it n to m + 1. No induction then, however extensive, can by
itself, afford much probability to a universal conclusion, if the number of
instances to be examined be very great compared with those which have
been examined. If 100 instances have been examined, and 1000 remain, it
is 1000 to 101 against all the thousand being as the hundred.

This result is at variance with all our notions; and yet it is demonstra-
bly as rational as any other result of the theory. The truth is, that our
notions are not wholly formed on what I have called the pure induction.
In this it is supposed that we know no reason to judge, except the mere
mode of occurrence of the induced instances. Accordingly, the proba-
bilities shown by the above rules are merely minima, which may be aug-
mented by other sources of knowledge. For instance, the strong belief,
founded upon the most extensive previous induction, that phenomena
are regulated by uniform laws, makes the first instance of a new case, by
itself, furnish as strong a presumption as many instances would do, inde-
pendently of such belief and reason for it.” (De Morgan 1847/2003, pp.
214-215)

In sum, when the goal is to address a general law or a universal gen-
eralization (e.g., by quantifying the empirical support in its favor) one
cannot use the Laplacean Principle of Indifference, because its point of
departure is to deny that such laws exist at all. “[Jeffreys’s theory] takes as a fact of

human thought that we are willing to
accept a general law on amounts of
observational evidence that are available
in practice, and as this contradicts results
derivable from Laplace’s assessment
of prior probabilities and its natural
extension to quantitative laws, we infer
that Laplace’s assessment does not
represent our state of mind when we
begin an investigation.” (Jeffreys 1937b,
p. 245)

The Finite Version of Pure Induction

Up to now we have considered a uniform distribution on the chance
θ (say EJ’s bacon proclivity θEJ ) which induces a uniform distribution
on the number of pancakes with bacon (e.g., Figure 14.1). The total
number of to-be-observed pancakes is potentially infinite.



a crack in the laplacean edifice 247

Alternatively, we may entertain a finite version of the Principle of
Indifference, as already suggested by De Morgan’s quotation above. For
instance, suppose you are confronted with a stack of four pancakes.
What is the probability that all of them have bacon? Instead of defining
a prior distribution on θ, the finite version of the problem of pure
induction directly assigns each possible composition of the stack an
equal probability. Denoting by Hib,jv the hypothesis that the stack
consists of i bacon pancakes and j vanilla pancakes, we have

p(H4b,0v) = 1/5

p(H3b,1v) = 1/5

p(H2b,2v) = 1/5

p(H1b,3v) = 1/5

p(H0b,4v) = 1/5.

This is the same assumption that was made in the infinite version (cf.
Figure 14.1), but there it was a consequence of assigning a uniform
distribution to θ. Charlie Dunbar Broad (1887–1971).

“Broad used Laplace’s theory of sampling,
which supposes that if we have a pop-
ulation of n members, r of which may
have a property φ, and we do not know
r, the prior probability of any particular
value of r(0 to n) is 1/(n + 1). Broad
showed that on this assessment, if we
take a sample of numberm and find all
of them with φ, the posterior probability
that all n are φ’s is (m + 1)/(n + 1). A
general rule would never acquire a high
probability until nearly the whole of the
class had been sampled. We could never
be reasonably sure that apple trees would
always bear apples (if anything). The re-
sult is preposterous, and started the work
of Wrinch and myself in 1919–1923. Our
point was that giving prior probability
1/(n + 1) to a general law is that for n
large we are already expressing strong
confidence that no general law is true.”
(Jeffreys 1980, p. 452).

We then observe, say, one bacon pancake. This observation is most
likely under H4b,0v, whereas H0b,4v is eliminated from contention. Cru-
cially, this observation also changes the nature of the hypotheses –
because the pancakes are inspected without replacement, the updated
hypotheses about the remaining three pancakes are

p(H3b,0v) = 4/10

p(H2b,1v) = 3/10

p(H1b,2v) = 2/10

p(H0b,3v) = 1/10.

As the stack dwindles and all pancakes inspected so far have come with
bacon, the hypothesis is increasingly plausible that all remaining pan-
cakes will also come with bacon.
For the finite version of pure induction, analyzed according to the

Principle of Indifference, Broad (1918) found that with uniform prior
assignment on the composition of a stack of n pancakes, and after hav-
ing observed an unbroken sequence of s bacon pancakes, the probability
that the remaining n− s = k pancakes will also have bacon equals

s+ 1

n+ 1
.

This result is identical to that of the infinite version, a correspondence
that some found surprising and others found obvious.6 Regardless, the 6 Broad was not the first to derive this

result. An in-depth discussion is provided
by Zabell 1989, p. 286 and Todhunter
1865, pp. 454-457.

finite version highlights the bias inherent in the Principle of Indif-
ference even more than the infinite version. Suppose the number of
instances of interest n is very large – the number of birds in England,



248 bayesian inference from the ground up

the number of electrically neutral atoms in the Milky Way, etc. Suppose
s, the number of instances already observed and found to be confirma-
tory, is also large, but small compared to n. Then, the probability that
all n − s non-observed instances are also confirmatory is close to the
proportion of inspected samples, s/n. Observe half of the electrically
neutral atoms in the Milky Way, and find that all of them have as many
protons as electrons – according to the Principle of Indifference, this
should instill a level of confidence worth no more than an even bet that
the same regularity will hold for the remaining half. “What Laplace’s rule says, in fact, is

that the prior probability of the general
rule is 1/(N + 1), and it amounts to a
denial without evidence that there are
any general laws.” Jeffreys (1950, p. 315)

Similarly, if you find a bag of 100 coins, and the first 50, randomly
drawn without replacement, are either double-heads or double-tails, the
Principle of Indifference holds that your confidence that the remaining
50 coins are of the same type ought to be no higher than 51/101 ≈ .505.
In the words of Jeffreys,

“The last result [i.e., the s+1/n+1 rule for the finite scenario] was given
by Broad (…) and was the first clear recognition, I think, of the need to
modify the uniform assessment if it was to correspond to actual processes
of induction. It was the profound analysis in this paper that led to the
work of Wrinch and myself.† We showed that Broad had, if anything, †Phil. Mag. 42, 1921, 369-90; 45, 1923,

368-74.understated his case, and indicated the kind of changes that were needed
to meet its requirements. The rule of succession had been generally
appealed to as a justification of induction; what Broad showed was that it
was no justification whatever for attaching even a moderate probability to
a general rule if the possible instances of the rule are many times more
numerous than those already investigated. (…) Thus I may have seen 1
in 1,000 of the ‘animals with feathers’ in England; on Laplace’s theory
the probability of the proposition, ‘all animals with feathers have beaks’,
would be about 1/1000. This does not correspond to my state of belief or
anybody else’s. (…)

The fundamental trouble is that the prior probabilities 1/N + 1 at-
tached by the theory to the extreme values are so utterly small that they
amount to saying, without any evidence at all, that it is practically certain
that the population is not homogenous in respect of the property to be
investigated; so nearly certain that no conceivable amount of observa-
tional evidence could appreciably alter this position.” (Jeffreys 1961, pp.
128-129)

This, then, is the key problem: the Principle of Indifference treats all
hypotheses the same, and spreads out its prior mass evenly among them.
But some hypotheses deserve special attention. Principle of Indifference
does not recognize this, thereby preventing general laws from ever
reaching appreciable plausibility. This procedure violates both common
sense and scientific practice.
The solution to this conundrum was devised by a series of papers

by Dorothy Wrinch and Harold Jeffreys, the main message of which is
outlined in the next chapter.
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Exercises

1. Apply the Principle of Indifference to inference of temperature.
What prior distribution is implied? Are the predictions from this
prior distribution reasonable?

2. Consider again Equation 14.1. Derive this equation using the ma-
terial from the appendix of Chapter 9, and then prove that when
k →∞, the product goes to zero.

3. The main text states, “Clearly, every new Alzheimer’s patient found
to have such a fungus infection provides support for the doctors’ hy-
pothesis.” Assume that 1000 Alzheimer’s patients are examined and
all have traces of the fungus. Argue against the doctors’ hypothesis
that the fungus causes Alzheimer’s.

4. In the section ‘The Finite Version of Pure Induction’, the prior proba-
bility for each of five hypotheses is being updated by the observation
that the first pancake from the stack has bacon. Confirm that that the
updated probabilities are correct.

Chapter Summary

The Laplacean Principle of Indifference is not indifferent at all, but
embodies a denial without evidence that all universal generalizations are
false.7 7 It is perhaps ironic that this denial itself

is a universal generalization.

Want to Know More?

3 Broad, C. D. (1918). On the relation between induction and probability
(Part I.). Mind, 27, 389-404.

3 Jeffreys, H. (1961). Theory of Probability (3rd ed.). Oxford: Oxford
University Press. Pages 125-129 offer a good summary of the problem
with the Laplacean Principle of Indifference.

3 Pearson, K. (1892/1937). The Grammar of Science. London: J. M.
Dent & Sons.

3 Perks, W. (1947). Some observations on inverse probability includ-
ing a new indifference rule. Journal of the Institute of Actuaries, 73,
285–334. “At one time, the rule of succession was regarded as a log-
ical justification for induction, for scientific inference. But Pearson’s
result of .5 for the probability that the next (n + 1) trials will be suc-
cesses, after n successes in n trials, is clearly too low and unacceptable
as a representation of the scientific process of experimentation to test
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a proposed scientific law. As Jeffreys says (p. 102), the result does not
correspond with anybody’s way of thinking.” (p. 295)

3 Polya, G. (1954). Mathematics and Plausible Reasoning: Vol. I. Induc-
tion and Analogy in Mathematics. Princeton, NJ: Princeton University
Press. Highly recommended for those who wish to learn more about
the role of induction in mathematics.

3 Zabell, S. L. (1989). The rule of succession. Erkenntnis, 31, 283-321.
Essential reading.

3 Zabell, S. L. (2005). Symmetry and Its Discontents: Essays on the
History of Inductive Probability. Cambridge: Cambridge University
Press. Scholarly, informative, and highly recommended.



15 Wrinch and Jeffreys to the Rescue

The theory we are attempting to construct is one that includes the processes
actually employed by scientific workers; since psychology is by definition the
study of behaviour, this work may perhaps be regarded as a part of psychology.

Wrinch & Jeffreys, 1923

Chapter Goal

Dorothy Maud Wrinch (1894–1976).
In collaboration with Harold Jeffreys,
Dorothy Wrinch was the first to propose
a Bayes factor (Wrinch and Jeffreys
1921). Together with Harold Jeffreys
she also demonstrated the importance
of assigning probability to point null
hypotheses – an important lesson that
many statisticians continue to ignore at
their peril (Etz and Wagenmakers 2017,
Howie 2002).

As discussed in the previous chapter, the main problem with the
Laplacean Principle of Indifference is that it ‘expresses a violent prej-
udice against any general law’. This chapter outlines how Dorothy
Wrinch and Harold Jeffreys overcame this problem by assigning the
general law its own prior probability. Consequently, the Wrinch-
Jeffreys proposal allows data to support the general law.

Jeffreys’s Oven

Ever since its inception, Bayesian inference (originally known as ‘inverse
probability’) had almost always involved uniform priors. When Broad
and others highlighted that such priors had undesirable consequences,
this could be interpreted to mean that there is something undesirable
about Bayesian inference in general. In response, Harold Jeffreys pre-
sented a compelling analogy:

“Bayes and Laplace, having got so far, unfortunately stopped there, and
the weight of their authority seems to have led to the idea that the uni-
form distribution of the prior probability was a final statement for all
problems whatever, and also that it was a necessary part of the principle
of inverse probability.1 There is no more need for the latter idea than there is 1 EWDM: Laplace did not always rec-

ommend the uniform distribution. For
instance, at the end of his 1774 essay
he discusses the chance of observing a
particular number of pips from a regular
die. He argues that there is always some
deviation from 1/6 but that this deviation
is very small.

to say that an oven that has once cooked roast beef can never cook anything but
roast beef.” (Jeffreys 1961, p. 118; emphasis added)

As outlined in the previous chapter, the problem with the uniform
prior distribution on a chance θ is that it expresses a denial without
evidence that a universal generalization is true. Broad (1918) showed
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that for a large but finite set of instances, the probability that all these
instances follow the general law is about equal to the proportion of
instances that have been inspected so far. Suppose the entire zombie
population counts 5,000,000 members. Of these, 500,000 have been
observed, and all are known to be hungry. According to the Principle
of Indifference, the probability that all of the remaining 4,500,000
zombies are also hungry equals only 500,001/5,000,001 ≈ 1/10. This cannot
be right.
But how should the uniform distribution be adjusted to obtain a

result that is in line with common sense and with statistical practice? “Any result we offer must agree with
common-sense and with results that can
be logically or mathematically deduced
from common-sense.” (Wrinch and
Jeffreys 1921, p. 378)

Dorothy Wrinch and Harold Jeffreys (1921,1923) suggested a straight-
forward solution: respect the general law and assign it a separate prior
probability. That is, “If we are ever to attach a high probability to a gen-
eral rule, on any practicable amount of evidence, it is necessary that it
must have a moderate probability to start with.” (Jeffreys 1961, p. 128).
In the zombie example, the universal generalization θ = 1 (‘all zombies
are hungry’) may for instance be deemed equally likely a priori as its
denial (i.e., the Laplacean assumption θ ∼ beta(1, 1)).
Thus, one way to view the Wrinch-Jeffreys setup is as involving two

competing hypotheses: the general law and the denial of the general
law. The general law provides a relatively simple account of the world;
in statistics it is termed the ‘null hypothesis’, H0, and its key parameter
is fixed to a specific value of interest. In terms of concepts discussed
in Chapter 2, there is no epistemic uncertainty for the fixed parameter.
The restriction imposed by H0 is relaxed under the more complicated
hypothesis that allows θ to take on any value within a certain range –
θ is not ‘fixed’, but ‘free’, and the associated epistemic uncertainty is
quantified by a prior distribution. In statistics, the more complicated
hypothesis is termed the ‘alternative hypothesis’, H1.2 With these ri- 2 Because H1 allows θ to take on different

values, it is also known as a ‘composite’
hypothesis.

val hypotheses in play, the learning process can then be formalized as
follows (Wrinch and Jeffreys 1921, p. 387):

p(H1 | data)
p(H0 | data)︸ ︷︷ ︸
Posterior beliefs
about hypotheses

=
p(H1)

p(H0)︸ ︷︷ ︸
Prior beliefs

about hypotheses

× p(data | H1)

p(data | H0)︸ ︷︷ ︸
Bayes factor

. (15.1)

Another way to view the Wrinch-Jeffreys setup is as a prior distribu-
tion on chance θ that consists of a mixture between a Laplacean ‘slab’
where θ ∼ beta(1, 1) and a Wrinchean ‘spike’ at θ = 1 (e.g., Mitchell and
Beauchamp 1988). Figure 15.1 shows the spike-and-slab distribution
where the probability on the spike equals 1/2. The model comparison
view and the spike-and-slab view are mathematically identical, but are
used for different purposes. The model comparison view is preferred
by those who wish to assess the extent to which the data support H0
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or H1 (i.e., the primary interest is on the models and the competition
between them), whereas the spike-and-slab view is preferred by those
who wish to estimate the parameter θ while taking into account the fact
that the general law may be true (i.e., the primary interest is on θ and
the models are a nuisance factor that is to be integrated out using the
law of total probability).
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Figure 15.1: The Wrinch-Jeffreys ‘spike-and-slab’ proposal features probability mass con-
centrated at a single point. Here, the spike is located at θ = 1, the universal generalization;
the height of the spike equals .50 (second y-axis) and represents its prior probability. The
slab corresponds to the Laplacean uniform prior distribution on θ, and the area under the
slab equals .50, the prior probability of the slab component. Figure from the JASP module
Learn Bayes.

Below we provide a concrete example of how the Wrinch-Jeffreys
proposal successfully overcomes the limitations of the Laplacean Prin-
ciple of Indifference that is based on assigning θ a continuous distribu-
tion.3 3 As discussed in Chapter 16, the con-

crete implementation of this setup was
pioneered by J. B. S. Haldane in 1932.

Are all Zombies Hungry?

Kate is a goth girl fascinated by bats, medieval torture instruments,
and the undead. Next week, Kate has to give an in-class presentation
with the preliminary title “Hangry? The Quintessential Zombie PR
Problem”. As part of the assignment, she needs to discuss whether or
not all zombies are hungry. Lacking the relevant biological background
to address this question theoretically, Kate decides to approach the issue
empirically, by visiting zombies and keeping track of how many are
hungry and how many are satiated.
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Kate presents her school project. Figure available at BayesianSpectacles.org under a CC-BY license.

Our example data set features the first 12 zombies that Kate visited.
All of them were undeniably hungry.4 How much evidence is this for 4 Ravenous, even.

the universal generalization that ‘all zombies are hungry’? Clearly this
law gains plausibility with every hungry zombie that is encountered,
whereas the presence of a single satiated zombie refutes the law deci-
sively.5 Let’s make this more concrete by a Bayesian analysis.6 5 In the words of Pólya (1954a, p. 6), the

law would be “irrevocably exploded”.
6More mundane scenarios that allow a
similar analysis include ‘all ravens are
black’, ‘all electrically neutral electrons
have the same numbers of positrons
and electrons’, and ‘all positive even
integers ≥ 4 can be expressed as the sum
of two odd primes’ (i.e., the Goldbach
conjecture). See also Berger and Jefferys
(1992).

Data Analysis

Kate wants to know the extent to which the data support the propo-
sition that “all zombies are hungry”. Statistically, this proposition
corresponds to a null hypothesis that assigns a fixed value of 1 to the
binomial chance θ – the probability that any given zombie is hungry. In
other words, H0 : θ = 1. The alternative hypothesis H1 relaxes the con-
straint on θ and allows it to take on values lower than 1. For historical
and educational purposes, we assume a uniform prior distribution for
θ under H1, that is, H1 : θ ∼ beta(1, 1), such that every value of θ is
deemed equally likely a priori.

BayesianSpectacles.org
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We also assume that, a priori, both hypotheses are equally plausible,
such that p(H0) = p(H1) = 1/2. The joint prior on θ across the two hy-
potheses therefore corresponds to the situation depicted in Figure 15.1.
In contrast to the setup that is entertained by Kate, a Laplacean

analysis would focus solely on H1 and ignore H0. The result of such
a Laplacean analysis is shown in Figure 15.2. After having seen 12 hun-
gry zombies, the beta(1,1) prior distribution on θ has been updated to a
beta(13,1) posterior distribution. This posterior distribution is concen-
trated on high values for θ. Laplace’s Rule of Succession states that the
probability that the next zombie is hungry equals 13/14 ≈ .93.
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Figure 15.2: A Laplacean analysis of the zombie data. A beta(1, 1) prior distribution is
updated to a beta(13, 1) posterior distribution after having observed that all of 12 zombies
are hungry. Figure from the JASP module Learn Bayes.

This Laplacean analysis, however, is unable to address Kate’s key
question, which is ‘are all zombies hungry?’. As explained in the previ-
ous chapter, the Laplacean analysis will answer this question with ‘no,
absolutely not’ irrespective of how many hungry zombies have already
been observed.7 Kate could eye-ball the posterior distribution for θ that 7 This assumes that the number of

observed zombies is finite, and the
zombie population is infinite.

was obtained under the implicit Laplacean assumption that ‘not all zom-
bies are hungry’ – but this is not something that Kate wants to assume;
it is something that she wants to test.
In order to test H0 : θ = 1 versus H1 : θ ∼ beta(1, 1) we need to

consider the predictive adequacy of the two hypotheses for the data at
hand. Kate observed s = 12 hungry zombies out of a total of n = 12.
Given that 12 zombies are observed, the null hypothesis can make no
other prediction. That is, under H0 the probability of observing s =

12 equals 1 – no other data are possible. In other words, H0 makes a
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highly specific and daring prediction. The prediction of H0 for the data
obtained is shown by the highlighted bar in Figure 15.3.
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Figure 15.3: The universal generalization H0 : θ = 1, ‘all zombies are hungry’, makes
only a single, precise prediction for Kate’s data set of 12 zombies. Figure from the JASP
module Learn Bayes.

The situation is dramatically different for the alternative hypothesis
H1. This hypothesis states that every value of θ is equally likely; the
previous chapter showed that, predictively, this means every possible
value for s out of n = 12 is deemed equally likely to occur.8 There are 8One of the exercises for this chapter is

to prove this result.13 values for s (the count starts at s = 0 hungry zombies), and therefore
the alternative hypothesis assigns probability 1/13 to the observed data
s = 12. The predictions of H1 are shown in Figure 15.4.
In contrast to H0, the alternative hypothesis H1 has hedged its bets,

dividing its predictive resources evenly across all possible 13 outcomes. “Thus the more precise the inferences
given by a law are, the more its probabil-
ity is increased by a verification, even if
the contradictory law also gives a predic-
tion consistent with the observation. (…)
We may say that to make predictions with
great accuracy increases the probability
that they will be found wrong, but in
compensation they tell us much more if
they are found right.” (Jeffreys 1973, p.
39)

In Bayesian inference, such statistical cowardice comes at a price. Under
the daring H0 : θ = 1, the probability of the observed data (i.e., s = 12)
equals 1; under the cowardly H1 : θ ∼ beta(1, 1), the probability of
the observed data equals only 1/13. The ratio of these predictions equals
the Bayes factor shown in Equation 15.1. Specifically, this Bayes factor
equals

BF10 =
p(s = 12 | n = 12,H1)

p(s = 12 | n = 12,H0)
=

1/13

1
= 1/13.

This is the Bayes factor in favor of H1 over H0; for ease of interpre-
tation, it is customary to switch numerator and denominator when-
ever the Bayes factor is lower than 1. Here this means that instead of
BF10 = 1/13, we prefer the equivalent expression BF01 = 13.9 We can 9NB. The first subscript to the Bayes fac-

tor indicates the model in the numerator;
the second subscript indicates the model
in the denominator.

interpret this Bayes factor in multiple ways:
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Figure 15.4: The Laplacean hypothesis H1 : θ = beta(1, 1), ‘all values for the chance θ of
observing a zombie who is hungry are equally likely’ predicts that, for Kate’s data set of 12
zombies, all possible numbers of hungry zombies are equally likely to occur. Figure from
the JASP module Learn Bayes.

◦ The observed data are 13 times more likely under H0 than under H1.

◦ H0 predicted the observed data 13 times better than H1.

◦ The data have increased the odds in favor of H0 over H1 by a factor
of 13.

◦ If the prior probabilities for the rival hypotheses are equal (i.e.,
p(H0) = p(H1) = 1/2) then the posterior probability for H0 equals
13/14 ≈ .93.

A common pitfall is to interpret the Bayes factors directly as a posterior
odds: ‘If the Bayes factor is BF01 = x, this means that H0 is x times
more likely than H1’ (cf. Chapter 3, section ‘Example: The Inevitable
Base Rate Fallacy’). As Equation 15.1 shows, such an interpretation
is warranted only when the prior odds are 1, that is, when the prior
probability for each of the two rival models equals 1/2.10 10 See also the blog post “The single most

prevalent misinterpretation of Bayes’
rule” on BayesianSpectacles.org.

It is worth emphasizing that the result, BF01 = 13, represents ev-
idence in favor of the null hypothesis H0.11 As demonstrated by the 11No other statistical approach that we

are aware of is able to quantify evidence
for a point-null hypothesis, at least not
for a reasonable definition of evidence
(i.e., something that ought to affect an
opinion).

zombie example, this happens because H0 makes precise predictions
that are then validated by the data; the forecasts of H1 are less impres-
sive because it assigns equal probability to all possible outcomes.12

12Note that observing a single satiated
zombie results in BF01 = 0 or BF10 =

∞, that is, infinite evidence against H0.
Daring predictions are rewarded when
they come true, but heavily punished
where they fall flat.

The underlying principle, as with all of Bayesian inference, is that hy-
potheses that predict the data relatively well enjoy a boost in credibility,

BayesianSpectacles.org
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whereas hypotheses that predict the data relatively poorly suffer a de-
cline (Wagenmakers et al. 2016a).
The updated results may also be presented as a posterior spike-and-

slab distribution, as shown in Figure 15.5. The posterior distribution
under the slab has the same shape as the beta(13,1) posterior from Fig-
ure 15.2, but the area under the curve does not equal 1. Instead, the
area equals 1/14, the posterior probability for H1. The remaining poste-
rior probability, 13/14 ≈ .93, goes to H0 and is represented in Figure 15.2
by the height of the posterior spike at θ = 1.

0.0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

Population proportion q

D
en

si
ty

P
robability

Slab

Spike

Figure 15.5: The Wrinch-Jeffreys ‘spike-and-slab’ posterior distribution after having
observed 12 hungry zombies. The spike at θ = 1 has height 13/14 ≈ .93 (second y-
axis), which is the posterior probability for H0. The area under the posterior slab equals
1/14 ≈ .07, the posterior probability for H1. Figure from the JASP module Learn Bayes.

General Solution

At the end of the day, the inclusion of the spike at θ = 1 has allowed
Kate to answer her original question and quantify the evidence that the
observed data provide for the universal generalization that all zombies
are hungry. Specifically, after comparing the predictive performance of
H0 : θ = 1 versus that of H1 : θ ∼ beta(1, 1) Kate concludes that the
occurrence of 12 hungry zombies is 13 times more likely under H0 than
it is under H1. Assuming H0 and H1 to be equally likely a priori, this
means the posterior probability for H0 equals 13/14 ≈ .93.
Kate’s result for 12 zombies can be easily generalized to an observed

unbroken hungry zombie sequence of any length. Figure 15.4 shows
that a uniform prior on θ induces a uniform prior on the predicted
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number of hungry zombies. Hence, under H1 : θ ∼ beta(1, 1) the
probability that all n zombies are hungry equals 1/(n+1). Under H0 : θ =

1, the probability of an unbroken sequence of hungry zombies equals
1, for any length n. Consequently, the Bayes factor in favor of H0 over
H1 equals BF01 = n + 1. Under equal prior model probabilities, the
posterior probability for H0 equals (n+1)/(n+2) (Jeffreys 1973, p. 55).13 13 This equation should look eerily

familiar. The next subsection goes into
detail.

Thus, every confirmatory instance offers support for the general law;
specifically, it increases the Bayes factor by 1. “This is in accordance
with the principle that a high probability can be attached to a general
law by a moderate amount of evidence.” (Jeffreys 1973, p. 55).
To drive home the contrast to the Laplacean analysis using the Prin-

ciple of Indifference (cf. Figure 15.2), assume that, from an infinite
zombie population, 100,000 participants are sampled, all of whom in-
dicate to be hungry. Based on these data, what is the probability that
all zombies are hungry? The Laplacean answer is that this probabil-
ity is zero. On the other hand, the Wrinch-Jeffreys answer is that this
probability is 100001/100002 = 0.99999.

Two Sequential Analyses

As we have already seen many times throughout this book, it does not
matter whether the data are analyzed simultaneously or sequentially:
the end result is identical. We now explore two ways in which the data
from Kate may be analyzed sequentially: one zombie at a time, or in
two batches of six zombies each.
First, assume that H1 : θ ∼ beta(α, β), and we desire the probability

that the very next zombie is hungry. By the beta prediction rule (Chap-
ter 9) this equals α/(α+β). For a single hungry zombie, the Bayes factor
in favor of H0 therefore equals

BF01(s = 1) =
1

α/(α+β)
=
α+ β

α
.

For α = β = 1, this yields BF01(s = 1) = 2, confirming the n + 1 rule
outlined above.
The probability that the second zombie is hungry, given that the first

zombie is hungry, is (α+1)/(α+1+β), and the corresponding Bayes factor
equals (α+1+β)/(α+1). For α = β = 1, this yields 3/2; multiplying these
two probabilities yields 2/1× 3/2 = 3, again confirming the n+ 1 rule.
When we go through the entire sequence of 12 hungry zombies this

way, we obtain:

BF01(s = 12) =
2

1
· 3
2
· 4
3
· 5
4
· 6
5
· 7
6
· 8
7
· 9
8
· 10
9
· 11
10
· 12
11
· 13
12
.

As the numerator of the nth term equals the denominator of the n+1th
term, this series telescopes and the end result is 13, again confirming
the n+ 1 rule.14 14 This sequential analysis provides

another way to prove the n+ 1 rule.
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Second, assume that H1 : θ ∼ beta(1, 1) and analyze the 12 zombies
in two successive bathes of size six. We know that the first batch gives
BF01 = 7, as dictated by the n + 1 rule. What is the Bayes factor for
the second batch, given that we have already observed the first batch?
To answer this question easily we can use the law of conditional prob-
ability to combine evidence (cf. the section ‘Combining the Evidence’
in Chapter 13). That is, we know that the overall Bayes factor for all 12
zombies equals the Bayes factor for the first batch, multiplied by the
Bayes factor for the second batch (after having properly updated the
parameter priors based on the information from the first batch), that
is, BF01(s1 + s2 = 12) = BF01(s1 = 6) × BF01(s2 = 6 | s1 = 6).
We know that BF01(s1 + s2 = 12) = 13 and that BF01(s1 = 6) = 7,
which means that BF01(s2 = 6 | s1 = 6) = 13/7 ≈ 1.86. More gen-
erally, for the first batch, BF01(s1) = s1 + 1, and for the total data set
BF01(s1+s2) = s1+s2+1; consequently, the Bayes factor for the second
batch, given the first, equals BF01(s2 | s1) = (s1+s2+1)/(s1+1).15 15 See Chapter 26 for a more extensive

discussion on this topic.This result can also be obtained by applying Laplace’s Rule of Suc-
cession for Series (cf. Chapter 9): the probability of an unbroken
sequence of k successes, given that an unbroken sequence of s suc-
cesses has already been observed, equals (s+1)/(s+k+1). Because the
probability of the data equals 1 under H0 : θ = 1, the Bayes factor is
BF01 = (s+k+1)/(s+1), confirming the result obtained by applying the law
of conditional probability.

A Curious Coincidence

At this point, the attentive reader may have noticed something peculiar.
When we were discussing the Laplacean ‘slab-only’ analysis of Kate’s
zombie data (cf. Figure 15.2), we mentioned that according to the Rule
of Succession, the probability that the next zombie is hungry equals
(n+1)/(n+2) = 13/14 ≈ .93. A little later, we applied the ‘spike-and-slab’
Wrinch-Jeffreys approach and concluded that, when p(H0) = p(H1) =
1/2, the posterior probability for the general law equals (n+1)/(n+2) =
13/14 ≈ .93. This is the probability that all zombies from an infinite
zombie population are hungry. The key probability from the ‘spike-and-
slab’ Wrinch-Jeffreys approach equals exactly the key probability from
the ‘slab-only’ Laplace approach, even though these probabilities are
based on different assumptions and address a very different question.
Intuition may suggest that this correspondence is maintained for any

beta(α, β) prior on θ under H1, but this is not true. Miraculously, if
p(H0) = p(H1) = 1/2 the correspondence holds only when α = β = 1,
the most popular default prior specification. To realize that the identity
breaks down for values of α and β other than 1, consider H1 : θ ∼
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beta(α, α), a prior distribution symmetric around θ = 1/2. Assume we
observe a single success.
First we consider the setup where a general law (here θ = 1) is

assigned separate prior mass, and we answer the question “what is
the probability that all future observations will be successes?”. Under
H1, the symmetric beta(α, α) prior does not encode a preference for
successes or failures, and hence the prior predictive probability that
the first trial is a success equals 1/2. This also follows from the beta
prediction rule (cf. Chapter 9): p(s = 1 | θ) = α/(α+α) = 1/2. Under
the general law H0 : θ = 1 the probability that the first trial is a success
equals 1. Consequently, BF01 = 2 for any value of α that defines the
symmetric prior beta(α, α) distribution under H1. Assuming both
hypotheses to be equally likely a priori (i.e., p(H0) = p(H1) = 1/2 ), the
posterior probability for H0, that is, the posterior probability that all
future trials will be successes, equals 2/3.
Next we consider the setup where the general law (here θ = 1) is not

assigned separate prior mass, and we answer the question “what is the
probability that the next observation will also be a success?” The obser-
vation of a single success updates the beta(α, α) prior distribution to a
beta(α+1, α) posterior distribution. The beta prediction rule then gives
the probability that the next trial is also a success as (α+1)/(2α+1). This
equals 2/3, the probability that all future trials will be successes, only
when α = 1. A more in-depth discussion on the differences between
the Laplacean answer and the one by Wrinch and Jeffreys is presented
in the appendix to this chapter.

Exercises

1. Let θ denote the chance that any one zombie is hungry. You enter-
tain two hypotheses, H0 : θ = 1 (i.e., all zombies are hungry), and
H1 : θ ∼ beta(1, 1) (i.e., every value for the chance θ is equally likely
a priori). Let p(H0) = p(H1) = 1/2, that is, both hypotheses are
equally likely a priori. You observe four zombies, and all of them are
hungry. What is the probability that the fifth one will be hungry too?

2. Figure 15.4 shows that under H1 : θ ∼ beta(1, 1), all possible number
of hungry zombies are equally likely. Prove this mathematically (hint:
simplify the expression for the beta-binomial distribution).

3. Explore the robustness of Kate’s Bayes factor by examining the re-
sults for several alternative prior beta distributions for θ under H1.
Explain why and how the shape of the prior beta distribution influ-
ences the Bayes factor.

4. Repeat the previous exercise but increase the number of hungry
zombies. Do the data overwhelm the prior? Why or why not?
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Recalling the Trio of Priors

Because it is so important, we reiterate the distinction between the
three main uses for the word ‘prior’ in Bayesian inference outlined
earlier in Chapter 12. First, prior model probabilities indicate the rel-
ative plausibility for each member of a set of discrete models before
observing the data. For instance, in the zombie example we assumed
that p(H0) = p(H1) = 1/2. Second, prior parameter distributions
indicate the relative plausibility of a set of parameter values before
observing the data. Usually the set of parameter values is continuous.
For instance, in the zombie example we assumed that under H1, the
chance θ was assigned a uniform prior distribution, θ ∼ beta(1, 1).
When the parameter can only take on a finite set of discrete values,
the difference between prior model probabilities and prior parame-
ter distributions becomes blurred (e.g., Gronau and Wagenmakers
2019). Third, prior predictive distributions refer to the predictions
for to-be-observed data that are generated from a model as defined
by its likelihood and its prior parameter distributions. For instance,
in the zombie example the uniform prior distribution on θ induced a
uniform prior predictive distribution for the number of hungry zom-
bies (cf. Figure 15.4). Relatedly, the word ‘prior’ also occurs in the
term prior predictive likelihood, which refers to the mass that the
prior predictive distribution assigns to the data that actually occurred.
For instance, in the zombie example the prior predictive under H1 is
indicated by the highlighted bar in Figure 15.4.
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5. Return to the example of the 10 possible bakers discussed in the
introduction of Chapter 8. Can you translate the slab-only approach
and the spike-and-slab approach to the discrete case? What insights
does this bring?

6. To solidify your understanding, dissect and summarize the fragment
below in your own words:

“Philosophers often argue that induction has so often failed in the past
that Laplace’s estimate of the probability of a general law is too high,
whereas the main point of the present work is that scientific progress
demands that it is far too low. Philosophers, for instance, appeal to
exceptions found to such laws as ‘all swans are white’ and ‘all crows
are black’. Now if Laplace’s rule is adopted and we have a pure sample
of m members, there is a probability 1

2
that the next m + 1 will have

the property. If this is applied to many different inductions, these
probabilities should be nearly independent as any we know of, and
Bernoulli’s theorem should hold; therefore in about half of the cases
where an induction has been based on a pure sample, an exception
should have been found when the size of the sample was slightly
more than doubled. This seems to be glaringly false. The original
propounder of ‘all swans are white’ presumably based it on a sample
of hundreds or thousands; but the verifications before the Australian
black swan was discovered must have run into millions. According
to the modification (…) the number of the fresh sample before the
probability that it contains no exception sinks to 1

2
is of order m2, and

this is much more in accordance with experience.” (Jeffreys 1961, p.
132)

Chapter Summary

In order for data to be able to support a universal generalization, the
associated general law needs to be assigned its own prior probability. By
doing so, the Laplacean framework of parameter estimation –which
reflects a denial without evidence that any general law could be true– is
transformed to a framework of model comparison or hypothesis testing,
where the null hypothesis H0 represents the general law that fixes a key
parameter to a specific value of interest, and the alternative hypothesis
H1 relaxes the restriction and allows the key parameter to take on other
values. The fact that H0 is assigned definite prior mass accords with the
principle of parsimony, which is the topic of Chapter18.

Want to Know More?

3 A comprehensive summary of the academic work of Harold Jeffreys is
available online at http://www.economics.soton.ac.uk/staff/
aldrich/jeffreysweb.htm, courtesy of John Aldrich. “Jeffreys was
a noted physical scientist who re-established the statistical theory of

http://www.economics.soton.ac.uk/staff/aldrich/jeffreysweb.htm
http://www.economics.soton.ac.uk/staff/aldrich/jeffreysweb.htm
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his time on Bayesian foundations. This page is a guide to literature
and websites which may be useful to anyone interested in Jeffreys’s
statistical work and its background. The emphasis is on Jeffreys’s own
writings and on the older literature.”

3 Aldrich, J. (2005). The statistical education of Harold Jeffreys. Inter-
national Statistical Review, 73, 289-307.

3 Etz, A., & Wagenmakers, E.-J. (2017). J. B. S. Haldane’s contribution
to the Bayes factor hypothesis test. Statistical Science, 32, 313-329.

3 Howie, D. (2002). Interpreting Probability: Controversies and De-
velopments in the Early Twentieth Century. Cambridge: Cambridge
University Press. An in-depth overview of the debate between the
Bayesian Harold Jeffreys and the frequentist Ronald Fisher. Some
background knowledge of statistics is required to understand the
finer details. Fragment, related to Figure 15.6: “The collaboration
with Wrinch was uncharacteristic: Jeffreys was reserved by nature,
and awkward in company, and had chosen research fields and meth-
ods that allowed him to work almost entirely alone – typically with
his typewriter on his knees, his hand-cranked Marchant calculating
machine on the floor in front, and the room ankle-deep in research
papers and works-in-progress.” (Howie 2002, p. 110)

3 Jeffreys, H. (1936). The problem of inference. Mind, 45, 324–333.

3 Miyake, T. (2017). Scientific Inference and the Earth’s Interior: Dorothy
Wrinch and Harold Jeffreys at Cambridge. In Stadler, F. (Ed.), Inte-
grated History and Philosophy of Science, Vol. 20, pp. 81-91. Cam-
bridge: Springer.

3 Senechal, M. (2012). I Died for Beauty: Dorothy Wrinch and the
Cultures of Science. New York: Oxford University Press.

3 Smith?, R. (2014). Mathematical Modelling of Zombies. Canada: Uni-
versity of Ottawa Press. Convinced that many –if not all– zombies
have a ravenous appetite? Worried that an apocalypse will quickly re-
duce you to zombie döner kebab? This book might help you survive!
The question mark that follows the author’s name is not a typo.

3 van den Bergh, D., Haaf, J. M., Ly, A., Rouder, J. N., & Wagen-
makers, E.-J. (2021). A cautionary note on estimating effect size.
Advances in Methods and Practices in Psychological Science, 4, 1–8.
Advocates the spike-and-slab model for estimating effect size.
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Appendix: A Dialogue on the Curious Coincidence

This appendix continues the discussion from the subsection “A Curious
Coincidence” and focuses on the question whether or not the Laplacean
Rule of Succession is fundamentally different from the Wrinch-Jeffreys
‘Rule of Pure Induction’.

EJ: “Dora, another way to see that the Laplacean answer differs from
the one by Wrinch and Jeffreys is to consider the relative importance
of the beta prior distribution and the data. Consider the setup where
H1 : θ ∼ beta(α, 1). The Rule of Succession states that the probabil-
ity that the next trial is a success, based on a previous unbroken string
of s successes, equals (α+s)/(α+s+1). This shows that there is a perfect
trade-off relationship between α and s: all that matters in the Laplacean
formulation is α + s. For the posterior distribution it does not matter
whether, say, α = 1 and s = 100, or α = 100 and s = 1. From a pos-
terior point of view, the data have been combined with the information
in the prior; this updating process occurred in the past and, as far as the
prediction for the next observation is concerned, it is no longer relevant.
This is arguably different from the approach where we wish to assess

the posterior probability in favor of the general law H0 : θ = 1 based on
the previous observation of s successes. Assuming that H0 and H1 are
equally likely a priori, this posterior probability is identical to the Bayes
factor – the degree to which H0 outpredicted H1 for the observed data
s. In order to evaluate the relative predictive adequacy of H0 versus H1,
we need to consider the prior distribution under H1.
For instance, consider the scenario where α = 1 and s = 100. The

means that the alternative hypothesis hedges its bets; it states that “all
values of θ are equally likely a priori”, which means that in the prior
predictive distribution, all numbers of successes from 0 to 100 are
equally likely. In contrast, H0 puts all its predictive mass on s = 100

– it makes the precise and highly falsifiable prediction that all trials will
be successes. The precise prediction comes true and, with a substantial
number of s = 100 confirmatory instances, BF01 = s + 1 = 101, with a
corresponding posterior probability of 101/102 ≈ .99. In the alternative
scenario we have α = 100 and s = 1. The situation here is dramatically
different. The alternative hypothesis now states that “high values of θ
are much more plausible than low values of θ”. The posterior mean is
θ = .99, and the 95% HPD interval ranges from .97 to 1. In other words,
the alternative hypothesis predicts that a very high proportion of future
trials will be successes. This prediction is relatively similar to that of H0,
which holds that all future trials will be successes. For discriminating
such similar predictions we need a lot of data. But, to make matters
worse, we do not have a lot of data – we have only a single confirmatory
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observation, s = 1. The combination of these two unfortunate factors
(i.e., similar model predictions and sparse data) means that the Bayes
factor will be close to 1. Specifically, H1 assigns the observed data s = 1

a prior predictive probability of .99 (i.e., 100/101), and H0 assigns the
observed data s = 1 a prior predictive probability of 1. This results in a
Bayes factor BF01 = 101/100 ≈ 1.01, a smidgen of evidence for H0, which
results in a posterior probability of 1.01/2.01 ≈ .502 that all future trials
will be successes. To underscore the difficulty of discriminating among
hypotheses that make highly similar predictions, we may entertain the
possibility of observing a larger number of s = 100 confirmatory in-
stances. This provides more evidence in favor of H0 : θ = 1 over
H1 : θ ∼ beta(100, 1), but at BF01 = 2, the degree of support is weak at
best.
In sum, the question “Given an unbroken string of successes ob-

served in the past, what is the probability that the next trial will also
be a success, given that no special attention is given to any particular
value of θ?” is radically different from the question “Given an unbro-
ken string of successes observed in the past, what is the probability that
all future trials will also be successes, given that we deem it plausible,
a priori, that a general law (e.g., θ = 1) is true?” For the former ques-
tion, the answer depends only on the shape of the posterior distribution,
and the degree to which it is determined by prior knowledge or ob-
served data is irrelevant. For the latter question, the answer depends
on predictive performance for the past data, and to assess this predictive
performance we need to separate what is used to make the prediction
(i.e., the prior distribution) from what is predicted (i.e., the data). It can-
not come as a surprise, therefore, that such different questions generally
yield highly different answers – what is surprising is the fact that they
yield the same answer for the most common scenario (i.e., α = β = 1,
p(H0) = p(H1) = 1/2): a curious mathematical coincidence.”

Dora: Thanks for mansplaining this to me in so much detail, EJ. How-
ever, I believe you may be mistaken when you argue that the Wrinch-
Jeffreys setup depends on predictive performance whereas the Laplacean
setup does not. This reminds me of the common critique that the prior
distribution under H1 affects the Bayes factor much more than it affects
the posterior distribution. Let me offer the following observations:

◦ Consider the spike-and-slab representation from Figures 15.1 and
15.5. As always in Bayesian learning, values of θ that predicted the
observed data better than average have gained plausibility, whereas
values of θ that predicted worse than average have lost plausibility.
This predictive updating principle holds irrespective of whether or
not the distribution consists (a) only of spikes (as in the pancake
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examples from Chapters 7 and 8), (b) of a mixture of spike and a
slab, or (c) only of a slab.

◦ We need to discriminate sharply between evidence and posterior be-
lief. Evidence is the extent to which the data change our opinion:
therefore it represents the difference between prior and posterior
conviction. Hence, it is natural, desirable, and inevitable that ev-
idence depends on our prior beliefs. At the same time, however,
the accumulation of evidence will gradually come to dominate our
prior beliefs, in the sense that divergent prior beliefs will converge to
highly similar posterior beliefs: “the data overwhelm the prior” (e.g.,
Wrinch and Jeffreys 1919).

◦ The data overwhelm the prior regardless of whether the prior dis-
tribution includes spikes. Specifically, for spikes one may state that
“The Bayes factor overwhelms the prior odds”.

◦ You mention that, when it comes to determining the shape of the
posterior distribution under H1, all that matters is α + s, whereas for
the evidence it is important to treat these separately. As mentioned
above, however, evidence and posterior beliefs are different concepts
– it is only for the quantification of evidence, not posterior belief, that
it is important to treat α and s separately. Also, the shape of the
spike-and-slab prior includes the height of the spike (i.e., p(H0)) and
the area of the slab (i.e., p(H1) = 1 − p(H0)). The posterior height
of the spike in the spike-and-slab model is based on a combination
of the prior height and the evidence from the data; for the spike-and-
slab posterior it is irrelevant whether the spike is high because it had
relatively large prior probability or relatively large support from the
data, just as it is irrelevant for the shape of the slab whether α is high
and s is low or vice versa.

For concreteness, consider the task of discriminating between a
bent coin with unknown chance θ (i.e., p(H1 : θ ∼ beta(1, 1)) and a
magician’s coin (i.e., a coin constructed to be double-heads or double-
tails, with the two options equally likely: H0 : p(θ = 0) = p(θ =

1) = 1/2). Suppose the coin is tossed n times, and all tosses land heads.
The Bayes factor BF01 equals 1

2 (n + 1): as in the zombie example, the
probability of the data under H1 equals 1/(n+1), but, unlike the zombie
example, the probability of the data under H0 equals 1/2 – this is the
probability for the very first toss, after which the ‘magician’s coin’ is
updated and uniquely identified as ‘double-heads’, with probability 1 for
the remaining sequence of tosses. Thus, adding the option of ‘double-
tails’ (i.e., θ = 0) in the magician’s coin hypothesis halves the Bayes
factor, even though that option can be discarded after the very first toss.
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Data and evidence cause initially divergent opinions to converge. As a loose physical anal-
ogy, consider two metal balls positioned on a smooth table. At time zero, the balls may
occupy a very different position. When a sufficiently strong magnet is placed anywhere
on the table, however, the magnetic pull draws the balls to the same location. Here the
initial position represents the prior opinion, the magnetic pull represents the information
coming from the data, and the position of the magnet represent the point of posterior
convergence. The data overwhelm the prior, but at the same time it is true that for each
ball the distance travelled (i.e., the evidence) depends on its initial position relative to the
position of the magnet. Figure available at BayesianSpectacles.org under a CC-BY
license.

This example shows that the height of the spike matters – stipulating
a second spike at θ = 0 halved the Bayes factor. When the impact of the
prior distribution on hypothesis testing is concerned, it may therefore
be reasonable to employ a spike-and-slab representation and discuss the
impact of the prior distribution under H1 as well as the impact of the
prior probability for H0.

BayesianSpectacles.org
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Figure 15.6: Sir Harold Jeffreys (1891-1989) with laptop typewriter in New Court, St John’s College, Cambridge, 1928. (Photographer
unknown, included by permission of the Master and Fellows of St John’s College, Cambridge). See also Swirles (1992). The top right frame
shows the sculpture ‘Hercules and Lichas’ by Antonio Canova (1795). In the frame to the left of the door, the man with the hat is probably
the Austrian geologist Edward Suess; the man in the leftmost frame could be the Scottish geologist Charles Lyell (both suggested to us by
Benjamin Deonovic).





16 Haldane’s Rule of Succession

[with Sandy Zabell and Quentin Gronau]

The content of this chapter is based on
Wagenmakers et al. (2024).The essential point is that when we consider a general law we are supposing

that it may possibly be true, and we express this by concentrating a positive
(non-zero) fraction of the initial probability in it. Before my work on
significance tests, the point had been made by J. B. S. Haldane (1932).

Jeffreys, 1977

Chapter Goal

This chapter highlights the forgotten work on Bayesian inference by
the famous geneticist and polymath J. B. S. Haldane. In 1932, Haldane
was the first to calculate a Bayes factor hypothesis test; subsequently,
Haldane also derived the probability that an unbroken string of s = n

successes will be followed by another success. Recall that Laplace’s Rule
of Succession states that this probability is s+1/s+2; in Haldane’s setup,
where the general law is given a prior probability of 1/2, this probability
instead equals [s+1/s+2] × [s+3/s+2]. This elegant adjustment of the
Laplacean analysis we term Haldane’s Rule of Succession.

J. B. S. Haldane (right; 1892-1964) in
the Black Watch. “At the beginning of
the War our Idol [Haldane – EWDM]
received a commission in the 3rd Battal-
ion of the Black Watch, served in France
and in Mesopotamia with the 1st and
2nd Battalions of that Regiment, and was
twice wounded. Whilst he was in France,
he was one of the first persons on whom
they experimented with Chlorine Gas in
the funny crude old gas-mask devices,
a piece of unshowy and cold-blooded
gallantry which commands everyone’s
admiration.” (from the Oxford student
magazine Isis, as reported on https://
skipperswar.com/tag/jbs-haldane/).
Photo taken circa 1915, public domain.

A Muddled Narrative

Up to this point in the book, the narrative may seem relatively simple
and straightforward. Let’s take a moment to recapitulate. Chapter 9
introduced Laplace’s Rule of Succession: when all s = n instances
observed so far are of a particular type, the probability that the next
instance will also be of that type equals s+1/s+2. For instance, having
observed that each member of a group of 12 zombies is hungry, the
Laplacean probability that the next, 13th zombie will also be hungry
equals 13/14 ≈ .93. As s grows large, this probability approaches 1,
which seems perfectly reasonable. However, Laplace’s Rule of Succes-
sion implicitly assumes that the general law is false. The Laplacean

https://skipperswar.com/tag/jbs-haldane/
https://skipperswar.com/tag/jbs-haldane/
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prediction follows from assigning the latent proportion θ a continuous
uniform distribution from 0 to 1, that is, H1 : θ ∼ beta(1, 1), and
this does not acknowledge that θ = 1 (i.e., the value stipulated by the
general law) is worthy of special attention. It becomes clear that this is
problematic when we use the Laplacean setup to derive the probability
that the next k instances will all be confirmatory:

p(k | s = n) =
s+ 1

s+ k + 1
. (16.1)

As k increases, this probability goes to zero. In other words, no matter
how long the unbroken series s = n of hungry zombies you already
encountered may be, you should remain fully certain that an exception
is bound to occur sooner or later. This accords neither with intuition
nor experience. The impression that something is amiss is reinforced
by considering the scenario where k = s + 1. For instance, suppose
that, after observing a group of s = 12 hungry zombies, you urgently
wish to know whether each member of an approaching group of k = 13

zombies is hungry. An application of Equation 16.1 yields a probability
of only 1/2. In general, when the observed number of confirmatory
instances equals s, and the predicted sequence is k = s + 1 long, the
probability that all k members are of the same type is 1/2. Therefore
Laplace’s Rule of Succession expresses a “violent prejudice” against the
general law that all instances are of a particular type:

“This shows that the analysis of sampling procedure given so far is quite
inadequate to account for the high probability that we often attach to a
general law.” (Jeffreys 1973, p. 53; see also Jeffreys 1961, pp. 127-128).

Many scholars –arguably including Laplace himself!– recognized
early on that Laplace’s rule did not apply to the scenario where back-
ground knowledge suggests the general law could be true (e.g., Zabell
1989, and references therein). In order to explain the glaring discrep-
ancy between Laplace’s rule and common sense, Wrinch and Jeffreys
suggested the general law needed to be taken seriously and perhaps be
given separate prior mass (e.g., Wrinch and Jeffreys 1921; Jeffreys 1931,
pp. 29-31). So far so good.
At this stage, however, the narrative becomes decidedly muddled. It

is tempting to conclude that, after suggesting in the early 1920s that a
general law deserves separate prior mass, Wrinch and Jeffreys followed
up with a concrete analysis such as the one outlined in the previous
chapter. This is the standard interpretation, and –in the interest of
simplicity– it is also the interpretation that we have adopted throughout
this book. This interpretation is even more tempting because such a
concrete analysis would later form a cornerstone of his work in statistics
(e.g., Jeffreys 1939). However, this conclusion appears to be incorrect,
or at least incomplete. Although Wrinch and Jeffreys provided the
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conceptual basis for a concrete analysis, they never actually carried it out.
And when Jeffreys did carry out the analysis, well over a decade after
his work with Wrinch, he had already been scooped – by the famous
geneticist John Burdon Sanderson ‘JBS’ or ‘Jack’ Haldane (1892-1964).

Haldane’s Remarkable Anticipation of Harold Jeffreys

“If I am not forgotten completely a hundred years hence, I shouldn’t
wonder if I should be remembered for something which I have not
mentioned today. It might be something like, let us say, a letter to
The Observatory entitled, ‘Is space-time simply connected?’ I am
not going to try to explain to you what that means. It is a rather
abstract geometrical idea. It might be the clue to new approaches to
cosmology, though I should think it is more than twenty to one that
it will not be: it might be—but, still more likely, it will be something
which I have completely forgotten now. Some little remark I made in
some paper which perhaps someone will dig out and say: ‘Oh, but
that explains what I found last year’. Or perhaps some historian will
find out and say: ‘Haldane’s remarkable anticipation of Chew Wong’,
or something like that. We do now know. But to take an example,
the estimation of human mutation rates was, so to speak, a footnote
to what then seemed to me more important.

But I don’t really very much care what people think about me,
especially a hundred years hence. I should not like them to be too
critical of me as long as my widow and a few friends survive me. But
the greatest compliment made to me today, I believe, is when people
refer to something which I discovered (…) without mentioning me
at all. To have got into the tradition of science in that way is to me
more pleasing than to be specially mentioned. But what matters, in
my opinion, is what I have done, good or evil, and not what people
think of me.” (Haldane, 1964, self-obituary; taken from Tredoux
2018, pp. 310-311)

Haldane’s Forgotten Rule

In 1932, J. B. S. Haldane published a remarkable seven-page article –
titled A note on inverse probability– that contained two main advances.
First, Haldane computed the Bayes factor as the ratio of two marginal
likelihoods, one for a point-null hypothesis H0 that assigns θ a single
value, and one for an alternative hypothesis H1 in which θ is assigned a
prior distribution (Etz and Wagenmakers 2017). Second, Haldane then
used this Bayes factor to obtain an alternative to Laplace’s Rule of Suc-
cession. We can never know for certain, but it is entirely possible that
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these two advances jolted Jeffreys into action, and motivated him to
pursue a similar agenda throughout the 1930s. More remarkable than
Haldane’s article is perhaps the fact that it has been almost entirely for-
gotten. The mystery deepens when one realizes that both Haldane and
Jeffreys were among the foremost researchers of their day, and knew
one another well (Etz and Wagenmakers 2017). Haldane subsequently
abandoned this line of work, and Jeffreys mentioned Haldane only
occasionally, and in passing.
At any rate, let’s now turn to Haldane’s line of reasoning. As in the

previous chapter, Haldane assumed the presence of two hypotheses:
the Laplacean hypothesis H1 : θ ∼ beta(1, 1) and the general law
H0 : θ = 1.1 For simplicity we assign both H1 and the general law 1Haldane actually considered the case of

H0 : θ = 0, but this yields the same
results when we switch the data labels
(i.e., “all zombies are hungry” is the
same as “no zombies are non-hungry”).

H0 equal probability, such that the prior odds is 1 and the posterior
odds equals the Bayes factor. Assume we observe s = n confirmatory
instances. Then Chapter 9 tells us that the Bayes factor BF01 is s + 1,
and the corresponding posterior probability for H0 is s+1/s+2 and for
H1 is the complement 1/s+2. Now suppose we wish to determine the
probability that the next observation also confirms the general law.
Under H0, this probability is 1 (i.e., H0 : θ = 1 can only predict the
occurrence of confirmatory instances); under H1, this probability is
s+1/s+2 (i.e., the Laplacean answer).
To obtain the desired predictive probability, we have to average out

the hypothesis; in other words, we model-average using the law of total
probability. This can be graphically represented by a tree diagram sim-
ilar to Figures 3.6, 7.4, and 12.8). The posterior model probabilities act
as averaging weights for the predictions from the respective hypothe-
ses. Statistically, the probability that the next instance is confirmatory,
p(y = 1 | s = n), is given by

p(y = 1 | s = n) =

p(H0 | s=n)︷ ︸︸ ︷
s+ 1

s+ 2
×

p(y=1 |H0,s=n)︷︸︸︷
1 +

p(H1 | s=n)︷ ︸︸ ︷
1

s+ 2
×

p(y=1 |H1,s=n)︷ ︸︸ ︷
s+ 1

s+ 2

=
s+ 1

s+ 2
× s+ 3

s+ 2

=

[
1− 1

s+ 2

]
×

[
1 +

1

s+ 2

]
= 1− 1

(s+ 2)2
,

(16.2)

an expression we term Haldane’s Rule of Succession.2 The first line of the 2 This rule is also discussed explicitly in
Tuyl (2019) and Tuyl et al. (in press).equation is given in the book of answers for Exercise 1 in the previous

chapter. The second line of the equation highlights that including the
hypothesis that the general law is correct yields a particularly elegant re-
sult: Laplace’s Rule of Succession, (s+1)/(s+2), needs to be adjusted by
a multiplicative factor of (s+ 3)/(s+ 2). The third line of the equation
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shows that the Laplacean first factor and the Haldanean second factor
are symmetric about 1. The fourth line of the equation underscores that
as n grows, Haldane’s Rule of Succession is associated with an increase
in confidence that is more pronounced than it is for Laplace’s Rule of
Succession – a fact that becomes apparent when rewriting Laplace’s
Rule n+1/n+2 as 1− 1

s+2 . Thus, the probability of finding an exception

“(…) is clearly of the order n−2, rather than n−1. This seems to be a
more reasonable estimate of the validity of an induction than that gener-
ally given.” (Haldane 1932, p. 59).

As an example, consider having observed that all of 12 zombies
are hungry. What is the probability that the 13th will also be hungry?
According to Haldane’s Rule of Succession, this equals 13/14 × 15/14 =
195/196 ≈ .99, clearly higher than the Laplacean probability of .93.

Haldane’s Rule of Succession for Series

The difference between Laplace’s Rule of Succession and Haldane’s
Rule of Succession becomes more pronounced as the number of to-be-
predicted instances increases. Consider the probability that an entire
sequence of k new instances are all confirmatory. As indicated above,
Laplace’s Rule gives p(k | s = n) = (s + 1)/(s + k + 1), which goes to
zero as k grows large. Under Haldane’s setup, in contrast, we obtain

p(k | s = n) =

p(H0 | s=n)︷ ︸︸ ︷
s+ 1

s+ 2
×

p(k |H0,s=n)︷︸︸︷
1 +

p(H1 | s=n)︷ ︸︸ ︷
1

s+ 2
×

p(k |H1,s=n)︷ ︸︸ ︷
s+ 1

s+ k + 1

=
s+ 1

s+ k + 1
× s+ k + 2

s+ 2
,

where the second factor represents the Haldanean adjustment. As k
grows large, this probability goes to s+1/s+2 – the posterior probabil-
ity for the general law H0 after having observed s = n confirmatory
instances. Let’s return to the scenario where you observe s = 12 hun-
gry zombies, and you wish to know whether all of k = 13 incoming
zombies are likewise hungry. We have already seen that the Laplacean
probability equals 1/2, in violation of common sense; in contrast, the
Haldanean probability equals 27/28 ≈ 0.96. In general, when k = s + 1

the Laplacean analysis gives p(k | s = n) = 1/2 whereas the Haldanean
analysis gives p(k |n = 2) = 1/2 + 1/2 · s+1

s+2 , an upward adjustment equal
to half of the Laplacean probability that the single next observation is
confirmatory.3 3Unfortunately the result as provided by

Haldane (1932) is not completely correct.
The mistake is obvious and most likely
due to a typographical error (for details
see Wagenmakers et al. 2024).

Exercises

J. B. S. Haldane was a precocious child.
One anecdote has it that the four-year
old Haldane, when inspecting the blood
that trickled out of a cut on his forehead,
asked “Is it oxyhaemoglobin or carboxy-
heamoglobin?” (Subramanian 2019, p.
45)

1. You observe 20 hungry zombies. What is the probability that the
next 2 zombies will also be hungry (a) according to the Laplace setup;
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On Being the Right Size

“The most obvious differences between different animals are differ-
ences of size, but for some reason the zoologists have paid singularly
little attention to them. In a large textbook of zoology before me I
find no indication that the eagle is larger than the sparrow, or the
hippopotamus bigger than the hare, though some grudging admis-
sions are made in the case of the mouse and the whale. But yet it
is easy to show that a hare could not be as large as a hippopotamus
or a whale as small as a herring. For every type of animal there is
a most convenient size, and a large change in size inevitably carries
with it a change of form. (…)

To the mouse and any smaller animal it [gravity – EWDM]
presents practically no dangers. You can drop a mouse down a
thousand-yard mine shaft; and, on arriving at the bottom it gets a
slight shock and walks away, provided that the ground is fairly soft.
A rat is killed, a man is broken, a horse splashes. For the resistance
presented to movement by the air is proportional to the surface of
the moving object. Divide an animal’s length, breadth, and height
each by ten; its weight is reduced to a thousandth, but its surface
only a hundredth. So the resistance to falling in the case of the
small animal is relatively ten times greater than the driving force.

An insect, therefore, is not afraid of gravity; it can fall without
danger, and can cling to the ceiling with remarkably little trouble.
It can go in for elegant and fantastic forms of support like that of
the daddy-longlegs. But there is a force which is as formidable to
an insect as gravitation to a mammal. This is surface tension. A
man coming out of a bath carries with him a film of water about
one-fiftieth of an inch in thickness. This weighs roughly a pound.
A wet mouse has to carry about its own weight of water. A wet
fly has to lift many times its own weight and, as everyone knows,
a fly once wetted by water or any other liquid is in a very serious
position indeed. An insect going for a drink is in a great danger as
man leaning out over a precipice in search of food. If it once falls
into the grip of the surface tension of the water –that is to say, gets
wet– it is likely to remain so until it downs. A few insects, such as
water-beetles, contrive to be unwettable; the majority keep well away
from their drink by means of a long proboscis. (…)

Such are a very few of the considerations which show that for
every type of animal there is an optimum size. Yet although Galileo
demonstrated the contrary more than three hundred years ago,
people still believe that if a flea were as large as a man it could jump
a thousand feet into the air. As a matter of fact the height to which
an animal can jump is more nearly independent of its size than
proportional to it. A flea can jump about two feet, a man about five.
To jump a given height, if we neglect the resistance of air, requires
an expenditure of energy proportional to the jumper’s weight. But if
the jumping muscles form a constant fraction of the animal’s body,
the energy developed per ounce of muscle is independent of the size,
provided it can be developed quickly enough in the small animal.
As a matter of fact an insect’s muscles, although they can contract
more quickly than our own, appear to be less efficient; as otherwise
a flea or grasshopper could rise six feet into the air.” (Haldane 1926)



haldane’s rule of succession 277

(b) according to the Haldane setup. Draw the tree diagram for the
Haldane setup.

2. Choose some values for s and k and (a) apply the key equations in
this chapter; (b) use the Learn Bayes→ Binomial Testing functionality
in JASP. Do the results match?

3. Haldane’s Rule of Succession entails (at least) two important assump-
tions. What are they?

Portrait of J. B. S. Haldane, by Claude Rogers (1907-1979). Reproduced with permission
of ©Crispin Rogers, who added: “I believe that this painting was done by my father
Claude Rogers when our family lived at 13 Taviton Street in central London, very near to
London University where my father was a lecturer at the Slade School of Fine Art. He
knew Haldane well and was given an antique cupboard by him, which we have and call
the Haldane cupboard. So the story goes Haldane stored his experiments in it.”

Chapter Summary

Despite widely-felt dissatisfaction with Laplace’s Rule of Succession,
it took until 1932 before J. B. S. Haldane first proposed the mixture
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prior representation in which a Laplacean ‘slab’ is combined with a
Wrinchean ‘spike’. Haldane computed the Bayes factor and applied
model-averaging to obtain an alternative Rule of Succession in which
the probability of finding an exception decreases as 1/n2 rather than
1/n.
Unfortunately, Haldane’s result contains a typographical error and

was not presented in the elegant form of Eq. 16.2. The citation record
suggests that as far as the Rule of Succession is concerned, Haldane’s
contribution has been almost entirely forgotten.4 Nevertheless, Hal- 4We have added the qualifier ‘almost’

because of the work by Frank Tuyl and
colleagues (i.e., Tuyl 2019, Tuyl et al. in
press).

dane’s work possibly motivated Jeffreys to start his extensive studies
on Bayes factor hypothesis testing that culminated in his magnum opus
Theory of Probability – a book that inspired generations of Bayesians
including your authors.5 5 The book you are now reading may be

considered an accessible summary of the
material from Theory of Probability.

Want to Know More?

3 Clark, R. (1968/2013). J. B. S. The Life and Work of J. B. S. Hal-
dane. London: Bloomsbury Reader. A gripping biography of one of
the most interesting scientists of all time.

3 Subramanian, S. (2019). A Dominant Character: How J. B. S. Hal-
dane Transformed Genetics, Became a Communist, and Risked his
Neck for Science. New York: W. W. Norton & Company. Another
gripping biography.

3 Devitt, D. (2022). The Skipper’s War: Dragon School, Oxford &
the Great War. London: Scala Arts Publishers Inc. Contains sev-
eral fragments on Haldane’s wartime heroism. See also https:
//skipperswar.com/book/.

3 Haldane, J. B. S. (1926). On being the right size. Harper’s Magazine,
152, 424-427. Haldane wrote several popular-science books and short
articles for the general public. “On being the right size” is one of
his best-known works – the box below provides several characteristic
excerpts.

3 Haldane, J. B. S. (1932). A note on inverse probability. Mathematical
Proceedings of the Cambridge Philosophical Society, 28, 55-61. In this
short paper Haldane presents the first Bayes factor for a point null
hypothesis versus an alternative hypothesis that involves a continuous
(beta) distribution for θ. Based on this Bayes factor Haldane also
proposes the concrete alternative to Laplace’s Rule of Succession
that is outlined in this chapter. Although his derivation contain
a typographical error, Haldane’s work clearly anticipates the later
contributions by Jeffreys.

https://skipperswar.com/book/
https://skipperswar.com/book/
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3 Etz, A., & Wagenmakers, E.–J. (2017). J. B. S. Haldane’s contribution
to the Bayes factor hypothesis test. Statistical Science, 32, 313-329.
The abstract: “This article brings attention to some historical devel-
opments that gave rise to the Bayes factor for testing a point null
hypothesis against a composite alternative. In line with current think-
ing, we find that the conceptual innovation–to assign prior mass to
a general law–is due to a series of three articles by Dorothy Wrinch
and Sir Harold Jeffreys (1919, 1921, 1923a). However, our historical
investigation also suggests that in 1932, J. B. S. Haldane made an
important contribution to the development of the Bayes factor by
proposing the use of a mixture prior comprising a point mass and a
continuous probability density. Jeffreys was aware of Haldane’s work
and it may have inspired him to pursue a more concrete statistical
implementation for his conceptual ideas. It thus appears that Haldane
may have played a much bigger role in the statistical development of
the Bayes factor than has hitherto been assumed.” (p. 313)

3 Wagenmakers, E.–J., Zabell, S., & Gronau, Q.F. (in press). J. B. S.
Haldane’s rule of succession. Statistical Science. This article contains
the material from this chapter, but presents several generalizations as
well, some of which will be covered in Chapter 17.

3 Jeffreys occasionally gave credit to Haldane. One example is given in
this chapter’s epigraph. Another one is here:

“Everybody in fact believes a large number of general laws, and as the
function of the theory is to give a consistent statement of common-
sense, and not to alter it in a fundamental respect, it appears that the
estimate of Bayes and Laplace needs modification for the extreme
cases. (…) for the case of sampling J. B. S. Haldane and I have pointed
out that general laws can be established with reasonable probabili-
ties if their prior probabilities are moderate and independent of the
whole number of members of the class sampled. These rules have
been called “simplicity postulates”; they do not say that any particular
simple law must be true, or even that some simple law must be true,
but they do say that when we consider a simple law seriously an as-
sessment of the prior probability that will make it impossible ever to
establish it even if it happens to be true is not a correct representation
of our state of knowledge.” (Jeffreys 1936a, p. 344)

Appendix A: “Stalin Was a Very Great Man Who Did a
Very Good Job”

In many ways, J. B. S. Haldane was a hero. He spoke truth to power,
fought fearlessly on the front in multiple wars (i.e., World War I in
France and Iraq, and the Spanish civil war), and experimented on him-
self to find the most effective gas mask:
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“The Germans had attacked with chlorine north of Ypres. My father had
been sent out to tackle the menace. I met him at Hazebrouck, and we
started trying respirators of various kinds in a room in the college there
in which chlorine was liberated. The concentration was not sufficient to
cause fatal injury to the lungs in less than 2 minutes or so. But it made
one cough very much sooner. About half a dozen of us went in, trying
a different type of respirator; and another would take his place when he
had inhaled enough gas to incapacitate him for a few hours, or in one
case, for several days.” (Haldane, unpublished autobiographical remarks,
as reported in Tredoux 2018, p. 252)

Haldane was also characterized by “a combination of aristocratic
self-assurance, intellectual integrity and almost endearing bloody-
mindedness” (Clark 1968/2013, p. 3). That bloody-mindedness meant
that Haldane was slow to acknowledge his mistakes:

“Traditionally, there was one field in which no doubt could be allowed—
that when a Haldane made up his mind that it was right to act, then
action would follow as a duty, ignoring all obstacles or any suggestion
that the proposed course could be anything other than the ideal. Like
the aristocrat down the ages, he responded to opposition by not giving a
damn for anyone (…) (Clark 1968/2013, p. 5)

At one point Haldane had become an active member of the commu-
nist party in the UK. As the atrocities of the Soviet regime became ever
more visible, Haldane found himself unable to speak up publicly against
the deportation of scientists, against the influence of Lysenko, against
the Molotov-Ribbentrop Pact, and against Stalin in general. This un-
characteristic meekness was not born out of fear or out of malevolence
– it probably arose because Haldane could not bring himself to acknowl-
edge that he had been wrong; in other words, it root cause was sheer
bloody-mindedness.
There has even been a suggestion that Haldane was a Soviet spy. In

a polemic thinly disguised as a biography, Tredoux (2018) corrects the
rumor that Haldane was the Soviet spy INTELLIGENTSIA (which was
Ivor Montagu). Tredoux (2018) does argue that Haldane was a Soviet
spy, but the only evidence for this claim appears to be the fact that
Montagu passed on a 1940 army report by Haldane on how long a man
could remain underwater.6 It appears to us that a mountain gave birth 6 From the Venona intercepts: “INTEL-

LIGENTSIA has handed over a copy of
Professor HALDANE’s report to the
Admiralty on his experience relating
to the length of time a man can stay
underwater.” (Tredoux 2018, p. 319).

to a mouse. More damning is Haldane’s continued, bloody-minded
support for Stalin:

“As for Haldane, he never let go of Stalin. The Society for Cultural Rela-
tions with the USSR passed him a letter of condolence to co-sign when
Stalin, “one of the great men of world history,” died in 1953. He was
glad to do so. A letter to a friend written during his final days in India
shows that he did not even accept Khrushchev’s renunciation of Stalin
in his secret speech of 1956 (…). “I certainly don’t go all the way with
Khrushchev. As you know, I disagreed, during Stalin’s lifetime, with



haldane’s rule of succession 281

some of his actions. But I thought, and think, that he was a very great
man who did a very good job. And as I did not denounce him then, I
am not going to do so now.” (Tredoux 2018, pp. 156-157; see also Clark
1968/2013, p. 326)

This is yet another unfortunate demonstration of how difficult it is
for a person to change their long-held opinions, especially when this
person is a genius and bloody-mindedness runs in the family.

Appendix B: “Cancer’s a Funny Thing”

Haldane’s wit, writing skills, and combative nature are all on full display
in the famous poem “Cancer’s a funny thing”. The poem was composed
in a London hospital bed, as Haldane was recovering from surgery. The
surgery was declared a success, but the cancer would soon return. Hal-
dane died December 1st of the same year in Bhubaneswar, India. “The
poem, which was reprinted in a number of countries, brought great
praise, caused great offence, and in some ways crystallises both Hal-
dane’s attitude to the world and the world’s reaction.” (Clark 1968/2013,
p. 340)

Cancer’s a Funny Thing
I wish I had the voice of Homer
To sing of rectal carcinoma,
Which kills a lot more chaps, in fact,
Than were bumped off when Troy was sacked.
Yet, thanks to modern surgeon’s skills,
It can be killed before it kills
Upon a scientific basis
In nineteen out of twenty cases.
I noticed I was passing blood
(Only a few drops, not a flood).
So pausing on my homeward way
From Tallahassee to Bombay
I asked a doctor, now my friend,
To peer into my hinder end,
To prove or to disprove the rumour
That I had a malignant tumour.
They pumped in BaSO4.
Till I could really stand no more,
And, when sufficient had been pressed in,
They photographed my large intestine,
In order to decide the issue
They next scraped out some bits of tissue.
(Before they did so, some good pal
Had knocked me out with pentothal,
Whose action is extremely quick,
And does not leave me feeling sick.)
The microscope returned the answer
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That I had certainly got cancer,
So I was wheeled into the theatre
Where holes were made to make me better.
One set is in my perineum
Where I can feel, but can’t yet see ’em.
Another made me like a kipper
Or female prey of Jack the Ripper,
Through this incision, I don’t doubt,
The neoplasm was taken out,
Along with colon, and lymph nodes
Where cancer cells might find abodes.
A third much smaller hole is meant
To function as a ventral vent:
So now I am like two-faced Janus
The only1 god who sees his anus. 1 In India there are several more

With extra faces, up to four,
But both in Brahma and in Shiva
I own myself an unbeliever.

I’ll swear, without the risk of perjury,
It was a snappy bit of surgery.
My rectum is a serious loss to me,
But I’ve a very neat colostomy,
And hope, as soon as I am able,
To make it keep a fixed time-table.
So do not wait for aches and pains
To have a surgeon mend your drains;
If he says “cancer” you’re a dunce
Unless you have it out at once,
For if you wait it’s sure to swell,
And may have progeny as well.
My final word, before I’m done,
Is “Cancer can be rather fun”.
Thanks to the nurses and Nye Bevan [Aneurin “Nye” Bevan (1897-1960) was

a Welsh Labour Party politician who had
helped create the British National Health
Service – EWDM].

The NHS is quite like heaven
Provided one confronts the tumour
With a sufficient sense of humour.
I know that cancer often kills,
But so do cars and sleeping pills;
And it can hurt one till one sweats,
So can bad teeth and unpaid debts.
A spot of laughter, I am sure,
Often accelerates one’s cure;
So let us patients do our bit
To help the surgeons make us fit.”
(J. B. S. Haldane, first printed in The New Statesman, 21 February 1964)



17 Jeffreys’s Platitude

The most beneficial result that I can hope for as a consequence of this work is
that more attention will be paid to the precise statement of the alternatives
involved in the questions asked. It is sometimes considered a paradox that the
answer depends not only on the observations but on the question; it should be a
platitude.

Jeffreys, 1961

Chapter Goal

This chapter emphasizes that (1) prior distributions on model param-
eters partly determine the model predictions; (2) the relative adequacy
of the model predictions define the evidence (i.e., the Bayes factor), that
is, the extent to which the data change our beliefs; (3) consequently,
different prior distributions result in different Bayes factors. This tau-
tology needs to be understood and exploited rather than bemoaned and
avoided.

Figure available at BayesianSpectacles.
org under a CC-BY license.

Predictions, Evidence, and Prior Distributions

Throughout this book we stress a key principle of Bayesian inference:
hypotheses that predicted observed data successfully enjoy a boost in
plausibility, whereas hypotheses that predicted the data poorly suffer
a decline. The change in plausibility brought about by the data –the
evidence– is known as the Bayes factor. We repeat the updating rule:

p(H0 | data)
p(H1 | data)︸ ︷︷ ︸
Posterior beliefs
about hypotheses

=
p(H0)

p(H1)︸ ︷︷ ︸
Prior beliefs

about hypotheses

× p(data | H0)

p(data | H1)︸ ︷︷ ︸
Bayes factor BF01

. (17.1)

In the following our focus remains on the case of pure induction, such
that H0 represents the general law according to which the population
proportion θ equals 1 (i.e., all zombies are hungry). This general law is
pitted against an alternative hypothesis H1 that relaxes the restriction

BayesianSpectacles.org
BayesianSpectacles.org
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imposed on θ. As in the previous chapter, we consider the case where all
instances accord with the general law, so s = n. With only confirmatory
instances observed, we can already draw three qualitative conclusions:

◦ The evidence favors H0 over H1.1 This has to be the case because 1One exception that proves the rule is
given by case 1 below. For other excep-
tions based on background knowledge
see Chapter 9, Appendix B: ‘Conforming
observations need not be confirming’.

the general law makes only a single prediction (e.g., ‘the next zombie
will certainly be hungry’) and hence p(s = n |H0) = 1. By relaxing
the restriction that θ = 1, the alternative hypothesis H1 also predicts
other outcomes, and hence p(s = n |H1) < 1.

◦ Every new confirmatory instance that is observed increases the ev-
idence for the general law H0.2 Intuitively, this happens because 2 The exception that proves the rule is

given by case 2 below.even after many confirmatory instances have been observed, the al-
ternative hypothesis H1 still does not assign probability 1 to the next
instance being confirmatory, whereas H0 does.

◦ The degree to which the data support H0 over H1 depends directly
on how close p(s = n |H1) is to 1. When the data ‘s = n’ (i.e., all
observed instances are confirmatory) are highly likely under H1),
then the evidence in favor of H0) will be relatively modest; but when
the data ‘s = n’ are highly unlikely under H1), the evidence in
favor of H0) will be relatively compelling. Thus, the strength of
evidence that the data provide for H0) depends critically on the
predictive adequacy of H1). This adequacy is determined by the
prior distribution for θ under H1).

Before starting in earnest, consider three cases in which H1 is spec-
ified by a point-prior (i.e., a spike) at a particular value of θ.3 For con- 3 In these cases, the Bayes factor reduces

to a likelihood ratio, cf. Chapter 7.creteness, we continue the example from Chapter 15: based on an ob-
served sequence of 12 hungry zombies we wish to quantify the evidence
for H0 : θ = 1 (‘all zombies are hungry’) versus H1).

1. Consider H1 : θ = 1. This specification means that H1 is identical to
H0; just as H0, H1 predicts that all instances are confirmatory. The
question that is being asked is, ‘Are the data predicted better by the
hypothesis that all zombies are hungry or by the hypothesis that all
zombies are hungry?’ The Bayes factor equals 1 regardless of the
value of s = n:

BF01 = 1 if H0 : θ = 1,

H1 : θ = 1,

data : s = n.

2. Consider H1 : θ = 0. This specification means that H1 is maximally
different from H0; in diametric opposition to H0, H1 predicts that all
instances are non-confirmatory (e.g., all zombies are satiated). The
question that is being asked is, ‘Are the data predicted better by the
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hypothesis that all zombies are hungry or by the hypothesis that
no zombie is hungry?’ A single zombie suffices to obtain a certain
answer: BF01 = ∞ if the first zombie is hungry (as in our example),
and BF10 =∞ if the first zombie is not hungry:

BF01 =∞ if H0 : θ = 1,

H1 : θ = 0,

data : s = n ≥ 1.

3. Consider H1 : θ = 1/2. This specification means that exactly half
of the instances in the population are assumed to accord with the
general law. The question that is being asked is, ‘Are the data pre-
dicted better by the hypothesis that all zombies are hungry or by the
hypothesis that half of the zombie population is hungry?’ Every new
hungry zombie is twice as likely to occur under H0 : θ = 1 than
under H1 : θ = 1/2. Therefore we have:

BF01 = 2s if H0 : θ = 1,

H1 : θ = 1/2,

data : s = n.

For the example featuring 12 hungry zombies, BF01 = 212 = 4096.
These three cases form extreme examples in the sense that H1 is spec-

ified as a single value of θ. Hence there can be no learning and the data
cannot overwhelm the prior, because the prior cannot budge from its
initial value. We now consider several scenarios in which H1 is char-
acterized by a beta prior on θ. In these scenarios the prior distribution
on θ is updated by the data such that H1 ‘learns’ that θ is near 1 as the
number of confirmatory instances increases. Nevertheless, the scenarios
below demonstrate that the evidence remains highly dependent on the
prior distribution.4 4 See also the assessment of the pancake

forecasters in Chapters 12 and 13, and see
exercise 3 from Chapter 15.

Scenario 1: ‘All Options Open’

Consider H1 : θ ∼ beta(1, 1). Detailed in Chapter 15, this specifi-
cation means that all possible values for θ are deemed equally likely a
priori. Colloquially one may term this the ‘all options open’ model. The
question that is being asked is, ‘Are the data predicted better by the
hypothesis that all zombies are hungry or by the hypothesis that every
proportion of hungry zombies is a priori equally likely?’ The uniform
distribution on θ induces a predictive distribution on the n + 1 possi-
ble outcomes (i.e., from 0 to n confirmatory instances) that is likewise
uniform (cf. Figure 14.1 and Figure 15.4). This means that the prior
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predictive mass on the result ‘s = n’ is 1/(s+1). Hence we have:

BF01 = s+ 1 if H0 : θ = 1,

H1 : θ ∼ beta(1, 1),
data : s = n.

For the example featuring 12 hungry zombies, BF01 = 13.

Scenario 2: ‘Most Instances Are Confirmatory’

Consider H1 : θ ∼ beta(α, 1), with α > 1. This specification means
that values for θ are deemed more likely the closer they are to θ = 1.
The higher the value of α, the more the prior distribution is concen-
trated near θ = 1. Figure 17.1 gives an example of a beta(12, 1) prior
distribution.
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Figure 17.1: The beta(12,1) prior distribution for θ under H1. Values of θ near 1 are
deemed relatively likely. Figure from the JASP module Learn Bayes.

The question that is being asked is, ‘Are the data predicted better by
the hypothesis that all zombies are hungry or by the hypothesis that
most hungry zombies are hungry?’ Note that this question is more
difficult to answer than the question from the previous scenario. This
is underscored by the fact that the monotonically increasing beta dis-
tribution on θ induces a predictive distribution on the n + 1 possible
outcomes that is likewise monotonically increasing. For example, Fig-
ure 17.2 shows the predictions for a data set of 12 zombies that follow
from the beta(12, 1) distribution. The figure suggests that the prior
mass on s = n = 12 equals about 0.5, which would mean that the Bayes
factor in favor of H0 is about 2.



jeffreys’s platitude 287

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12

Predicted number of successes

P
ro

ba
bi

lit
y

Figure 17.2: Predictions for a data set of 12 zombies, as induced by the beta(12,1) prior
distribution for θ shown in Figure 17.1. Figure from the JASP module Learn Bayes.

This suggestion is correct. The general expression for the Bayes
factor equals:

BF01 =
s

α
+ 1 if H0 : θ = 1,

H1 : θ ∼ beta(α, 1), α ≥ 1

data : s = n.

For the example featuring H1 : θ ∼ beta(12, 1) and 12 hungry zombies,
BF01 = (12/12) + 1 = 2. It is important to recognize the crucial impact
of α on the Bayes factor for the comparison to H1 : θ ∼ beta(α, 1).
Essentially α quantifies the degree of similarity between H0 and H1; the
higher α, the more prior mass is allocated to the event that s = n, and
the less diagnostic are the data. Concretely, if α is doubled, the number
of confirmatory instances needs to be doubled as well in order to attain
the same level of evidence.5 5 A reassuring note: for models that are

commonly used in scientific practice,
different prior distributions often do not
cause the Bayes factor to change so much,
unless the prior distributions are deeply
implausible.

Scenario 3: Most Instances Are Not Confirmatory

Consider H1 : θ ∼ beta(1, β), with β > 1. This specification means
that values for θ are deemed more likely the closer they are to θ = 0.
The higher the value of β, the more the prior distribution is concen-
trated near θ = 0. Figure 17.3 gives an example of a beta(1, 4) prior
distribution.
The question that is being asked is, ‘Are the data predicted better

by the hypothesis that all zombies are hungry or by the hypothesis
that most hungry zombies are not hungry?’ Note that this question is



288 bayesian inference from the ground up

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0

Population proportion q

D
en

si
ty

Figure 17.3: The beta(1,4) prior distribution for θ under H1. Values of θ near 0 are
deemed relatively likely. Figure from the JASP module Learn Bayes.

relatively easy to answer, because the hypotheses make very different
predictions. Specifically, the monotonically decreasing beta distribution
on θ induces a predictive distribution on the n + 1 possible outcomes
that is likewise monotonically decreasing. For example, Figure 17.4
shows the predictions for a data set of 12 zombies that follow from
the beta(1, 4) distribution. The figure suggests that the prior mass on
s = n = 12 is very low, which would mean that the Bayes factor in favor
of H0 is very high.
This suggestion is again correct. The general expression for the Bayes

factor equals:

BF01 =
(s+ β)!

s!β!
if H0 : θ = 1,

H1 : θ ∼ beta(1, β), β ≥ 1

data : s = n.

For the example featuring H1 : θ ∼ beta(1, 4) and 12 hungry zombies,
BF01 = 16!/(12! 4!) = 1820. As was the case for α in the previous sce-
nario, β exerts a powerful impact on the Bayes factor for the comparison
of H1 : θ ∼ beta(1, β) to H0 : θ = 1. Here β quantifies the degree of
dissimilarity between H0 and H1; the higher β, the less prior mass is allo-
cated to the event that s = n, and the more diagnostic are the data. To
appreciate the role of β, notice that when β = 1 and s = n = 1000, this
gives BF01 = 1001 – a thousand confirmatory instances yield a Bayes fac-
tor of 1001 when H1 stipulates a uniform prior distribution on θ. The
same evidence is obtained when the roles of s = n and β are switched,
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Figure 17.4: Predictions for a data set of 12 zombies, as induced by the beta(1,4) prior
distribution for θ shown in Figure 17.3. Figure from the JASP module Learn Bayes.

that is, when s = n = 1 and β = 1000. Thus, a single confirmatory
instance yields a Bayes factor of 1001 when H1 stipulates a beta(1, 1000)
prior distribution on θ. When β → ∞, the comparison approximates
a test between H0 : θ = 1 versus H1 : θ = 0 (case 2 discussed at the
beginning of this chapter), and a single outcome is decisive.

Scenario 4: About Half of the Instances are Confirmatory

Consider H1 : θ ∼ beta(α, α), with α > 1. This specification means
that values for θ are deemed more likely the closer they are to θ = 1/2.
The higher the value of α, the more the prior distribution is concen-
trated near θ = 1/2. Figure 17.5 gives an example of a beta(2, 2) prior
distribution.
The question that is being asked is, ‘Are the data predicted better

by the hypothesis that all zombies are hungry or by the hypothesis
that about half of the zombie population is hungry?’ This question is
again relatively easy to answer, because the rival hypotheses make very
different predictions. The dome-shaped beta distribution on θ induces
a predictive distribution on the n + 1 possible outcomes that is also
dome-shaped, and therefore assigns the least mass to extreme outcomes
such as s = n. For example, Figure 17.6 shows the predictions for a data
set of 12 zombies that follow from the beta(2, 2) distribution. There is
modest prior mass on s = n = 12, and this means that the Bayes factor
in favor of H0 should be relatively high.
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Figure 17.5: The beta(2,2) prior distribution for θ under H1. Values of θ near 1/2 are
deemed relatively likely. Figure from the JASP module Learn Bayes.

The associated analytical expression for the Bayes factor equals:

BF01 =
(α− 1)! (2α+ s− 1)!

(2α− 1)! (α+ s− 1)!

=

2α−1∏
α

[
s+ α

α

]
=

2α−1∏
α

[ s
α
+ 1

]
if H0 : θ = 1,

H1 : θ ∼ beta(α, α), α ≥ 1

data : s = n.

The elegance of this equation can be appreciated better when it is writ-
ten out for a number of different values of α:

if α = 1 : BF01 = s+ 1

if α = 2 : BF01 =
s+ 2

2
× s+ 3

3

if α = 3 : BF01 =
s+ 3

3
× s+ 4

4
× s+ 5

5

if α = 4 : BF01 =
s+ 4

4
× s+ 5

5
× s+ 6

6
× s+ 7

7

if α = 5 : BF01 =
s+ 5

5
× s+ 6

6
× s+ 7

7
× s+ 8

8
× s+ 9

9
.

Note that the Bayes factors in favor of the general law H0 increase
with α, that is, the evidence becomes more compelling when the prior
distribution for θ under H1 is more peaked around the value of θ =
1/2.6 For the example featuring H1 : θ ∼ beta(2, 2) and 12 hungry 6 Also noteworthy is that the first factor

in the series, s/α + 1, equals the Bayes
factor for H0 against H1 : θ ∼ beta(α, 1)
(i.e, scenario 2 above).

zombies, BF01 = 1/6(12 + 2)(12 + 3) = 35.
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Figure 17.6: Predictions for a data set of 12 zombies, as induced by the beta(2,2) prior
distribution for θ shown in Figure 17.5. Figure from the JASP module Learn Bayes.

An Inconvenient Truth

The scenarios above reveal a truth that many statisticians find highly
inconvenient: when it comes to quantifying evidence for competing
hypotheses, the prior distribution on the model parameters matters
– and as we have seen it may matter a great deal. Of course, Bayes’
rule tells us the prior distribution should matter: the prior distribution
partly determines the model predictions, and the evidence is given by
the models’ relative predictive performance. A carefully chosen prior
distribution will result in a meaningful assessment of the evidence (i.e.,
the extent to which the data change our opinion) and we know of no
other statistical methodology that is able to achieve this goal.
But what if you don’t ‘know’ the prior distribution for the parameter

under H1? In the above example you may even refuse to specify what
scenario is relevant. If you find yourself in this situation, then:

1. You are unable to specify the predictions under the alternative hy-
pothesis H1.

2. More generally, you do not know what question to ask.

3. Consequently, you are not in the position to quantify evidence, that
is, determine the degree to which the data ought to change your
beliefs concerning H0.



292 bayesian inference from the ground up

4. You are advised to collect more information so that you may then
put forward a specific question, that is, an alternative hypothesis that
makes predictions.

5. You may try out several prior distributions and use these to generate
synthetic data – that is, you may inspect the prior predictive distribu-
tion. These prior predictive data may provide more concrete guidance
as to what prior distributions are reasonable.

On the other hand, in the above example, you may know what sce-
nario applies but you do not know exactly what prior distribution re-
flects your background knowledge best (i.e., do I specify H1 : θ ∼
beta(2, 1) or do I specify H1 : θ ∼ beta(3, 1)?). In such cases it is pru-
dent simply to try them all, and see whether it matters. This is termed
a sensitivity analysis or a robustness analysis. When the conclusions from
the various plausible prior distributions differ substantially then this
is something that needs to be acknowledged; perhaps more data need
to be collected. In our experience with standard statistical models, the
Bayes factor is actually surprisingly robust to reasonable changes in the
prior distribution.
We conclude this chapter with a corollary to Jeffreys’s platitude: If

you don’t know the question, you are in no position to demand an answer.

Exercises

Figure available at BayesianSpectacles.
org under a CC-BY license.

1. Suppose H0 : θ = 1 and H1 : θ = 0. The first zombie is hungry, but
the second zombie is not. What do you conclude?

2. Consider another scenario: H1 : θ ∼ beta(α, α) and α → ∞. What is
the Bayes factor in favor of H0 : θ = 1 when s confirmatory instances
are observed?

3. You observe s = n confirmatory instances. What is the Bayes factor
for HA : θ ∼ beta(α, 1) versus HB : θ ∼ beta(α, α) [hint: exploit the
fact that Bayes factors are transitive]. Confirm your answer with the
Learn Bayes module in JASP, using the case of n = 12 and α = 2.

4. Consider the Bayes factor for H1 : θ ∼ beta(α, α) against H0 : θ = 1.
When a single confirmatory instance is observed (i.e., s = n = 1), the
Bayes factor equals 2 regardless of the value of α. Confirm this with
the equations, and provide an intuition as to why this must be the
case.

Chapter Summary

The prior distribution for the model parameters partly governs the
model predictions, and the relative adequacy of the predictions in turn

BayesianSpectacles.org
BayesianSpectacles.org
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defines the evidence. Hence it cannot come as a surprise that the prior
partly determines the evidence – that is, the Bayes factor. Each prior
distribution in fact defines a different model, and effectively poses a
different question.
We highlighted the fact that radically different questions (i.e., radi-

cally different prior distributions) yield radically different answers. We
should therefore not expect an answer if we do not know the question. “What the prior probability does, in

fact, is to state clearly what question is
being asked, more clearly than ordinary
language is capable of doing. And I
suggest that this is no mean achievement.
Many will support me when I say that 90
per cent. of the thought in a scientific
investigation goes in the preliminary
framing of the question; once it is clearly
stated, the method of answering it is
usually obvious, laborious perhaps, but
straightforward.” (Jeffreys 1961, p. 407)

Want to Know More?

3 Etz, A., Haaf, J. M., Rouder, J. N., & Vandekerckhove, J. (2018).
Bayesian inference and testing any hypothesis you can specify. Ad-
vances in Methods and Practices in Psychological Science, 1, 281–295.
This article echoes the main message from this chapter. The authors
discuss Jeffreys’s platitude and demonstrate how different models
instantiate different questions, that then yield different answers.

“Critical in the model-selection endeavor is the specification of the
models. In the case of hypothesis testing, it is of the greatest impor-
tance that the researcher specify exactly what is meant by a “null”
hypothesis as well as the alternative to which it is contrasted, and that
these are suitable instantiations of theoretical positions. Here, we pro-
vide an overview of different instantiations of null and alternative
hypotheses that can be useful in practice, but in all cases the inferen-
tial procedure is based on the same underlying method of likelihood
comparison.” (p. 281).

3 Rouder, J. N., Haaf, J. M., & Aust, F. (2018). From theories to mod-
els to predictions: A Bayesian model comparison approach. Communi-
cation Monographs, 85, 41–56.

3 Vanpaemel, W. (2010). Prior sensitivity in theory testing: An apologia
for the Bayes factor. Journal of Mathematical Psychology, 54, 491–
498.

“A commonly voiced concern with the Bayes factor is that, unlike
many other Bayesian and non-Bayesian quantitative measures of
model evaluation, it is highly sensitive to the parameter prior. This
paper argues that, when dealing with psychological models that are
quantitatively instantiated theories, being sensitive to the prior is an
attractive feature of a model evaluation measure. (…) Because the
prior is a vehicle for expressing psychological theory, it should, like the
model equation, be considered as an integral part of the model. It is ar-
gued that the combined practice of building models using informative
priors, and evaluating models using prior sensitive measures advances
knowledge.” (p. 491)





18 The Principle of Parsimony

We consider it a good principle to explain the phenomena by the simplest
hypotheses possible.

Ptolemy

Chapter Goal

Galileo Galilei (1564-1642), father of
modern science. “When, therefore, I
observe a stone initially at rest falling
from an elevated position and continually
acquiring new increments of speed,
why should I not believe that such
increases take place in a manner which is
exceedingly simple and rather obvious to
everybody?” (Galileo 1638/1914, p. 161).
Portrait from 1636 by Justus Sustermans.

As outlined in the previous chapters, Wrinch, Jeffreys, and Haldane
avoided the Laplacean prejudice against a universal generalization by
assigning it a separate prior mass. This way they solved the problem
of pure induction, and quantified how every confirmatory instance
provides evidence in favor of the universal generalization.
However, the Wrinch-Jeffreys-Haldane proposal applies to a broad

range of scenarios that involve learning from data, as it formalizes the
common scientific practice of retaining the simpler hypothesis until the
data provide evidence against it: “The onus of proof is always on the
advocate of the more complicated hypothesis.” (Jeffreys 1961, p. 343)
This chapter introduces the principle of parsimony in scientific learn-

ing. The next chapters will describe two Bayesian simplicity postulates
that jointly explain the scientific attitude towards parsimonious models.

Galileo’s Experiment

We introduce the principle of parsimony by closely following the exam-
ple outlined in Jeffreys (1973, pp. 61–64): “We consider an experiment
that is done in first year physics classes. A solid of revolution can roll
down an inclined plane, and its displacement is observed every fifth sec-
ond after it starts from rest.” The first such experiment was conducted
by Galileo Galilei, who let a bronze ball roll down a ramp to measure
the time t it took for the ball to reach particular distances x.1 The out- 1 To measure time Galileo used a water-

clock or klepsydra.come of the experiment supported Galileo’s hypothesis that a falling
object picks up equal speed in equal intervals of time; in other words,
the rate of acceleration is constant. Jeffreys provides the following ex- “A motion is said to be uniformly acceler-

ated, when starting from rest, it acquires,
during equal time-intervals, equal incre-
ments of speed.” (Galileo 1638/1914, p.
162).
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ample data (for an extended discussion with empirical data see Jeffreys
1936a, pp. 351-353; see also Jeffreys 1961, pp. 3-4, 46-47):

time t (sec.) 0 5 10 15 20 25 30

displacement x (cm.) 0 5 20 45 80 125 180

For this ramp the displacement is related to time by the equation 5x =

t2. However, Jeffreys notes, “the facts would be fitted equally well if the
displacement was really connected with the time by the formula

5x = t2 + t(t− 5)(t− 10)(t− 15)(t− 20)(t− 25)(t− 30)f(t),

where f(t) might be any function whatever that is finite at

t = 0, 5, 10, ...30 sec.

The law 5x = t2 is not the only description that fits the data; it is only
one of an infinite number of descriptions that would fit the data equally
well.”2 2Note of clarification: the observed times

are either 0, 5, 10, 15, 20, 25 or 30 sec.
This means that one of the multiplicative
terms in the expression t(t − 5)(t −
10)(t − 15)(t − 20)(t − 25)(t − 30)

equals zero, and for these observed time
points the relation therefore simplifies to
5x = t2.

0 5 10 15 20 25 30

0

50

100

150

200

Time (sec.)

D
is

ta
nc

e 
(c

m
.)

0 5 10 15 20 25 30

0

50

100

150

200

Time (sec.)

Figure 18.1: Preference for parsimony in a fictitious physics experiment described by Jeffreys (1973). Balls roll down a ramp and the dis-
placement x is measured every 5 seconds. Left panel: The observations obey the simple equation 5x = t2. Right panel: a less parsimonious
equation fits the observations equally well. Scientists have a strong preference for the simple equation.
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As an illustration of Jeffreys’s point, the left panel of Figure 18.1
shows the simple 5x = t2 relation, whereas the right panel shows a
much more complicated relation between time and displacement that
also captures the data exactly. Confronted with a possible choice be-
tween the two relations, scientists will select the simple model without
any hesitation. Jeffreys concludes:

“An infinite number of laws agree with previous experience, and an
infinite number that have agreed with previous experience will inevitably
be wrong in the next instance. What the applied mathematician does,
in fact, is to select one form out of this infinity; and his reason for doing
so has nothing whatever to do with traditional logic. He chooses the
simplest.” (Jeffreys 1961, pp. 3-4)

In fact, the preference for parsimony is so strong that scientists will
adopt simple models even when these models describe the data less well
than their more complex competitors. To show this, Jeffreys (1973)
introduces a new example data set, where the displacement is now
subject to a small measurement error:

time t (sec.) 0 5 10 15 20 25 30

displacement x (cm.) 0 5 19 44 81 124 178

For this data set, the fit of the square law model 5x = t2 will be slightly
off, whereas

“we could find a polynomial of seven terms

x = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6

that would fit the observations exactly. Nevertheless the physicist would
still use the square law. (…) [the physicist’s] predilection for the simple
law is so strong that he will retain it when it does not satisfy the obser-
vations exactly, in spite of the existence of more complex laws that do
satisfy them exactly. He would apply the law to predict the value of x
for t = 60 sec. and would expect the result to be right within a few
centimetres, provided the plane was long enough to permit the displace-
ment required. He would, on the other hand, expect the polynomial of
seven terms to give a seriously wrong result when extrapolated to such an
extent.” (Jeffreys 1973, pp. 62-63)

The above considerations suggest that there is a trade-off between
goodness-of-fit and model complexity. If we prefer the model that fits the
sample data best, we will always select the most complex model. For
instance, a model with as many free parameters as there are data points
will be able to describe the sample data perfectly. But we do not want
a model that perfectly fits the present data. Instead, we want a model
that best predicts future data: we want to extrapolate and generalize (e.g.,
Myung and Pitt 1997, Myung 2000, Pitt and Myung 2002). Schemati-
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cally, we have

Generalizability︸ ︷︷ ︸
Fit to future data

= Goodness-of-Fit︸ ︷︷ ︸
Fit to present data

− Model Complexity︸ ︷︷ ︸
Data-fitting capacity

. (18.1)

This ‘equation’ conveys that generalizability is highest when a good fit
to the present data is achieved with a model that is relatively simple. It
will be always possible to achieve an even better fit with a more complex
model, but when the gain in fit is smaller than the increase in com-
plexity, generalizability suffers. As we will see in the next chapters, the
Wrinch-Jeffreys methodology allows us to navigate the fit-complexity
trade-off as an automatic by-product of Bayesian inference.

The Goldilocks Fit
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Figure 18.2: A Goldilocks fit to the
noisy data from the fictitious physics
experiment described by Jeffreys (1973).
In the top panel, the model is too simple
(i.e., it underfits the data and misses
replicable signal); in the middle panel,
the model is too complex (i.e., it overfits
the data and mistakes idiosyncratic noise
for replicable signal); in the bottom panel,
the model is as complex as it needs to be
to separate noise from signal to thereby
achieve optimal predictive performance.

Empirical data are usually understood to consist of a mix of signal and
noise (Silver 2012). The signal is the part that is structural, replicable,
systematic, and predictable. The noise is the part that is idiosyncratic,
that is, an unknown consequence of the specific setting in which the
experiment was conducted. For instance, when Galileo operated the
klepsydra his observations will have been determined to some extent by
momentarily lapses of attention. This is a source of measurement error
– its effects have nothing to do with the forces of gravity. By definition,
fluctuations due to noise are not replicable and not predictable. To drive
the point home:

Data = Signal︸ ︷︷ ︸
Replicable

+ Noise︸ ︷︷ ︸
Idiosyncratic

.

The trade-off between goodness-of-fit and parsimony implies that
there is a sweet spot (the so-called Goldilocks fit) where a statistical
model is sufficiently complex to extract most of the replicable pat-
terns in the data while sufficiently simple to ignore the idiosyncratic
noise. This way the Goldilocks model achieves optimal predictive per-
formance. Margin-figure 18.2 provides an example using Jeffreys’s
fictitious data set with measurement error. The top panel shows the
fit of a linear model. This linear model is parsimonious but it fails to
account for systematic, replicable patterns in the data. The model fails
– it is too simple and underfits the data. The middle panel shows the
fit of a high-order polynomial model. This model is not parsimonious
but it does account for the sample data perfectly. Unfortunately, the
model is so flexible that it tunes its many parameters not just to the sys-
tematic, replicable patterns, but also to the idiosyncratic measurement
noise. This model also fails – it is too complex and overfits the data. The
bottom panel shows the quadratic model. This model is more complex
than the linear model, allowing it to capture the systematic effect of
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constant acceleration; at the same time, the model is less complex than
the high-order polynomial, allowing it correctly to treat measurement
error as irreproducible noise (Vandekerckhove et al. 2015).

Overfitting in Practice

In practical applications, underfitting may be easier to detect than over-
fitting. Models that underfit are incapable of accounting for important
aspects of the data, as is demonstrated in the top panel of Figure 18.2.
In contrast, models that overfit rarely produce the wild wiggliness that
is on display in the middle panel of Figure 18.2. Instead, models that
overfit the data usually mimic the Goldilocks model by producing a
similar fit within the range of the data.
This phenomenon is illustrated in Figure 18.3, again with the noisy

data from the fictitious physics experiment reported by Jeffreys (1973).
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Figure 18.3: The problem with detecting overfitting as illustrated with the fictitious
physics experiment described by Jeffreys (1973). Noisy data originate from the quadratic
law 5x = t2. The top left panel shows the best fit of a second-order polynomial (i.e.,
x = a0 + a1t + a2t2), the top right panel shows the best fit of a third-order polynomial
(i.e., x = a0+a1t+a2t2+a3t3), the bottom left panel shows the best fit of a fourth-order
polynomial (i.e., x = a0 + a1t + a2t2 + a3t3 + a4t4), and the bottom right panel shows
the best fit of a fifth-order polynomial (i.e., x = a0 + a1t+ a2t2 + a3t3 + a4t4 + a5t5).
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Each panel shows the fit of a polynomial: a second-order polynomial
for the top left panel, a third-order polynomial for the top right panel,
a fourth-order polynomial for the bottom left panel, and a fifth-order
polynomial for the bottom right panel. It is immediately clear that even
the fifth-order polynomial –which is much more complex than needed–
provides an account that closely resembles that of the second-order
polynomial.
From a Bayesian perspective, there is a good reason why overly com-

plex models such as the fifth-order polynomial can mimic the perfor-
mance of the Goldilocks model (i.e., the second-order polynomial): the
concept of ‘fit’ is misleading, at least when it comes to model compar-
ison. In the example from Figure 18.3, the ‘fit’ does not refer to the
overall or average ability of the models to account for the data. Instead,
the fit shown is for a single set of parameter values (within each of
the models) that were cherry-picked because they produced the best ac-
count of the data. Specifically, the best-performing parameter values
were determined by a ‘least-squares’ fitting routine that finds the sin-
gle parameter vector with the smallest squared deviation between the
observed data and the prediction. The ‘predictions’ from this parame-
ter vector are then singled out and presented as ‘the’ fit of the model,
conveniently ignoring the earlier parameter selection process. It is not
surprising that the resulting performance is not representative of the
model’s overall predictive performance (cf. Pitt and Myung 2002).3 3 It can nonetheless be informative to

inspect the best fit. For instance, if even
the best fit is poor then this implies
that the model is misspecified and may
underfit the data. And if the best fit is
excellent this implies that at least some
parameter values are able to provide a
good account of the data.

To stress this important point, suppose you are an investor and you
are uncertain whether to do business with stockbroker firm Monkey
Business or Win-Win. The firm Monkey Business employs 20 brokers,
whereas Win-Win employs 100 brokers; your goal is to identify the firm
with the most expertise. Both companies agree to provide you with in-
formation on the predictive performance of their brokers over the past
year. Win-Win proposes that, as ‘goodness-of-fit’ for the entire firm,
you consider the predictive performance of their single best-predicting
stockbroker. Monkey Business disagrees and argues that a fairer assess-
ment of a firm’s success is obtained by averaging the predictions across
all brokers under employ. We hope you agree with Monkey Business.
With enough brokers under employ, the performance of the single best
broker –selected after the fact– will simultaneously be spectacularly
good and spectacularly unrepresentative.4 4We will later see that the Bayesian

solution to the trade-off between fit and
complexity basically involves the solution
proposed by Monkey Business, that is, to
determine success by averaging over
all brokers of a particular firm (i.e., all
parameter values of a particular model).

Table 18.1 shows the best-fitting parameter values of the four polyno-
mials (as per usual, these values are denoted by placing a ‘hat’ above the
parameter names, so â0 represents the best-fitting parameter value for
the intercept). The true relationship, 5x = t2, is shown in the top row.
Ideally, the rival polynomials would yield â2 = 0.20, and estimate the
remaining (redundant) parameters to be zero exactly. To interpret these
estimates correctly, Table 18.1 also shows the standard errors associated
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with each estimate. Briefly, a standard error indicates the precision asso-
ciated with a parameter estimate; it is the frequentist equivalent of the
standard deviation of the posterior distribution.

Table 18.1: Parameter point estimates âi (and their associated standard
errors underneath, in brackets) for four polynomial models fit to the data
from Jeffreys’s fictitious physics experiment. Corresponding model fits are
displayed in Figure 18.3. The true model is 5x = t2, so a2 = 0.20. Model
Mj denotes a polynomial of order j.

â0 â1 â2 â3 â4 â5

Truth − − 0.20 − − −
M2 −0.29 0.04 0.20 − − −

(0.87) (0.14) (0.00) − − −
M3 0.21 −0.29 0.23 −0.00 − −

(0.88) (0.28) (0.02) (0.00) − −
M4 0.12 −0.10 0.19 0.00 0.00 −

(1.07) (0.61) (0.09) (0.00) (0.00) −
M5 −0.03 1.05 −0.14 0.03 −0.00 0.00

(0.79) (0.82) (0.21) (0.02) (0.00) (0.00)

Note. All values are rounded to two decimals, including
0.00 and −0.00.

Jeffreys’s scenario features a straightforward signal accompanied by
very little idiosyncratic noise. With so little noise, the complex model
does not have much to overinterpret, and it will therefore closely mimic
the Goldilocks model. But this mimicry does come at a cost. To see this,
consider the column for â2 in Table 18.1. The true value is 0.20, and
the quadratic modelM2 correctly recovers it (i.e., â2 = 0.20), and does
so with great precision – the standard error is 0.004. However, as the
number of polynomial parameters grows, the standard error gradually
increases (i.e., 0.02 forM3, 0.09 forM4, and 0.21 forM5). In other
words, the inclusion of redundant parameters decreases the precision
with which the relevant parameters can be estimated.5 When the true 5 This is often referred to as the bias-

variance trade-off.value is 0.20, it is obviously better to report an estimate of 0.20 with a
standard error of 0.004 than it is to report an estimate of −0.14 with a
standard error of 0.21.
There are other problems with needlessly complex models as well.

For instance, if we adoptM5, why not adopt a model that is even more
complex? Ultimately we end up with an infinitely complex model (or at
least a model with as many parameters as there are data points) which
makes the model meaningless – it neither summarizes the data nor
allows good predictions. Moreover, the generalization of the complex
model will fail when the predictions are extrapolated far enough outside
the range of the observed data. This reflects the fact that the correct
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model for Galileo’s experiment is simply not a fifth-order polynomial.
Finally, choosing a needlessly complex model exposes the inexperienced
scientist to ridicule. Scientists prefer the simple model whenever the
data do not provide strong grounds for adopting a more complex one.6 6 “We could thus see no reason why we

should not solve DNA in the same way.
All we had to do was to construct a set of
molecular models and begin to play–with
luck, the structure would be a helix. Any
other type of configuration would be
much more complicated. Worrying about
complications before ruling out the possibility
that the answer was simple would have been
damned foolishness. (Watson 1968, pp.
47-48; italics added for emphasis).

The situation changes when we add measurement error to Jeffreys’s
data. Specifically, consider the following fictitious series of observations:

time t (sec.) 0 5 10 15 20 25 30

displacement x (cm.) 0 5 5 30 95 110 150

The data and associated polynomial best-fits are shown in Figure 18.4.
In contrast to the low-noise scenario discussed earlier, the more complex
models no longer mimic the behavior of the second-order polynomial.
With more noise in play, the complex models are able to describe the
idiosyncratic fluctuations in terms of their best-fitting parameter values.
Because these best-fitting parameter values are based on pure noise
the complex models will generalize poorly, even if they are tested on
new data that fall within the range of the observed data. For instance,
consider a replication experiment that measures displacement for times
t = {1, 2, 3, 4, 5} seconds. ModelsM3 andM4 predict the ball to move
up the ramp, whereas modelM5 predicts the ball to move down the
ramp first, and then up again. There predictions are preposterous.

Table 18.2: Parameter point estimates âi (and their associated standard errors under-
neath, in brackets) for four polynomial models fit to the data from Jeffreys’s fictitious
physics experiment with extra measurement noise. Corresponding model fits are dis-
played in Figure 18.4. The true model is 5x = t2, so a2 = 0.20. ModelMj denotes a
polynomial of order j. R2 denotes the proportion of variance explained (i.e., a measure
of goodness-of-fit).

â0 â1 â2 â3 â4 â5 R2

Truth − − 0.20 − − −
M2 −4.29 0.64 0.16 − − − 0.96

(13.09) (2.04) (0.07) − − −
M3 3.21 −4.36 0.61 −0.01 − − 0.97

(13.19) (4.17) (0.34) (0.01) − −
M4 1.75 −1.48 0.10 0.02 −0.00 − 0.98

(16.11) (9.15) (1.41) (0.07) (0.00) −
M5 −0.39 15.76 −4.85 0.49 −0.02 0.00 0.99

(11.84) (12.36) (3.16) (0.29) (0.01) (0.00)

Note. All values are rounded to two decimals, including 0.00 and
−0.00.

Table 18.2 shows the parameter estimates and associated standard
errors. Compared to the low-noise results shown in Table 18.1 it is evi-
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Figure 18.4: Polynomial fits to data from the fictitious physics experiment described by
Jeffreys (1973), but with extra measurement noise. Noisy data originate from the quadratic
law 5x = t2. The top left panel shows the best fit of a second-order polynomial (i.e.,
x = a0 + a1t + a2t2), the top right panel shows the best fit of a third-order polynomial
(i.e., x = a0+a1t+a2t2+a3t3), the bottom left panel shows the best fit of a fourth-order
polynomial (i.e., x = a0 + a1t + a2t2 + a3t3 + a4t4), and the bottom right panel shows
the best fit of a fifth-order polynomial (i.e., x = a0 + a1t+ a2t2 + a3t3 + a4t4 + a5t5).

dent that the addition of measurement noise has decreased the precision
of the estimates (i.e., the standard errors have increased considerably).
The estimate of α̂2 underM2 is still within one standard error of the
true value of 0.20 (i.e., 0.16 ± 0.07). As before, more complex models
have higher standard errors for α̂2 (i.e., 0.34 forM3, 1.41 forM4, and
3.16 forM5). Also note that R2, the proportion of explained variance,
increases as the models become more complex: R2 = 0.96 forM2 which
steadily increases to R2 = 0.99 forM5. In other words, the more com-
plex the model, the more impressive its best-fit to the sample data.7 7 This is also the case for the low-noise

scenario discussed earlier. We did not
show the R2 values then because they
were nearly 1, indicating a perfect fit.

This is also visually apparent from Figure 18.4: in terms of its deviation
from the sample observations, the fifth-order polynomial does better
than the second-order polynomial. This underscores the fact that when
we evaluate the performance of rival statistical models we need to go
beyond best-fit to the sample data and consider generalizability instead.



304 bayesian inference from the ground up

Two Examples from Psychology

Across the empirical sciences, researchers attach great importance to
parsimony. To demonstrate this point we leave Galileo’s bronze balls
and turn to psychology instead.
As a first example we consider the relation between physical inten-

sity I and subjective experience Ψ. For instance, participants in a psy-
chophysical experiment may be asked to judge the subjectively experi-
enced intensity of a briefly flashed light. As the physical intensity I of
the flash increases, so does the subjective experience Ψ – but what is the
function that relates I to Ψ?

Gustav Theodor Fechner (1801–1887),
experimental psychologist avant la lettre.
His 1860 book Elemente der Psychophysik
(Elements of Psychophysics) created the
field of psychophysics.

The most famous proposal for the relation between I and Ψ is known
as the Weber-Fechner law, or just Fechner’s law. Fechner’s law states
that Ψ = k ln (I − a); in words, subjective experience Ψ is a negatively
accelerating (i.e., logarithmic) function of physical intensity I. As math-
ematician Ian Stewart eloquently explains:

“If we look at a light, the brightness that we perceive varies as the loga-
rithm of the actual energy output. If one source is ten times as bright as
another, then the difference we perceive is constant, however bright the
two sources really are. The same goes for the loudness of sounds: a bang
with ten times a much energy sounds a fixed amount louder.

(…) Evolution pretty much had to come up with something like a
logarithmic scale, because the external world presents our senses with
stimuli over a huge range of sizes. A noise may be a little more than
a mouse scuttling in the hedgerow, or it may be a clap of thunder; we
need to be able to hear both. But the range of sound levels is so vast
that no biological sensory device can respond in proportion to the energy
generated by the sound. If an ear that could hear the mouse did that,
then a thunderclap would destroy it. If it tuned the sound levels down so
that the thunderclap produced a comfortable signal, it wouldn’t be able
to hear the mouse. The solution is to compress the energy levels into a
comfortable range, and the logarithm does exactly that. Being sensitive to
proportions rather than absolutes makes excellent sense, and makes for
excellent senses.” (Stewart 2012, pp. 33-34)

“An illustration of the Weber–Fechner
law. On each side, the lower square
contains 10 more dots than the upper
one. However the perception is different:
On the left side, the difference between
upper and lower square is clearly visible.
On the right side, the two squares look
almost the same.” Text and figure from
MrPomidor.

The left panel of Figure 18.5 shows three instances of Fechner’s
law. It is clear that Fechner’s law is relatively simple. Despite the fact
that the law features the two free parameters k and a, it can only ever
account for curves that are negatively accelerating. Fechner’s law is
parsimonious because it makes daring predictions.
In the 1950’s, Stanley Smith Stevens (1906–1973) proposed a rival

psychophysical law. Stevens’s law also relates I to Ψ, but through a
power function: Ψ = k Ib. Stevens’s law is considered less parsimo-
nious than Fechner’s law (cf. Lee and Wagenmakers 2013, Myung and
Pitt 1997, Townsend 1975). The reason is obviously not in the number
of free parameters (both laws have two), but in the effect that the pa-
rameters can exert on the shape of the function – that is, the effect on
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Figure 18.5: Parsimony in psychophysics. The left panel shows three examples of Fechner’s law, according to which subjectively expe-
rienced intensity Ψ is a negatively accelerated function of physical intensity I. The right panel shows three examples of Stevens’s law,
according to which subjectively experienced intensity Ψ relates to physical intensity I either as a negatively accelerated function (i.e., the
dashed line), a constantly accelerating function (i.e., the solid line), or a positively accelerating function (i.e., the dotted line), depending on
the parameter values. Fechner’s law is less flexible than Stevens’s law, because it can only account for one particular pattern of results – in
other words, the predictions from Fechner’s law are riskier and less vague.

predictions. Specifically, when b < 1 Stevens’s law produces negatively
accelerating curves; when b = 1 Stevens’s law produces a constantly
accelerating curve (i.e., a straight line); and when b > 1 Stevens’ law
produces positively accelerated curves. This is illustrated in the right
panel of Figure 18.5 (cf. Stevens 1975, Figure 5; Stevens 1961).
Townsend (1975, p. 213) remarks “With regard to degree of pre-

cision, Fechner’s predicted psychophysical function makes a stronger
statement about the world than does that relationship described by
Stevens. (…) by choosing b greater than or less than 1, one can make the
function positively or negatively accelerated without affecting the sign
of the first derivative, whereas we are constrained to a negatively accel-
erated function with the logarithmic expression as long as we demand
(as we must) that the function be monotonic increasing”. Similarly,
Myung and Pitt (1997, p. 82) write “(…) psychological and physical di-
mensions are assumed to be related by a power function in Stevens’s
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law, making it capable of fitting data that have negative, positive, and
zero curvature. Fechner’s law assumes a logarithmic relationship, which
can fit data patterns with a negative curvature only.” In other words,
Fechner’s law is more parsimonious than Stevens’s law.8 8 Fechner’s law is in fact a special case of

Stevens’s law (Kvålseth 1992). Additional
theoretical reflections can be found in
MacKay (1963). See the final exercise
in this chapter for a Bayesian warning
against the blanket statement that
Fechner’s law is less parsimonious than
Stevens’s law.

How strong is the preference that scientists have for Fechner’s rela-
tively simple logarithmic law over Stevens’s relatively complex power
law? To gauge this, imagine that the only data sets at our disposal show
a negatively accelerated curve.9 In this hypothetical scenario, the follow-

9 This situation is analogous to that
shown in Figure 18.3, where the data are
consistent with the simple second-order
polynomial.

ing would be true:

◦ If Fechner’s law had already been proposed, no serious scientist
would ever propose Stevens’s law as a rival hypothesis. There would
simply be no point.

◦ If a serious scientist were nonetheless to propose Stevens’s law as
a rival to Fechner’s law, this would have to be because of a strong
expectation that data violating Fechner’s law can be demonstrated in
a concrete experiment.

◦ Most scientists would nevertheless retain Fechner’s law until such
a concrete experiment had actually been conducted and the results
were shown to be inconsistent with Fechner’s law but consistent with
Stevens’s law. And in fact, Stevens proposed his law only because
the empirical data suggested it. For instance, Stevens found that a
value of b = 0.33 is typical for the assessment of brightness and
yields a negatively accelerating curve, consistent with Fechner’s
law. But the value of b = 1 yields a straight line –inconsistent with
Fechner’s law– and is characteristic for the assessment of repetition
rate; furthermore, the value of b = 3.5 yields a positively accelerating
curve –even more inconsistent with Fechner’s law– and is typical for
assessment of electric current running through the fingers (for these
and other examples see Stevens 1961, Table 1).

◦ If Stevens’s law had been proposed first – well, the immediate ques-
tion is whether this would even happen. A serious scientist, con-
fronted exclusively with negatively accelerating psychophysical
curves, would not turn first to the power functions. Or if the sci-
entist would propose a power function form, it would be under the
implicit or explicit restriction that b < 1.

To further underscore the importance of parsimony in the field of
psychology we turn to the drift diffusion model (DDM; Ratcliff 1978).
The DDM provides an account of how people process noisy information
in order to make a speeded decision between two response options. Fig-
ure 18.6 shows an application of the DDM to the popular lexical decision
task (Meyer and Schvaneveldt 1971). In this task, participants are con-
fronted with letter strings that they have to categorize quickly –usually



the principle of parsimony 307

by pressing one of two response buttons on a computer keyboard with
their index finger– as being either words (e.g., table) or ‘nonwords’ (e.g.,
drapa). The speed and accuracy of the classifications are thought to
measure how efficiently participants can access lexical representations
stored in memory. For instance, words that occur relatively often (i.e.,
high-frequency words such as grass) are classified faster and with fewer
mistakes than low-frequency words such as harpy.

a 

  z 

0 

N ondecision Time 

'word' boundary 

v = drift rate 

Variable sample paths illustrate within-trial 

variability in drift rate (i.e., s) 

'nonword' boundary 

time 

Decision Time 

Response Time = N ondecision Time + Decision Time 

Figure 18.6: A simplified drift diffusion model as applied to lexical decision (cf. Wagenmakers 2009). Noisy information is accumulated
until a threshold level of evidence is reached, which then triggers the associated response. The quality of information processing is mea-
sured by drift rate v, whereas response caution is quantified by the distance between the response boundaries. The right-skewed densities
near the two response boundaries visualize the shape of the predicted response time distributions. Bias favoring the ‘word’ or ‘nonword’
response is accounted for by starting point z, and nondecision time (i.e., encoding and response execution) is given by Ter .

However, the interpretation of performance on the lexical decision
task is frustrated by the fact that participants can trade speed for accuracy.
That is, participants can choose to adopt a more cautious attitude and
collect more information before committing to a decision – and by do-
ing so, they will slow down but also make fewer mistakes. It would be
desirable to have a measure of cognitive processing that is independent
of such strategic behavior, and this is exactly what the DDM delivers.
The basic structure of the DDM is shown in Figure 18.6. For every

individual decision, the DDM assumes that the observed response time
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is given by the sum of a nondecision component (i.e., Ter, the time
associated with encoding and response processes that take place regard-
less of what choice is made) and a decision component, which is the
main focus of the DDM. The decision component is characterized by
the accumulation of noisy information until a threshold of evidence is
reached, after which the corresponding decision is initiated. High abso-
lute values of drift rate v result in low-noise accumulation processes – a
quick march to the correct boundary. On the other hand, low absolute
values of v result in high-noise accumulation processes – a slow, mean-
dering trajectory that often terminates at the incorrect boundary. The
DDM parameter v therefore captures the efficacy of the information
accumulation process. In contrast, the DDM parameter a –the distance
between the two response boundaries– governs the strategic tradeoff
between speed and accuracy. Specifically, participants who are relatively
cautious will adopt a boundary separation that is relatively high, making
responses slow but relatively accurate (because relatively insensitive to
chance fluctuations). Prior preference for either the ‘word’ or ‘nonword’
decision is quantified by the starting point parameter z (Mulder et al.
2012). Finally, Figure 18.6 shows the predicted response time densities
next to the response threshold.10 10NB. These are predictions for data,

not prior or posterior distributions of
uncertainty about a model parameter.

In sum, the DDM can be used to decompose observed performance
(i.e., response speed and accuracy) into hypothesized psychological pro-
cesses such as the quality of information processing and response cau-
tion. Across numerous applications, Roger Ratcliff and Gail McKoon
demonstrated that (a) the DDM often provides an excellent account
of the data; (b) the DDM offers insights that go beyond what can be
accomplished with a direct evaluation of response time and accuracy.
The DDM model shown in Figure 18.6 makes a number of risky

predictions (cf. Ratcliff 2002). For instance, the model predicts that
response time distributions are always right-skewed, and that the skew
will always increase when z decreases toward zero. When the starting
point is unbiased (i.e., z = a/2), the DDM from Figure 18.6 makes
another risky prediction: correct responses are just as fast as errors, that
is, the predicted response time distribution is the same for corrects and
errors.
Now consider an alternative to the simple DDM which posits that

(a) starting point z varies from one trial to the next, which leads to the
prediction that errors are faster than correct responses; (b) drift rate
v varies from one trial to the next, which leads to the prediction that
errors are slower than correct responses (for an explanation see Ratcliff
and Rouder 1998, Figure 2). Let’s call the model that adds these two
across-trial variabilities the ‘complex DDM’. By changing its parameter
values, the complex DDM can account for slow errors, for fast errors,
and for errors and correct responses that are equally fast. It therefore
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makes predictions that are more vague that those from the simple DDM
shown in Figure 18.6.
Similar to our discussion of Fechner’s law vs. Stevens’s law above,

let’s assume that real data would consistently show that error responses
are about as fast as correct responses. This would mean the same as
before:

◦ No serious scientist would dare propose the complex DDM.

◦ The only reason for entertaining the complex DDM would be the
strong expectation that data can be found that go against the simple
DDM and can be accounted for by the complex DDM.

◦ Until these data are reported, many researchers would retain the
simple DDM. In fact, the simple DDM would receive compelling
support from the data, as rival models of response time generally
cannot account for the phenomenon that errors and corrects are
equally fast. The complex DDM with its across-trial variability is now
accepted as the standard model of response time, but –just as in the
case of Stevens’s law– this has happened because the empirical data
effectively necessitated the addition of the across-trial variabilities.
For instance, errors are usually slower than correct responses in the
lexical decision task; the reverse holds in simple perceptual tasks,
especially when speed is stressed. And even within the same task,
errors can be either slow or fast depending on the level of speed
stress (e.g., Wagenmakers et al. 2008).

The examples on psychophysics and speeded decision making both
underscore that researchers strongly prefer simple models: they are the
first models that are proposed and evaluated, and researchers demand
compelling empirical evidence before they feel forced to make their
models more complex by adding processes or parameters. No serious
scientist would propose a complex model as a worthwhile alternative
when the data are consistent with the simple model. Note that there
are countless ways in which a simple model can be expanded. With-
out guidance from the data, choosing one particular expansion would
be premature and amount to mere guesswork. Hence, the progression
from simple to complex models is one that scientists engage in reluc-
tantly, and only because they feel the data leave them no choice.

Ockham’s Razor
“Everything should be made as simple
as possible, but no simpler.” (Albert
Einstein).

No treatment of parsimony is complete without a discussion of Ock-
ham’s razor. Ockham’s razor is virtually synonymous with the principle
of parsimony. The metaphorical razor cuts away all theorizing that
is needlessly complex; the razor therefore embodies a preference for
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assumptions, theories, and hypotheses that are as simple as possible
without being false. The razor is named after the English logician and
Franciscan friar Father William of Ockham (c.1288-c.1348), who stated
“Pluralitas non est ponenda sine necessitate” (Plurality should not be
assumed without necessity), and “Frustra fit per plura quod potest fieri
per pauciora” (It is futile to do with more what can be done with fewer).
Indeed, it is not an exaggeration to state that the crucial difference
between Laplacean learning (the topic of Part II of this book) and Jef-
freyian learning is that only the latter respects Ockham’s razor. Indeed,
Jeffreys was quite explicit about the importance of Ockham’s razor:

“The best way of testing differences from a systematic rule is always to
arrange our work so as to ask and answer one question at a time. Thus
William of Ockham’s rule,‡ ‘Entities are not to be multiplied without ne- ‡William of Ockham (d. 1349 ?), known

as the Invincible Doctor and the Ven-
erable Inceptor, was a remarkable man.
He proved the reigning Pope guilty of
seventy errors and seven heresies, and
apparently died at Munich with so little
attendant ceremony that there is even
a doubt about the year. (…) The above
form of the principle, known as Ock-
ham’s Razor, was first given by John
Ponce of Cork in 1639. Ockham and a
number of contemporaries, however, had
made equivalent statements. A historical
treatment is given by W. M. Thorburn,
Mind, 27, 1918, 345-53.

cessity’ achieves for scientific purposes a precise and practically applicable
form: Variation is random until the contrary is shown; and new parameters in
laws, when they are suggested, must be tested one at a time unless there is specific
reason to the contrary. [italics in original] (Jeffreys 1961, p. 342; see also
Jeffreys 1937c, pp. 489-490 and Jeffreys 1938e, p. 716; cf. Poincaré 1913)

Jeffreys’s razor. Figure available at
BayesianSpectacles.org under a
CC-BY license.

Ockham, however, was far from the first to articulate the razor.
Indeed, the central idea goes back to Aristotle and Ptolemy. For in-
stance, Aristotle stated “Altogether it is better to make your basic things
fewer and limited, like Empedocles.” (Aristotle 350BC/1970, p. 10),
and Ptolemy wrote “We consider it a good principle to explain the phe-
nomena by the simplest hypotheses possible.” Readers curious to learn
more about William Ockham may consult the 1402-page tome William
Ockham (Adams 1987). We summarize some of the highlights here:

1. Ockham fell victim to his own razor: “Ultimately, Ockham gave up
the objective-existence theory–both where thoughts of particulars
and thoughts of universals are concerned–because Walter Chatton
convinced him that the objective-existence theory violated the princi-
ple of parsimony better known now as Ockham’s Razor.” (p. 102)

2. Ockham’s most explicit description of his razor is: “No plurality
should be assumed unless it can be proved by reason, or by experi-
ence, or by some infallible authority” (pp. 156-157; p. 1008), or, in
the original Latin: “Nulla pluralitas est ponenda nisi per rationem vel
experientiam vel auctoritatem illius, qui non potest falli nec errare,
potest convinci.” The overlap between this statement and those by
Jeffreys is striking.

3. Despite the fact that (a) the principle of parsimony goes back at least
to Aristotle; (b) other medieval scholars invoked the principle of par-
simony before Ockham (e.g., John Duns Scotus, Peter Auriol, and
Thomas Aquinas; see Ariew 1977); (c) Ockham did not justify the
principle of parsimony;11 (d) Ockham primarily used other argu-

11 Adams remarks that this is not really
surprising, because “contemporary
philosophers of science are convinced
that simplicity is a legitimate criterion
against which to judge the adequacy of
theories, but they are hard pressed to
explain why or even to say what they
mean by simplicity!” (p. 160)

BayesianSpectacles.org


the principle of parsimony 311

ments – despite these considerations, Adams argues that the associ-
ation of the razor with Ockham is nevertheless appropriate because
“in comparison with his predecessors, Ockham’s metaphysical conclu-
sions are what one would expect from a philosopher who let (D)-(G)
[Ockham’s statements about parsimony – EWDM] be his guide.” (p.
157; but see Ariew 1977 for the opposite opinion)

4. Adams argues that according to Ockham, “So far as the order of
salvation is concerned, God does not abide by the principle of parsi-
mony” (p. 159)

Figure 18.7: William of Ockham (c.1288-
c.1348) as depicted on a stained glass
window at a church in Surrey.

5. Ockham uses his razor to provide a “persuasive argument” that the
matter of the heavens is of the same kind as the matter of things on
earth: “…plurality should never be assumed without necessity, as has
often been said. But now there is no apparent necessity in supposing
that the matter here and there are of different kinds. For whatever
can be saved by different kinds of matter can be saved equally well or
better by matter of the same kind.” (pp. 160-161)

Note the similarity to a general principle
of law known as affirmanti incumbit
probatio: the onus of proof is on the
person who makes an assertion.

Figure available at BayesianSpectacles.org under a CC-BY license.

BayesianSpectacles.org
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Exercises

1. When discussing the right panel in Figure 18.1 we stated that “Sci-
entists have a strong preference for the simple equation.” This was
an understatement – the complex equation violates the laws of the
universe. Why?

2. Out of the models listed in Table 18.1, which one provides the best
fit to the data?

3. Consider again the stockbroker firms Monkey Business (with 20 bro-
kers) and Win-Win (with 100 brokers). Monkey Business argued that
a firm’s success should be assessed by averaging performance across
all brokers, not by singling out the one broker who happened to per-
form best. Win-Win argues that they distribute the work according to
past performance, such that more work will be performed by brokers
that do well. At the end of the year, almost all of the work will be
done by the single broker that outperformed the others, so that this
broker is in fact representative for the entire firm.12 Pretend that you 12 This is analogous to the process of

Bayesian estimation, where parameter
values that predict relatively well gain
plausibility at the expense of those that
predict poorly.

are the CEO of Monkey Business and write a short response.

4. Revisit Fechner’s law and Stevens’s law of psychophysics and (1) ex-
plain why data qualitatively consistent with both Fechner’s law and
Stevens’s law increase the plausibility of the former and decrease the
plausibility of the latter; (2) explain why Stevens’s law is not neces-
sarily less parsimonious than Fechner’s law; (3) draw a comparison
between models of psychophysics and the Goldilocks demonstration
from Margin-figure 18.2.

5. Consider again the drift diffusion model shown in Figure 18.6. What
qualitative similarities do you see with the process of Bayesian infer-
ence?

Chapter Summary

We demonstrated the appeal of parsimonious models by fitting ficti-
tious data from a simple physics experiment in which a ball rolls down
a ramp. The relation between time and distance is of interest, and we
considered the account provided by several polynomial models. The
example may have appeared trivial in the sense that scientists would pre-
fer the simple second-order polynomial model over the more complex
higher-order polynomial models, without any hesitation whatsoever, even
when these complex models provide a better fit to the sample data.13 13Or, more accurately, even when a

cherry-picked parameter value from the
complex models provides a better fit to
the sample data.

Two examples from psychology reinforced the general message: re-
searchers are reluctant to make their models more complex, and only do
so when the data leave them no other choice. How can we account for
this preference for parsimony within a Bayesian framework? The next
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chapters highlight two complementary mechanisms in turn: adjustment
of prior model probability and assessment of predictive performance. In line
with Jeffreys, we term these mechanisms simplicity postulates. “The theory of probability explains

Ockham’s razor” (Jeffreys 1937b, p. 265)

Want to Know More?

3 ‘Nullius in verba’ is the motto of the Royal Society, the UK national
science academy whose roots date back to 1660. Inspired by a poem
from Horace (65BC-8BC), the meaning of ‘Nullius in verba’ is ‘take
nobody’s word for it’. According to the Society website, “It is an
expression of the determination of Fellows to withstand the domi-
nation of authority and to verify all statements by an appeal to facts
determined by experiment.” Around the time that the Society was
founded, authority may have referred to the writings of the Greek
philosophers from antiquity (particularly Aristotle) whose claims
were sometimes speculative, unsupported by experiment, and yet
stood unchallenged for over a thousand years. For details see Sutton
(1994).

Coat of arms of the Royal Society.

3 Adams, M. M. (1987). William Ockham. Notre Dame, IN: University
of Notre Dame Press. A 1402-page tome. Some insight about Ock-
ham’s razor are mentioned in the main text above.

3 Etz, A., Haaf, J. M., Rouder, J. N., & Vandekerckhove, J. (2018).
Bayesian inference and testing any hypothesis you can specify. Ad-
vances in Methods and Practices in Psychological Science, 1, 281-295.
Explains why Bayesian inference comes with an automatic Ockham’s
razor. Also includes a discussion of Russell’s celestial teapot (see the
appendix to this chapter for details).14 14 Yes, we also recommended this article

in the chapter on Jeffreys’s platitude.
3 Jefferys, W. H., & Berger, J. O. (1992). Ockham’s razor and Bayesian

analysis. American Scientist, 80, 64-72. Highly recommended as a
general introduction to the role of parsimony in Bayesian inference.
Includes many concrete examples from a broad range of disciplines.

3 Jeffreys, H. (1931). Scientific Inference. Cambridge: Cambridge Univer-
sity Press. The second-best book on statistics ever written. This first
edition includes the Galileo example to demonstrate the influence of
parsimony in scientific reasoning, which was introduced earlier by
Wrinch and Jeffreys (1921).

3 Jeffreys, H. (1936). On some criticisms of the theory of probability.
The London, Edinburgh, and Dublin Philosophical Magazine and Jour-
nal of Science, 22, 337-359. One of several riveting (and mostly ig-
nored) articles published by Harold Jeffreys in the 1935-1939 period.
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Appendix: Teapots, Donkeys, and Dragons

Sir Bertrand Russell was an intellectual giant who worked mainly in
mathematics and philosophy. In 1950 Russell was awarded the Nobel
Prize in Literature “in recognition of his varied and significant writings
in which he champions humanitarian ideals and freedom of thought.”
During World War I, Russell was imprisoned for his pacifism. Here we
limit our discussion of Russell’s work to his introduction of a teapot:

Figure 18.8: British philosopher, math-
ematician, and pacifist Bertrand Russell
(1872-1970) in 1957. Dorothy Wrinch,
the heroine of this book, was a pupil of
Russell and introduced him to his later
wife Dora Black. In one of his letters,
Russell refers to her as “the elusive little
Wrinch” (Russell 1975/2009, p. 356).
For a discussion of Russell’s view on
probability see Jeffreys (1950).

“Many orthodox people speak as though it were the business of sceptics
to disprove received dogmas rather than of dogmatists to prove them.
This is, of course, a mistake. If I were to suggest that between the Earth
and Mars there is a china teapot revolving about the sun in an elliptical
orbit, nobody would be able to disprove my assertion provided I were
careful to add that the teapot is too small to be revealed even by our most
powerful telescopes. But if I were to go on to say that, since my assertion
cannot be disproved, it is intolerable presumption on the part of human
reason to doubt it, I should rightly be thought to be talking nonsense. If,
however, the existence of such a teapot were affirmed in ancient books,
taught as the sacred truth every Sunday, and instilled into the minds of
children at school, hesitation to believe in its existence would become
a mark of eccentricity and entitle the doubter to the attentions of the
psychiatrist in an enlightened age or of the Inquisitor in an earlier time.
It is customary to suppose that, if a belief is widespread, there must be
something reasonable about it. I do not think this view can be held by
anyone who has studied history. Practically all the beliefs of savages are
absurd.” (Russell 1952/1997, pp. 547-548)

Russell introduced the teapot as an argument against religion, but
it can be considered a more general argument in favor of Ockham’s
razor and the principle of parsimony. In the above fragment, note the
correspondence with Jeffreys’s maxim: “the onus of proof is always
on the advocate of the more complicated hypothesis” (Jeffreys 1961, p.
343).
Also note that it does not matter whether the teapot theory could

be quickly and decisively confirmed or falsified. Suppose that one year
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from now we stand to gain access to an advanced technology that could
tell us in an instant whether or not a celestial teapot orbits the sun. This
would be irrelevant to the current epistemic status of the teapot theory.
It is not the fact that the teapot theory cannot be falsified; it is that the
teapot theory provides an account of the world that adds complexity
without proof. For this reason, and this reason alone, the teapot theory
violates the canon of scientific procedure. As will be detailed in the next
chapter, the first simplicity postulate states that complex hypotheses are
a priori less plausible than simple hypotheses.
Russell was not the first to suggest that religious dogma violates

scientific procedure:

“It may be objected that there is a legitimate domain for authority, con-
sisting of doctrines which lie outside human experience and therefore
cannot be proved or verified, but at the same time cannot be disproved.
Of course, any number of propositions can be invented which cannot
be disproved, and it is open to any one who possesses exuberant faith to
believe them; but no one will maintain that they all deserve credence so
long as their falsehood is not demonstrated. And if only some deserve cre-
dence, who, except reason, is to decide which? If the reply is, Authority,
we are confronted by the difficulty that many beliefs backed by author-
ity have been finally disproved and are universally abandoned. Yet some
people speak as if we were not justified in rejecting a theological doctrine
unless we can prove it false. But the burden of proof does not lie upon
the rejecter. I remember a conversation in which, when some disrespect-
ful remark was made about hell, a loyal friend of that establishment said
triumphantly, “But, absurd as it may seem, you cannot disprove it.” If
you were told that in a certain planet revolving round Sirius there is a
race of donkeys who talk the English language and spend their time in
discussing eugenics, you could not disprove the statement, but would
it, on that account, have any claim to be believed? Some minds would
be prepared to accept it, if it were reiterated often enough, through the
potent force of suggestion. This force, exercised largely by emphatic
repetition (the theoretical basis, as has been observed, of the modern prac-
tice of advertising), has played a great part in establishing authoritative
opinions and propagating religious creeds.” (Bury 1913, pp. 19-20)

More recently, the American astronomer and skeptic Carl Sagan
(1934-1996) made a similar point. He invited the reader to imagine him
making the claim “a fire-breathing dragon lives in my garage”. The
following hypothetical conversation between Sagan and the reader then
unfolds:

“Show me,” you say. I lead you to my garage. You look inside and see a
ladder, empty paint cans, an old tricycle–but no dragon.

“Where’s the dragon?” you ask.
“Oh, she’s right here,” I reply, waving vaguely. “I neglected to men-

tion that she’s an invisible dragon.”
You propose spreading flour on the floor of the garage to capture the

dragon’s footprints.
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“Good idea,” I say, “but this dragon floats in the air.”
Then you’ll use an infrared sensor to detect the invisible fire.
“Good idea, but the invisible fire is also heatless.”
You’ll spray-paint the dragon and make her visible.
“Good idea, except she’s an incorporeal dragon and the paint won’t

stick.”
And so on. I counter every physical test you propose with a special

explanation of why it won’t work.
Now, what’s the difference between an invisible, incorporeal, floating

dragon who spits heatless fire and no dragon at all? If there’s no way to
disprove my contention, no conceivable experiment that would count
against it, what does it mean to say that my dragon exists? Your inability
to invalidate my hypothesis is not at all the same thing as proving it
true. Claims that cannot be tested, assertions immune to disproof are
veridically worthless, whatever value they may have in inspiring us or in
exciting our sense of wonder. What I’m asking you to do comes down to
believing, in the absence of evidence, on my say-so.” (Sagan 1995, p. 171)

We strongly agree with the part of the Bury-Russell-Sagan argument
which holds that the onus of proof is on the advocate of the more
complicated hypothesis. At the same time, however, we strongly disagree
that it is the openness to empirical falsification that characterizes a
scientific hypothesis.
To clarify, the mere fact that an assertion is falsifiable does not make

it scientific. For instance, the Egyptian-American biochemist Rashad
Khalifa (1935-1990) concluded that the Quran contains the prediction
that the word will end in 2280: “Thus the world ends in 1710 AH,
19 × 90, which coincides with 2280 AD, 19 × 120. For the disbelievers
who do not accept these powerful Quranic proofs, the end of the world
will come suddenly” (Khalifa 2010, p. 1481 in his Appendix 25, ‘End
of the World’, pp. 1479-1482). Such precise doomsday predictions Khalifa was assassinated by Sunni Islamic

extremists on January 31, 1990.are highly falsifiable –and so far all of them have been falsified– but
predictions derived from holy scripture are certainly not scientific.
The reverse also holds: a scientific assertion need not be falsifiable.

This goes for most claims about events that have happened in the past
about which no more information will be forthcoming. For instance,
based on an evaluation of all historical information available, one may
make the following claim: “The philosopher Leucippus, inventor of
atomism, truly existed.” When backed up by a comprehensive analysis
of ancient Greek and Latin texts, this claim strikes us as eminently
scientific, and certainly not “veridically worthless”. What is essential is
that the claim is supported by evidence.16 For a similar view see the box

16 Consider the Aesop (c. 620–564 BC)
fable ‘The Fox and the Monkey’: “A Fox
and a Monkey were travelling together
on the same road. As they journeyed,
they passed through a cemetery full of
monuments. “All these monuments
which you see,” said the Monkey, “are
erected in honour of my ancestors, who
were in their day freed-men, and citizens
of great renown.” The Fox replied, “You
have chosen a most appropriate subject
for your falsehoods, as I am sure none of
your ancestors will be able to contradict
you.” ” (Townsend 1887, p. 131)

below.
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Josiah Royce on the Sciences of Past History

In the introduction to Poincaré’s trilogy The Foundations of Science,
the American philosopher Josiah Royce (1855-1916) elaborates on
Poincaré’s notion that scientific hypotheses can be valuable even
when they cannot be confirmed or falsified by experience:

“Unverifiable and irrefutable hypotheses in science are indeed, in
general, indispensable aids to the organization and to the guidance
of our interpretation of experience. (…)

The historical sciences, and in fact all those sciences such as ge-
ology, and such as the evolutionary sciences in general, undertake
theoretical constructions which relate to past time. Hypotheses
relating to the more or less remote past stand, however, in a posi-
tion which is very interesting from the point of view of the logic of
science. Directly speaking, no such hypothesis is capable of confir-
mation or of refutation, because we can not return into the past to
verify by our experience what then happened. (…)

(…) whenever a science is mainly concerned with the remote past,
whether this science be archeology, or geology, or anthropology, or
Old Testament history, the principal theoretical constructions always
include features which no appeal to present or to accessible future
experience can ever definitely test. Hence the suspicion with which
students of experimental science often regard the theoretical con-
structions of their confrères of the sciences that deal with the past.
The origin of the races of men, of man himself, of life, of species, of
the planet; the hypotheses of anthropologists, of archeologists, of
students of ‘higher criticism’—all these are matters which the men
in the laboratory often regard with a general incredulity as belonging
not at all to the domain of true science. Yet no one can doubt the
importance and the inevitableness of endeavoring to apply scientific
method to these regions also. Science needs theories regarding the
past history of the world. And no one who looks closer into the
methods of these sciences of past time can doubt that verifiable and
unverifiable hypotheses are in all these regions inevitably interwo-
ven (…)” (Royce, in Poincaré 1913, pp. 17-20; cf. Poincaré 1913, p.
343)
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If a high probability is ever to be attached to a general law, without needing a
change in the form of the law for every new observation, some principle that
arranges laws in an order of decreasing initial probability with increasing
number of adjustable parameters is essential.

Jeffreys, 1961

Chapter Goal
We are grateful to Riet van Bork for
detailed comments on an earlier draft.The previous chapter showed that scientists have a strong preference

for simple models. This accords with Jeffreys’s razor which states that
“variation is to be taken as random until there is positive evidence to the
contrary”. The razor can be given a Bayesian implementation through
two complementary simplicity postulates. In this chapter we focus on the
first postulate, which holds that the preference for parsimony expresses
itself through the unequal assignment of prior model probabilities,
such that simple models are judged to be more plausible a priori than
complex models. This entails that for an infinitely long series of increas-
ingly complex models, the prior probabilities need to form a convergent
series (Wrinch and Jeffreys 1921; 1923).

Prior Probability as a Convergent Series

Consider again the scenario of the polynomial models outlined in the
previous chapter. For any two variables x and t, we can entertain an
infinite number of polynomial models of increasing order:

M1 : x = a0

M2 : x = a0 + a1t

M3 : x = a0 + a1t+ a2t
2

M4 : x = a0 + a1t+ a2t
2 + a3t

3

M5 : x = a0 + a1t+ a2t
2 + a3t

3 + a4t
4

M6 : x = . . .
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Now suppose we wish to assign prior probabilities to each possible
model from this infinitely large set. The immediate problem is that
the models cannot be equally plausible a priori, for this implies that the
probabilities do not sum to one. In order to have the prior probabilities
sum to one (as they must), they need to form a convergent series. “An infinite number of laws may be possi-

ble, and if they are exclusive the sum of
their initial probabilities cannot exceed 1,
and they must form a convergent series.”
(Jeffreys 1980, p. 452)

One prominent example of convergence is given by geometric series.
Letting m index model complexity, with m = 1 the simplest model,
one popular example of a geometric series assigns prior probabilities as
2−m. This means that the simplest model has prior probability 1/2, the
next simplest has 1/4, and the series continues as 1/8, 1/16, 1/32, . . . . As
required, this series sums to one.1 Geometric series have the property 1 So

∑∞
m=1 2

−m = 1.

that the ratio between any two consecutive terms is constant – in the
above example case, the ratio is always two: a priori, model m = 1 is
twice as likely as model m = 2, model m = 2 is twice as likely as model
m = 3, and so on. This means that the preference for parsimony does
not depend on what model we define as the simplest, as we will now
explain. Consider the sequential testing procedure proposed by Jeffreys:

“We are to admit no more causes of natural
things than such as are both true and
sufficient to explain their appearances. To
this purpose the philosophers say that
Nature does nothing in vain, and more is
in vain when less will serve; for Nature
is pleased with simplicity, and affects
not the pomp of superfluous causes.”
[italics in original] (Newton 1726/1846, p.
384; this is his first “rule of reasoning in
philosophy”).

“One important principle now stands out. We are looking for a system
that will in suitable cases attach probabilities near 1 to a law. But the laws
we have to consider at the outset may be infinite in number, and if they
are all equally probable the initial probability of each must be zero. But
then the posterior probabilities of laws are proportional to a lot of num-
bers each containing a zero factor and therefore are totally indeterminate.
We could make no progress at all. The way out is obvious enough when
the problem is stated. Even on no observational information at all, we
can take the probabilities of laws all positive. They can form the terms
of a convergent series of sum 1, such as

∑
2−m. At this point the notion

of simplicity enters. We do in fact try a simple law first, say that our ob-
served quantity is constant. If this fails we try a linear variation; if this
fails we try a quadratic form, and so on. For any law expressible by a dif-
ferential equation and therefore any law of classical physics, we can attach
a definite number to the complexity of the law and assign its place in the
initial probability sequence.” (Jeffreys 1957, p. 348)

and

“Precise statement of the prior probabilities of the laws in accordance
with the condition of convergence requires that they should actually
be put in an order of decreasing prior probability. But this corresponds
to actual scientific procedure. A physicist would test first whether the
whole variation is random as against the existence of a linear trend;
then a linear law against a quadratic one, then proceeding in order of
increasing complexity. All we have to say is that the simpler laws have the
greater prior probabilities. This is what Wrinch and I called the simplicity
postulate.” (Jeffreys 1961, p. 47)

Now assume that we proceed as Wrinch and Jeffreys suggest. We
assign prior probabilities as a geometric series and are ready to test the
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existence of a linear trend. We then run into a colleague who informs
us that this test has already been done in a different lab, and that it
conclusively falsified the random variation model. We have therefore
learned that the m = 1 model can be eliminated from the set of can-
didate models.2 We now have two options. The first is to update our 2 In line with Cromwell’s rule, them = 1

model will always retain a smidgen of
probability, but we ignore that here.

prior probabilities by renormalizing the series3, yielding the sequence

3 Because the factor 1/2 dropped out, all
the other terms need to be multiplied
by 2 in order to have the series sum to 1
again, that is, 2 ·{1/4+1/8+1/16+ . . . } =

2 · 1/2 = 1.

0, 1/2, 1/4, 1/8, . . .. The other option is to discard the random variability
model altogether and redefine the m = 1 model as the simplest model
that is still under consideration; we then distribute the prior probability
across the models that remain in play. For the geometric series, these
two options result in the same result – this is an appealing property that
is not shared by other convergent series, as we will show below.
Note that in our example geometric series, any particular model

has as much prior probability as all of the more complex models taken
together. This instantiates a relatively severe penalty for complexity.
In other words, as m increases the prior probability falls off relatively
steeply; for instance, whereas m = 1 has prior probability 1/2, m = 5

only has prior probability 1/32 ≈ .03. In physics problems this may be
eminently reasonable, but in other contexts the geometric penalty may
be overdoing it.4 4 For instance, network models for social

science data include many potential
edges or connections between nodes –
a geometric penalty on their number
would probably result in networks that
are too sparse.

The geometric penalty for complexity may be softened by consider-
ing the general definition of a geometric series:

∞∑
m=0

crm = c+ cr + cr2 + cr3 + . . . =
c

1− r
,

for |r| < 1. In order to make the general series sum to 1, both sides of
the equation need to be multiplied by (1−r)/c and this yields

(1− r)
c

∞∑
m=0

crm = (1− r) + (1− r)r + (1− r)r2 + (1− r)r3 + . . . = 1,

for |r| < 1. The constraint that the series sums to 1 therefore reduces
the general series to an equation with a single parameter, r, which
controls the ratio between the successive terms.5 The geometric series 5 Because this ratio is constant, it does not

matter whether we start withm = 0 or
m = 1.

shown earlier,
∑∞

m=1 2
−m obtains when r = 1/2. Geometric series that

decrease more slowly than r = 1/2 can be obtained by increasing the
value of r. For instance, we may consider a series in which the ratio
between successive terms is not 2 in favor of the simpler model, but
only 1.5. This is accomplished by setting r = 2/3, yielding

1

3

∞∑
m=0

(
2

3

)m

=
1

3
+

2

9
+

4

27
+

8

81
+ . . . = 1

≈ 0.33 + 0.22 + 0.15 + 0.10 + . . .

This progression feels more reasonable to us than that of the earlier
geometric series produced by r = 1/2. We see that r determines both the
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probability of the first term and the speed with which that probability
decreases over successive terms. Thus, a very slow decrease (e.g., r =

.95, such that the simple term is favored by a factor of 1/.95 ≈ 1.05 over
its more complex successor) can only be accomplished if the first term
has a relatively low probability of .05 – or else the series would not sum
to 1.
An alternative candidate for the assignment of prior probabilities is

the hyperharmonic series, which proceeds as m−p. This series converges
for p > 1; the most famous example is the case of p = 2, which produces
the series

∑∞
m=1m

−2 = 1 + 1/4 + 1/9 + 1/16 + . . . . This is known as
the Basel problem, and in 1734 Leonard Euler obtained the spectacular
solution π2

/6 (i.e., ≈ 1.64). So we have:

∞∑
m=1

1

m2
= 1 +

1

4
+

1

9
+

1

16
+ . . . =

π2

6
.

As before, when we want to use this series to assign prior probabilities it
needs to sum to 1 rather than π2

/6. Hence we multiply both sides of the
equation by 6/π2 and obtain:

∞∑
m=1

6

π2m2
=

6

π2
+

6

4π2
+

6

9π2
+

6

16π2
+ . . . = 1

≈ 0.61 + 0.15 + 0.07 + 0.04 + . . .

Leonhard Euler (1707-1783). What
hasn’t Euler done? A prolific mathe-
matician and scientist, Euler published
hundreds of books and articles dur-
ing his lifetime (and about 400 more
posthumously). Euler turned blind in
his late 50s but this hardly slowed down
his productivity. In a poll on the most
beautiful theorems in mathematics, the
top five features three theorems due to
Euler (Wells 1990). The most beauti-
ful equation was judged to be Euler’s
identity, eiπ + 1 = 0. The Lutheran
Calendar of Saints lists Euler on May
24th. Pierre-Simon Laplace is reported
to have said “Read Euler, read Euler, he
is the master of us all.” Euler died from
a brain hemorrhage while discussing the
orbit of Uranus. Portrait from 1753 by
Jakob Emanuel Handmann.

Two things are of note. First, in hyperharmonic series the ratio be-
tween consecutive terms is not constant. For the Basel problem above,
the prior ratio in favor of m = 1 over m = 2 equals 4, the ratio for
m = 2 over m = 3 equals 9/4 = 2.25, and the ratio for m = 3 over
m = 4 equals 16/9 ≈ 1.78. In general the prior ratio for model m over
model m + 1 in a hyperharmonic series equals (1 + 1/m)p, which shows
that as m increases the prior ratio decreases. In the Basel series, for in-
stance, the prior ratio for model m = 100 over model m = 101 equals
only (1 + 1/100)2 ≈ 1.02. This means that if we start out with a hyper-
harmonic prior model assignment and learn that m = 1 is false, it does
matter whether we update our prior model probabilities or first discard
the m = 1 model altogether and then assign the probabilities. In other
words, with hyperharmonic assignment it matters what model is desig-
nated as the simplest. Second, it is not immediately apparent from the
Basel series but the penalty for complexity is milder in a hypergeometric
series than in the geometric series. At the start of the Basel series, the
benefit of m = 1 over m = 2 and that of m = 2 over m = 3 is actu-
ally bigger than that from the geometric r = 1/2 series. Consider the
harmonic series (i.e., set p = 1). We then have:

∞∑
m=1

1

m
= 1 +

1

2
+

1

3
+

1

4
+ . . . =∞.
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This harmonic series is similar to the geometric r = 1/2 series in that
the prior ratio in favor of m = 1 over m = 2 is 2; however, subsequent
ratios are smaller than 2, indicating that the harmonic series decreases
more slowly than the geometric series. Although the harmonic series
does not converge and can therefore not be used for prior assignment,
this can be remedied by employing instead a hyperharmonic series with
p = 1 + ϵ, where ϵ is a small number greater than zero.6 6One of the exercises at the end of this

chapter is to judge whether the series
with ϵ = 0.01 yields a series that could
be recommended for the assignment of
prior model probabilities.

In general, any hyperharmonic value of p ∈ (1, 2] would be a candi-
date for prior assignment. This offers some flexibility in how the prior
model probabilities are set. Even more flexibility is possible when we
construct a hyperharmonic series by omitting the first k terms and then
normalizing. This can make the sequence decrease very slowly from the
start. For instance, let’s return to the Basel series with p = 2. Omitting
the first two terms gives

∞∑
m=3

1

m2
=

1

9
+

1

16
+

1

25
+

1

36
. . . =

π2

6
− 5

4
.

Normalizing this series yields

∞∑
m=3

12

(2π2 − 15)m2
=

4

6π2 − 45
+

3

8π2 − 60
+

12

50π2 − 375
+

1

6π2 − 45
+ . . . = 1

≈ 0.28 + 0.16 + 0.10 + 0.07 + . . .

Note that in the original hyperharmonic series, the ratio between the
first and the second model was 4; in the new series, this is the ratio
between the first model and the fourth model. More slowly decreasing
series can be obtained by omitting more initial terms. For instance, we
again take the Basel series and omit the first 99 terms. This gives

∞∑
m=100

1

m2
=

1

10000
+

1

10201
+

1

10404
+

1

10609
. . . ≈ 1

99.50
.

Normalizing this yields

∞∑
m=100

99.50

m2
=

99.50

10000
+

99.50

10201
+

99.50

10404
+

99.50

10609
. . . ≈ 1

≈ 0.0100 + 0.0098 + 0.0096 + 0.0094 + . . .

“Thus in any significance problem the
question will be: Is the new parameter
supported by the observations, or is
any variation expressible by it better
interpreted as random? Thus we must
set up two hypotheses for comparison,
the more complicated having the smaller
initial probability.” (Jeffreys 1961, p. 246)

This series decreases very slowly: the prior ratio between the first and
the second model, the second and third model, and the third and the
fourth model are all about 1.02. At first blush it may seem attractive to
use such a slowly-decreasing series, as it does not insert a strong prior
preference for simplicity, and hence corresponds to a seemingly objec-
tive choice that “let’s the data speak for itself”. However, the drawback
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of such a series is that no single model receives much prior probabil-
ity at all. Even worse, the slowly decreasing series implicitly reflects a
strong belief that the best model is highly complex. For instance, in
the series above the sum of the probabilities for the simplest 50 models
is only about 0.003. Instead of “letting the data speak for itself”, such
an assignment of prior probabilities indicates a firm prejudice against
simple models. “The feeling that harmonious simple

order cannot be deceitful guides the
discoverer both in the mathematical and
in the other sciences, and is expressed
by the Latin saying: simplex sigillum veri
(simplicity is the seal of truth).” (Pólya
1957, p. 45; italics in original). This Latin
saying was also the motto of Herman
Boerhaave (1668-1738), a Dutch botanist,
chemist, and physician whose fame at
the time is evident from the fact that he
eventually received a letter from China
that was addressed to “the illustrious
Boerhaave, physician in Europe”.

In sum, the first simplicity postulate states that simple models are a
priori more plausible than complex models, and that the sequence of
model probabilities forms a convergent series. This postulate imple-
ments a Bayesian Ockham’s razor: simple models are retained until new
evidence forces them to be abandoned. The first simplicity postulate
therefore accords with common sense and with scientific practice – it
just makes explicit what most scientists tacitly assume. Although some
scientists may claim they reject the first simplicity postulate, they cannot
help but act as if they subscribe to it, both in their everyday lives and in
their scientific practice.7 7 This was also the position of Henri

Poincaré; for details see Chapter 21.

Critique and Defense: A Deep, Dark Forest

The first simplicity postulate has made few friends and many enemies.
Below we discuss and rebut the most important points of critique. The
most fundamental critique –that the first simplicity postulate is founded
upon an error of logic– motivates a discussion on what exactly is meant
with ‘prior probability’, which is the topic of the next chapter.
A warning to the reader: this section marks the start of a journey

that, to paraphrase the eighth World Chess Champion Mikhail Tal,
takes you into a deep dark forest where 2 + 2 = 5, and we can only
hope that the path leading out will yield insight rather than confusion.8 8 Renowned for his ability to navigate

even the most chaotic positions, Mikhail
‘The Magician from Riga’ Tal has stated:
“You must take your opponent into a
deep, dark forest where 2 + 2 = 5 and
the path leading out is only wide enough
for one.”

Practical readers may refuse to enter this forest altogether; they may
skip the remainder of this chapter (and the next chapter as well) and
instead contend themselves with the following conclusions:

◦ The first simplicity postulate reflects scientists’ preference for sim-
ple models over complex models, even before any data have been
observed.

◦ Instead of pondering the precise form of the prior probabilities, it
may be advisable to spend one’s time collecting new data.

◦ With some notable exceptions9, modern statistical analysis ignores 9 For instance Scott and Berger (2006,
2010).the first simplicity postulate and focuses on the second simplicity

postulate. As will be discussed in Chapter 22 (and as anticipated in
Chapters 15, 16, and 17 for the case of a universal generalization), the
second simplicity postulate provides an explanation of how data can
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support a simple model over a model that is more complex. Ergo:
the first simplicity postulate concerns the prior probabilities, for
which the observed data are irrelevant; the second simplicity postu-
late concerns the evidence, for which the observed data are essential.

Critique #1: The Agony of Choice

The treatment above will leave pragmatic researchers dissatisfied. In a
concrete problem, how should one assign the prior probabilities across
the rival models? Jeffreys acknowledged the problem:

“A definite choice of the initial probabilities is not possible, since our only
clue is that the series of initial probabilities must converge. However, it
seems reasonable that it should not converge faster than

∑
2−n or more

slowly than
∑

n−2; and in that case the ratio of initial probabilities of
consecutive terms will not be less than 1 or more than 2.” (Jeffreys 1961,
p. 246)

There appears to be no general principle or rule that dictates exactly
how prior probability ought to be distributed across a set of increasingly
complex models. We tentatively suggest the geometric series with r =
2/3 (yielding a ratio of 1.5 for consecutive terms) as a generic point of
departure, but it is no more than this – a tentative suggestion based on
an intuitive assessment. An acceptable distribution of prior probability
will depend on the field, or even on the topic under study. In physics
one may have a strong prior preference for simple models; in genetics
and network modeling this preference may be much weaker; and in
experimental psychology the preference for simple models may fall
somewhere in between.
The first simplicity postulate therefore does not suggest a specific

convergent series: the postulate is satisfied by any series as long as is it
convergent. In our opinion, this lack of specificity does not constitute
a strong argument against the postulate itself. Instead one may take ad-
vantage of the flexibility that the postulate allows and adopt a different
premium on parsimony for different scientific fields; little would be
gained by a Procrustean insistence that widely different fields and topics
of study ought to adopt the exact same prior penalty for complexity.
Jeffreys explicitly addressed the critique that the assignment of prior

model probabilities is arbitrary, and argued against it on two counts.
First, Jeffreys believed the assignment to be inevitable, and that it
would therefore be better to communicate it openly, or even attempt
to construct a ‘consensus prior’:

“once the problem is clearly stated and recognized not to have a unique
answer, it could be referred to an international body of scientists, who
could recommend one of the alternatives for general use. The decision
might be held to represent an expression of average human prejudice,
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but, after all, human prejudices exist and such a decision would bring
them into the open. At present a person may have quite different stan-
dards for his own hypotheses and other people’s, without ever feeling the
need to mention the difference. There are people who appear to attach
probability 1 to their own views and others who attach probability 1

2
to

any hypothesis, however often it has been verified; and both types would
maintain that they are scientific.” (Jeffreys 1973, p. 41)

Second, Jeffreys pointed out that the assignment should not matter
when sufficient data are available – the Bayes factor overwhelms the
prior odds:

“we shall find that in cases where there are many relevant data or where
a crucial test is possible, the posterior probabilities are affected very little
by quite considerable changes in the prior probabilities; a course of action
would be affected by such changes only in circumstances where the ordi-
nary scientific comment would be ‘get some more observations’. We can
make considerable progress while still leaving some latitude in the choice
of initial probabilities.” (Jeffreys 1973, p. 41)

In other words, when we are uncertain which prior probability assign-
ment is most apt, we can conduct a sensitivity analysis and apply several
such assignments – if the results are qualitatively identical this strength-
ens our confidence in the robustness of the conclusions; if, however,
the results depend on the prior assignment in an important way, this
weakens our confidence. In the latter case it should be explicitly ac-
knowledged that the conclusions hinge on the specific assignment of
prior probability. Alternatively, more data may be collected until the
evidence is sufficiently compelling to overwhelm reasonable changes in
the specification of the initial probabilities.

Critique #2: The Definition of Simplicity

The simplicity postulate assumes that models can be ordered according
to simplicity – but how exactly do we define simplicity? Jeffreys argued
that the definition centers on the number of adjustable (‘free’) parame-
ters:

“Russell says several times that the notion of simplicity is vague; as I use
it it is perfectly precise. Of two laws, the simpler is the one that contains
fewer parameters left free to be adjusted to fit the observations.” (Jeffreys
1950, p. 316)

On this account, parsimony is synonymous with “paucity of parame-
ters” (Popper 1959, p. 384). Unfortunately, this definition serves at best
as a rough approximation. Wrinch and Jeffreys were aware of this, and
their proposal to define simplicity was in fact more sophisticated than
just counting the number of free parameters, as described in the box
below.
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The Complexities of Defining Complexity

Wrinch and Jeffreys realized that a model’s parsimony is reflected
not just in the number of free parameters but also in the functional
form of the law:

“All we have to say is that the simpler laws have the greater prior
probabilities. This is what Wrinch and I called the simplicity postu-
late. To make the order definite, however, requires a numerical rule
for assessing the complexities of a law. In the case of laws express-
ible by differential equations this is easy [! EWDM]. We could define
the complexity of a differential equation, cleared of roots and frac-
tions, by the sum of the order, the degree, and the absolute values
of the coefficients. Thus

s = a

would be written as
ds/dt = 0

with complexity
1 + 1 + 1 = 3.

s = a+ ut+ 1
2
gt2

would become
d2s/dt2 = 0

with complexity
2 + 1 + 1 = 4;

and so on. Prior probability 2−m or 6/π2m2 could be attached to
the disjunction of all laws of complexity m and distributed uniformly
among them [for a modern application of this rule see Scott and
Berger 2010 – EWDM]. This does not cover all cases, but there is
no reason to suppose the general problem insoluble.” (Jeffreys 1961,
p. 47; italics in original)

The details of this rule may be contested (e.g., Ackerman 1963) but
it should be acknowledged that in postulating a rule that quantifies a
model’s simplicity, Wrinch and Jeffreys were far ahead of their time.
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One of the problems with the Wrinch-Jeffeys rule is that it ignores
the impact of the prior distribution. For instance, consider a binomial “I will explain myself; how did the

ancients understand law? It was for
them an internal harmony, static, so to
say, and immutable; or else it was like a
model that nature tried to imitate. For
us a law is something quite different;
it is a constant relation between the
phenomenon of to-day and that of to-
morrow; in a word, it is a differential
equation.” (Poincaré 1913, p. 299)

model with chance parameter θ. A complex model would assign θ a rel-
atively wide distribution such as the dome-shaped beta(2, 2) prior that
spans the entire range from θ = 0 to θ = 1: M1 : θ ∼ beta(2, 2) (Fig-
ure 19.1, top left panel). Suppose the model is proposed to account for
performance in a two-choice task – a participant has to identify whether
a visual target was briefly presented on the left-side or the right-side of
a computer monitor. In this task, chance performance is at θ = 1/2, and
this motivates another binomial model in which θ is restricted to the in-
terval I ranging from 1/2 to 1: M+ : θ ∼ beta(2, 2)I(1/2, 1) (Figure 19.1,
top right panel).10 By imposing the interval restriction θ ∈ I(1/2, 1), 10 The bottom two panels of Figure 19.1

will be discussed later.M+ has lost the ability to account well for proportions lower than 1/2.
The predictions ofM+ are more concentrated than those ofM1 and
in this senseM+ offers a riskier inferential bet. In other words,M+

presents an account of the world that is simpler than that given byM1,
even though both models have a single free parameter.
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Figure 19.1: A quartet of beta distributions for a binomial chance θ. The top left panel
shows a beta(2, 2) distribution; the top right panel shows the effect of adding the restric-
tion that θ > 1/2; the bottom left panel shows the effect of adding the restriction that
θ < 1/2; the bottom right panel show five equal-interval subsets randomly selected from a
total of ten. Figure from R, courtesy of František Bartoš.

The Wrinch-Jeffreys rule also cannot account for the fact that adding
parameters to a model can make that model simpler. This happens when
the additional parameters act to constrain the values of the other pa-
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rameters.11 For example, imagine that you are tasked to rate the quality 11We have learned this from Michael Lee
at UCI.of McDonald’s hamburgers across 50 different franchises. At every

franchise, you order a series of burgers and rate the quality of each
burger as ‘acceptable’ or ‘poor’. Let θi represent the chance that any
one burger from franchise i is ‘acceptable’. In one model, you assign
independent uniform prior distributions to each of the 50 values of
θ: M1 : θi ∼ beta(1, 1). However, this model has an obvious flaw: it
assumes that the franchises are independent. This assumption violates
your background knowledge that McDonald’s franchises are highly
similar. Even if you knew nothing about McDonald’s franchises be-
forehand, your visits to, say, the first 20 franchises would quickly teach
you that they serve products that are virtually identical. Therefore, if
the average θ across the first 20 restaurants is about 0.60, it would be a
serious mistake to assume that, when you are about to enter the next
restaurant, θ21 ∼ beta(1, 1); instead, you would strongly expect θ21 to
be near 0.60. The statistical idea that reflects this intuition is that of
hierarchical modeling12. A hierarchical model postulates a group-level dis- 12 See for instance Gelman and Hill

(2007), Gelman et al. (2014a), Lee (2018),
Lee and Wagenmakers (2013), Rouder
et al. (2005), Rouder and Lu (2005),
Rouder et al. (2008), and Shiffrin et al.
(2008).

tribution with a particular mean and variance, and the franchise-specific
θ’s are viewed as draws from this distribution. The group-level mean
indicates the average quality of the hamburgers across the franchises,
and the group-level variance indicates the fluctuation in the quality
from one franchise to the next (i.e., the across-franchise heterogeneity).
The hierarchical model has two additional parameters (the group-level
mean and the group-level variance) but these parameters govern the
franchise-specific θ’s, shrinking them to the group mean. This shrink-
age effect is particularly pronounced when you know that the franchises
are highly similar, as is the case for McDonald’s. This is why the hier-
archical model with its extra group-level parameters is actually simpler
than its non-hierarchical counterpart.
Another vivid demonstration of the fact that ‘paucity of parameters’

can be a poor indicator of parsimony is provided by Piantadosi (2018),
who showed that every scatterplot of (x, y) values can be approximated
arbitrarily well by a mathematical process that features only a single pa-
rameter, θ. A scatterplot drawing of an elephant, for instance, can be
achieved when θ = 0.2446847266734745458227540656... (and a few
hundred digits more). Although this model can capture the observed
data almost perfectly, it generalizes poorly to other scenarios; essentially
it just uses the decimals of θ to store the data values like a giant squirrel
storing nuts in its cheek pouches. In other words, the Piantadosi model
is merely a roundabout way to re-express the observed data, achiev-
ing no abstraction whatsoever. Of course, this was exactly the point:
“Thus, the construction shows that even a single parameter can overfit the
data, and therefore it is not always preferable to use a model with fewer
parameters.” (Piantadosi 2018; italics in original)



330 bayesian inference from the ground up

von Neumann’s Elephant

Researchers instinctively distrust models with many parameters.
Although these models can capture many different data patterns,
they may generalize poorly (Pitt and Myung 2002). The disdain
towards models with free parameters is aptly demonstrated with a
famous anecdote starring Enrico Fermi (1901–1954; awarded the
1938 Nobel prize in physics) and John von Neumann (1903–1957;
one of the most influential polymaths of the 20th century):

“One of the big turning points in my life was a meeting with Enrico
Fermi in the spring of 1953. In a few minutes, Fermi politely but
ruthlessly demolished a programme of research that my students
and I had been pursuing for several years. He probably saved us
from several more years of fruitless wandering along a road that was
leading nowhere. I am eternally grateful to him for destroying our
illusions and telling us the bitter truth. (…)

When I arrived in Fermi’s office, I handed the graphs to Fermi,
but he hardly glanced at them. He invited me to sit down, and
asked me in a friendly way about the health of my wife and our
newborn baby son, now fifty years old. Then he delivered his verdict
in a quiet, even voice. “There are two ways of doing calculations
in theoretical physics”, he said. “One way, and this is the way I
prefer, is to have a clear physical picture of the process that you are
calculating. The other way is to have a precise and self-consistent
mathematical formalism. You have neither.” (…)

In desperation I asked Fermi whether he was not impressed by
the agreement between our calculated numbers and his measured
numbers. He replied, “How many arbitrary parameters did you
use for your calculations?” I thought for a moment about our cut-
off procedures and said, “Four.” He said, “I remember my friend
Johnny von Neumann used to say, with four parameters I can fit an
elephant, and with five I can make him wiggle his trunk.” With that,
the conversation was over.” (Dyson 2004, p. 297; italics added for
emphasis)

von Neumann’s distrust is consistent with the first simplicity pos-
tulate, and indeed with the Wrinch and Jeffreys rule where model
parsimony is determined primarily by ‘paucity of parameters’.
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The Piantadosi model represents an extreme case of what is known
as ‘functional form complexity’ (Myung and Pitt 1997, Myung 2000;
Romeijn 2017; Harman and Kulkarni 2007, Chapter 3), an example of
which was discussed in Chapter 18 when we contrasted Fechner’s vs.
Stevens’s law of psychophysics – both models have two free parameters,
but Steven’s law can account for more data patterns and is therefore
more complex than Fechner’s law.
The above discussion demonstrates rather conclusively that there

is more to parsimony then just ‘paucity of parameters’.13 How then 13 A notable exception is when two
models differ only in the presence or
absence of a particular parameter. In
such a case, the model that lacks the
extra parameter is unambiguously
more parsimonious than the model that
includes the extra parameter.

should we rank the rival models in terms of simplicity? There are two
solutions. First, we may turn to a more general perspective on parsi-
mony. To appreciate this, note that there is a single underlying reason
why a model with a restricted prior distribution is simpler than a model
with a wider prior distribution (cf. the top panels of Figure 19.1), why
a hierarchical model is simpler than a non-hierarchical model; and
why the Piantadosi model is not simple at all, even though it only has
a single parameter. The reason is that simple models make precise pre-
dictions, whereas the predictions from complex models are vague. This
implies that in order to assess parsimony, we should not consider the
space of the model parameters, but instead the space of the model pre-
dictions (cf. Rosenkrantz 1976; 1977; MacKay 2003). The next chapter,
‘Prior probability as expected relative predictive performance’ elaborates
on this idea.

Figure available at BayesianSpectacles.
org under a CC-BY license.

A second solution to the problem of ranking models in terms of
their simplicity can be found in Jeffreys’ later work (cf. Howson 1988;
Howson and Urbach 2006, pp. 288-297) – the desired ranking corre-
sponds to the order in which the models come to mind:

“It seems undesirable to restrict the possible forms of law at all, but
merely to be ready for them as they arise for consideration, whatever their
form. This makes the relation to actual thought immediate–if there is no
reason to the contrary the order of decreasing initial probability is the order
in which somebody thinks of them. ‘Reason to the contrary’ arises in cases
where somebody asks: Why did nobody think of that before? The ideal
reasoner would be able to think of all laws; but we have to do our best,
and this decision gives a practical way of progress.” (Jeffreys 1961, p. 246;
italics added for emphasis)

Critique #3: An Infinite Model Space

Watkins (1985) and Sober (2015) pointed out that it is impossible to
conceive of all possible hypotheses, let alone rank them in order of their
complexity. New hypotheses may arise in the course of an investigation;
moreover, every single point in an continuous parameter space could be
conceived as a separate hypothesis. For instance, what of the hypothesis

BayesianSpectacles.org
BayesianSpectacles.org
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that the probability θ of a loaded dice landing on six equals log(7/5) ≈
0.3364722 . . . ?
Jeffreys anticipated these objections. First of all, note that the hy-

potheses that Jeffreys is concerned with are not haphazard constella-
tions of processes or parameters. They are hypotheses that a researcher
deems worthy of consideration. This means that unmotivated hypothe-
ses such as θ = log(7/5) never enter the ranking to begin with (cf.
Howson 1988). “Jeffreys later justified the assumption

that allowable laws form an enumerable
set by pointing out that all hypotheses
that scientists might want to test can
be stated in a finite number of words.”
(Howie 2002, p. 105)

Secondly, the fact that new hypotheses will arise over time does
not threaten the general idea of ranking the known hypotheses by
their simplicity. Jeffreys regarded scientific conclusions as provisional,
and he emphasized the importance of prior knowledge by conditioning
on it explicitly; translated to modern notation, Jeffreys would always
write p(H0 | data,K), where ‘K’ refers to prior knowledge, instead of
p(H0 | data). When we condition on our background knowledge we
obviously can include only those hypotheses that we are aware of.

Critique #4: Popper’s Problem with Probability
The section on Popper is based on joint
work with Riet van Bork and Jan-Willem
Romeijn.

The philosopher Karl Popper (1902–1994) argued that it is a logical mis-
take to believe that simpler models can have a higher prior or posterior
probability than more complex models (Popper 1959, Appendix ⋆viii;
see also Watkins 1985, pp. 110-116 and Forster and Sober 1994; for a
discussion see Sober 2015, pp. 87-93):

“Popper approached the problem of simplicity from a quite different
angle. He accepted the methodological thesis that a simpler hypothesis
should be preferred, other things being equal, to a less simple one; but
he repudiated the epistemological thesis that it should be preferred be-
cause it is more probable. On the contrary, he held that if l1 is simpler
(has fewer adjustable parameters) than l2, then l1 is less (or anyway not
more) probable than l2. Yet l1, so long as it survives tests, is methodolog-
ically preferable to l2 because it is easier to test. The larger the number
of adjustable parameters that a law contains the larger is the minimum
number of measurements needed to falsify it, and the less easy it is to
test.” (Watkins 1985, p. 113; italics in original)

To appreciate Popper’s argument, consider two hypotheses on who
murdered Boden “Boddy” Black Jr at Boddy Manor. Based on the avail-
able clues, detective Dupin argues that either Mrs. White or Mr. Green
committed the crime (i.e., HD : {W,G}); detective Poirot, however,
argues that the culprit is either Mrs. White, Mr. Green, or Colonel
Mustard (i.e., HP : {W,G,M}). Now it seems that HD is simpler than
HP . At the same time, however, it also seems that the probability that
HD is correct has to be smaller than the probability that HP is correct,
that is, p(HD) < p(HP ). After all, Poirot has an extra possibility to iden-
tify the culprit correctly. This reasoning led Popper to some dramatic
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conclusions – specifically, that all theories have probability zero (Popper
1959, p. 383; cf. Howson 1973; 1987).14 14 Based on an interview with Popper at

age 90, we are unsure whether or not
Popper changed his mind on this issue:
“When I asked Popper if he thought
that science was incapable of achieving
absolute truth, he exclaimed, “No no!”
and shook his head vehemently. He,
like the logical positivists before him,
believed that a scientific theory could
be “absolutely” true. In fact, he had
“no doubt” that some current scientific
theories were absolutely true (although
he refused to say which ones). But he
rejected the positivist belief that we can
ever know that a theory is true. “We
must distinguish between truth, which
is objective and absolute, and certainty,
which is subjective.” ”(Horgan 2015, p.
30).

We believe that Popper is correct in the following specific sense. Con-
sider again Figure 19.1, where the top-left panel shows the beta(2, 2)
prior distribution across candidate values of θ. Suppose we assign a
particular prior probability w to this model. Consider now the bottom-
right panel, where a new prior distribution for θ is constructed by
randomly selecting five out of ten equal-interval subsets (and renor-
malizing so that the area under the distribution equals 1). The random-
subset model is simpler than the beta(2, 2) model. In this scenario, Pop-
per is correct that the prior probability for the simpler model is lower
than that for the complex model. Specifically, the prior probability for
the random-subset model ought to be w/2. More generally, Popper’s
argument can be extended to claim that single parameter values drawn
from a continuous distribution ought to receive zero prior mass (e.g.,
Ackerman 1963; Watkins 1985). And these claims (which seemingly
contradict the work of Wrinch and Jeffreys outlined in Chapter 15) are
also correct – but only when the parameter values have been selected
randomly, without consideration of background knowledge or theory.15 15We thank Sophia Crüwell for this

insight.One of Jeffreys’s key ideas is that a hypothesis test is warranted when-
ever a specific single parameter value stands out for special attention,
because it corresponds to a general law. The next chapter will examine
this issue in more detail.
One aspect that Popper left unaddressed is the impact of the prior

distribution. Suppose we learn the relative prior probabilities that de-
tectives Dupin and Poirot assign to the suspects being guilty. Specifi-
cally, Dupin believes that p(W |HD) = 0.50 and p(G |HD) = 0.50,
whereas Poirot believes that p(W |HP ) = 0.99, p(G |HP ) = 0.005,
and p(M |HP ) = 0.005. In light of this information, are we still com-
fortable with the notion that HD is simpler yet less probable than HP ?
Dupin remains in much doubt, whereas Poirot seems to have made
his mind up. And if we are still comfortable with HD being both sim-
pler and less probable than HP , what if HD is altered by the smallest
possible amount, such that Dupin assigns a minuscule probability ϵ to
Colonel Mustard being the culprit.16 This yields the new probabilities 16 For concreteness, let’s say that ϵ is

in the order of the probability that the
moon is made out of green cheese.

p(W |HD) = 0.50 − ϵ/2, p(G |HD) = 0.50 − ϵ/2, and p(M |HD) = ϵ.
Would this minuscule change force us to reverse our earlier opinion on
which hypothesis is simpler and more probable?
The easiest and most popular rebuttal to Popper’s critique, however,

is to point out that the models under consideration ought to be exclusive,
that is, non-overlapping:

“Popper is right that Jeffreys’s simplicity postulate runs into the trouble if
the models considered are nested. However, Popper’s objection disappears
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if we consider only models that are not (Howson 1988).” (Sober 2015, p.
92)

Indeed, Jeffreys himself mentions that the laws under test ought to
be non-overlapping:

“The number of mutually exclusive scientific laws that might possibly be
true, before we have any observational evidence, is presumably infinite.”
(Jeffreys 1973, p. 37 (see also his Equation 1 on p. 75); italics added for
emphasis)

and

“The number of possible laws is certainly infinite. How can an infinite
number of mutually inconsistent laws all have finite probabilities?” (Jeffreys
1931, p. 43; italics added for emphasis)

For instance, in a Jeffreyian test between H0 : θ = 1 (i.e., a universal
generalization such as “all zombies are hungry”) versus H1 : θ ∼
beta(α, β), the single point θ = 1 is excluded from H1. Similarly, in a
test for a quadratic relationship, H1 is specified as x = a0 + a1t + a2t

2,
with a prior distribution on the test-relevant coefficient a2 that excludes
the single point a2 = 0. These exclusions create non-overlapping
hypotheses for which Popper’s concern does not hold (cf. Howson and
Urbach 2006, pp. 289; Henderson et al. 2010, p. 182).
Note that the discussion about excluding single points from a contin-

uous distribution is purely academic – the results of the test are exactly
the same, no matter if the point of interest is included or excluded:

“Notice that I have been using the average likelihood to compare a theory
with a special case of itself. I see nothing wrong with that. Of course, if
we wanted to compare the two in terms of probability, we should have to
take logical differences, equating (in our example) the Copernican special
case with the hypothesis C = S and the Ptolemaic alternative with C ̸= S.
As removal of a single point does not affect an integral, the relevant av-
erage likelihoods would be the same. Failure to see this possibility seems
to be most of what lies behind Popper’s oft-repeated equation of sim-
pler hypotheses with less probable hypotheses, and the consequent denial
that one can account for the importance of simplicity by connecting it to
probability.” (Rosenkrantz 1983, p. 76; italics in original)

In the 1961 edition of Theory of Probabil-
ity, Jeffreys responds to Popper’s analyses
and conclusions: “I cannot see however
that he has adequately considered the
principle of convergence (…).” (p. 36)

It is likely due to Popper’s concerns that several authors have argued
that a Bayesian hypothesis test needs to involve non-overlapping hy-
potheses. For instance, Rosenkrantz (1977, p. xi) states that “Strictly
speaking, Bayes’ rule can only be applied to a comparison of exclusive
alternatives” (cf. Rosenkrantz 1977, pp. 129-130; see also Henderson
et al. 2010, p. 182).
The discussion on whether or not overlapping hypotheses ought to

be allowed may be purely academic when individual points are con-
cerned; however, it becomes practically relevant as soon as the rival
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models are related through restrictions on intervals instead of points.
An immediate example is given by the comparison of the beta(2, 2)
prior distribution from the top-left panel in Figure 19.1 to its restricted
version where θ > .50 (i.e., the top-right panel in Figure 19.1). For
such cases, Shiffrin et al. (2016) also advocated the comparison of non-
overlapping models. Specifically, the θ > .50 restricted version ought
to be compared not to the unrestricted beta(2, 2) version, but to the
θ < .50 restricted version shown in the bottom-left panel of Figure 19.1.
Although the ban on overlapping hypotheses protects the first sim-

plicity postulate from Popper’s critique, one cannot help but feel as if an
arsonist has had their trial dismissed on a technicality. Consider again
our detectives Dupin and Poirot. The ban on overlapping hypotheses
means that we should not compare HD : {W,G} to HP : {W,G,M}
but rather to HP ′ : {M}. At seeing his hypothesis transmogrified this
way, Poirot would have every right to protest. The ban introduces an
artificial manoeuvre to avoid a logical problem that may well be illusory
(cf. Autzen 2019, p. 326; see also Gronau and Wagenmakers 2019, p.
43). This is the topic of next chapter.

How to Miss Your Train
“Penalization by the model complexity is
quite an interesting idea, to be formalized
later by, for example, Rissanen (1983,
1990), but Jeffreys somehow kills this
idea before it is hatched by pointing out
the difficulties with the definition of
[model complexity]m.” (Robert et al.
2009, p. 146)

Over the years, Jeffreys himself grew increasingly critical of the first
simplicity postulate, at least where it concerns its relevance for practical
data analysis. Rather than ponder the model prior, one’s time might be
better spent collecting additional data instead:

“It appears that at the present stage of scientific knowledge the prior
probability of a simple quantitative law or a general one is not assessed
a priori (that is, independently of experience), though it must have been
in the earliest stages and in the early life of any individual. It is inferred
from the frequency of verification of such rules in the past. The principle
that it is finite stands (…). But the suggestion (…) that it is worth while
to determine the number of possible quantitative laws of complexity (…)
and to state their prior probabilities accordingly, ceases to have much
interest. Incidentally this disposes of the statement that the prior prob-
ability is unknown; it is a perfectly determinate quantity that could be
found by taking enough trouble. However, the trouble would be consid-
erable (…) if a man trying to catch a train stops to calculate the probability
of catching it, allowing for all the relevant data, he will certainly miss
it. It is more profitable in a given time to take some extra relevant ob-
servations than to evaluate accurately a prior probability that in any case
will not express any strong preference between the alternatives that we
do in fact consider seriously. For practical purposes what we need is not
an accurate determination of the prior probability, but an approximate
working rule.” (Jeffreys 1936a, pp. 344-345; italics in original)

It is certainly true that the first simplicity postulate –simple models
are a priori more probable than complex models– encounters practical
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difficulties. This does not mean, however, that the principle itself is
incorrect or vacuous: at the start of an investigation, when data are
either absent or ambiguous, researchers will prefer the simpler model.
This is the scientific equivalent of Ockham’s razor, and it is accounted
for by the first simplicity postulate. “It appears therefore that an assessment

of the prior probability of a general law
is not attainable in practice.” (Jeffreys
1936d, p. 331)Exercises

1. Consider a hyperharmonic series with p = 1.01. Would you recom-
mend it for the assignment of prior model probabilities? “Yet it must be admitted that a hypoth-

esis becomes the more probable as it is
simpler to understand and wider in force
and power, that is, the greater the num-
ber of phenomena that can be explained
by it, and the fewer the further assump-
tions.” (von Leibniz 1678/1989, p. 188)
[NB. With ‘phenomena’ Leibniz refers to
true phenomena, not imaginary phenom-
ena; a model that can capture almost all
imaginary phenomena is vacuous and in
fact explains nothing at all – EWDM].

2. In his 2015 book Ockham’s Razors – A User’s Manual, philosopher
Elliott Sober critiques the first simplicity postulate: how can a model
that stipulates a precise value of a parameter (e.g., δ = 0) ever be
more plausible than a model that allows an infinite range of values
(e.g., δ ̸= 0)? Sober invokes the comparison with a super-sharp dart:

“Before you see any data at all (…), you are supposed to think that it is
more probable that a2 = 0 than that a2 ̸= 0. This is like saying, before
you drop a super-sharp dart onto a straight line that extends infinitely
in two directions, that the dart has a higher probability of landing at
zero than it has of landing non-zero.” (Sober 2015, p. 93)

Put yourself in the shoes of Sir Harold Jeffreys and write a letter to
Sober rebutting his critique. “There is no logical justification for

the simplicity postulate (or, for that
matter, for logic); its justification is
that its results explain the inductive
inferences actually made, correspond to
general belief, and help us to say more
definitely in any particular case whether
the observations support the hypothesis
under consideration or not.” (Jeffreys
1936b, p. 418)

3. As mentioned in the chapter, Jeffreys (1961, p. 246) has stated that
“if there is no reason to the contrary the order of decreasing initial
probability is the order in which somebody thinks of them.” Discuss.

4. von Neumann stated that with four free parameters, he could fit
an elephant, and with five he could make it wiggle its trunk. This
skeptical attitude towards free parameters stands in apparent contrast
to procedures from machine learning, where neural networks may
have billions of adjustable parameters. Nevertheless, these networks
seem to generalize well. Was von Neumann wrong? Use Google,
Wikipedia, or YouTube to help you answer this question. Alterna-
tively, you could consult one or more of the following references:
Bartlett et al. (2020; 2021), Belkin et al. (2019), Belkin (2021), Dar
et al. (2021), and Hastie et al. (2022).17 17 Thanks to Marina Dubova for bringing

these to our attention.

Chapter Summary

“Jeffreys suggested that the reason for favoring the simpler law is that it
has a higher prior probability; in other words, it is considered the likelier
explanation at the outset of the experiment, before any measurements
have been made. This is certainly a reasonable idea. Scientists know from
experience that Ockham’s razor works, and they reflect this experience by
choosing their prior probabilities so that they favor the simpler hypothe-
sis. Even though scientists do not usually explain their reasoning process
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in terms of prior probabilities, they tend to examine simple hypotheses
before complex ones, which has the same effect as assigning prior prob-
abilities according to some measure of simplicity. The method reflects
the tentative and step-by-step nature of science, whereby an idea is taken
as a working hypothesis, then altered and refined as new data become
available.” (Jefferys and Berger 1992, pp. 65-66)

Want to Know More?
“In my significance tests I am always
considering the introduction of a new
adjustable parameter and deal with it by
stating a null hypothesis that it is 0, and
an alternative that it is needed, giving
both prior probability one half. Wrinch
and I had not got as far as this, but I
remember once when we were lunching
on Madingley Hill she remarked that
the set of demonstrable laws must be
enumerable, that is that they can be put
in order against the positive integers.”
(“Transcription of a Conversation
between Sir Harold Jeffreys and Professor
D.V. Lindley,” Exhibit A25, St John’s
College Library, Papers of Sir Harold
Jeffreys)

3 Lee, M. D. (2018). Bayesian methods in cognitive modeling. In
Wixted, J. T., & Wagenmakers, E.–J. (Eds.), Stevens’ Handbook of
Experimental Psychology and Cognitive Neuroscience (4th ed.): Vol-
ume 4: Methodology, pp. 37-85. New York: Wiley.

“The defining feature of Bayesian statistics is that it represents the
uncertainty about parameters using a prior distribution. Together,
the likelihood function and the prior combine to form the predictions
of the model. This means that, in the Bayesian approach, likelihood
functions–like the logistic and Cauchy psychophysical functions–
are not themselves models. They are not complete as models until
a prior distribution is placed on the parameters α and β. In a sense,
it is the predictions about data that are the model, and so both the
likelihood and the prior should be conceived as having equal status as
components of a model.” (p. 46; italics in original)

3 Lee, M. D., & Vanpaemel, W. (2018). Determining informative priors
for cognitive models. Psychonomic Bulletin & Review, 25, 114-127.
“Informative priors often make a model simpler, by constraining and
focusing its predictions” (p. 124)

3 Piantadosi, S. T. (2018). One parameter is always enough. AIP Ad-
vances, 8, 095118.

“We construct an elementary equation fθ(x) with a single real valued
parameter θ ∈ [0, 1] that, as θ varies, is capable of fitting any scatter
plot on any number of points to within a fixed precision. (…) The exis-
tence of an equation fθ with this property highlights that “parameter
counting” fails as a measure of model complexity when the class of
models under consideration is only slightly broad.

3 Wrinch, D., & Jeffreys, H. (1921). On certain fundamental principles
of scientific inquiry. Philosophical Magazine, 42, 369-390. Perhaps
the first paper to propose that simple hypotheses have a high prior
probability (but see Chapter 21). Wrinch and Jeffreys outline why
this must be so, and they prove the first part of what we call the
Wrinch-Jeffreys-Huzurbazar Law of Induction: “Repeated verifications
of the consequences of a hypothesis with non-zero prior probability
will make it almost certain that any number of further consequences
of it will be verified.” (Huzurbazar 1955, p. 761).18 The paper also 18 Zabell (2011, p. 288) mentions that

Jack Good referred to this result as “the
first induction theorem”, whereas Dawid
(1984, p. 281) terms it “Jeffreys’s Law”.

features Galileo’s example discussed in the main text.
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3 Vanpaemel, W. (2009). Measuring model complexity with the prior
predictive. Advances in Neural Information Processing Systems, 22,
1919-1927. Quantifies the intuition that simple models make precise
predictions.
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the simplest law is chosen because it is the most likely to give correct
predictions.

Jeffreys, 1961

Chapter Goal
This chapter is partly based on van Bork
et al. (2024).The first simplicity postulate has come under attack from all sides. In

this chapter we revisit the critique of the philosopher Sir Karl Popper,
who argued –in diametrical opposition to the first simplicity postulate–
that a simple model can never be more probable than a complex, ex-
tended version. Popper assumed that the Bayesian prior model prob-
ability quantifies one’s intensity of conviction that a particular model
is ‘true’, that is, the probability that the model contains an accurate
reflection of the true data-generating process (i.e., reality). Here we
generalize this definition to account for situations in which we know
that all candidate models are false. In the new definition, prior model
probability reflects relative predictive performance for expected data sets of
infinite length.

Popper’s Problem Revisited

As outlined in the previous chapter, Popper believed that the rules of
logic undercut the first simplicity postulate. Specifically, Popper argued
that a simple model must have a probability that cannot exceed that of a
more complex generalization.1 For instance, when the linear model H0 : 1 See Popper (1959, Appendix ⋆viii); see

also Watkins (1985, pp. 110-116) and
Forster and Sober (1994); for a discussion
see Sober (2015, pp. 87-93).

x = a0 + a1t is true, so is the quadratic model H1 : x = a0 + a1t + a2t
2
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with a2 = 0; but when the quadratic model is true, the linear model
is true if and only if a2 = 0; hence, adding the quadratic component
can only increase the ability of the model to capture the true relationship
between x and t, and hence the quadratic model must have a larger
prior probability than the linear model.
The easiest and most popular rebuttal to Popper’s critique is to argue

that the models under test are restricted to be non-overlapping; that is,
the quadratic model is defined as H1 : x = a0 + a1t + a2t

2 with a2 ̸= 0,
hence excluding the point a2 = 0 that would have it collapse to the linear
model.
However, this rebuttal feels weak and unsatisfactory2; moreover, it is 2 Forster and Sober (1994, p. 23) note

that “this ad hoc maneuver does not
address the problem (…), but merely
changes the subject” (italics in original).

an implicit admission that Popper’s argument is essentially correct for
models that do overlap. For instance, consider a comparison between
H1 : θ ∼ beta(2, 2) against H+ : θ ∼ beta(2, 2)I(1/2, 1) (cf. the
top two panels from Figure 19.1). These models overlap for the θ ∈
(1/2, 1) interval; hence, Popper’s argument holds that the probability
for H1 would always have to be larger than that of H+: if one of the
values for θ larger than 1/2 is true, both H1 and H+ are true; but if
one of the values for θ smaller than 1/2 is true, then H1 is true and
H+ is false; hence, H1 enjoys all the θ > 1/2 opportunities of being
true that H+ has, plus the additional θ < 1/2 opportunities that H+

lacks. Moreover, this holds both for the prior and for the posterior
probability, such that a test between H1 versus H+ appears fruitless.
Therefore we may choose to defend the first simplicity postulate against
Popper’s charge and state that the models under consideration are not
nested; but doing so this implies a retreat, a concession that Bayesians
are barred from testing overlapping models (cf. Rosenkrantz 1977, p.
xi; Henderson et al. 2010, p. 182). For our example above, this means
that H+ : θ ∼ beta(2, 2)I(1/2, 1) should be compared not to H1 : θ ∼
beta(2, 2), but rather to its complement, H− : θ ∼ beta(2, 2)I(0, 1/2).
We agree with Autzen (2019, p. 326) that “restricting the Bayesian
analysis to models with non-overlapping parameter ranges amounts to
substantively changing the inference problem”. We therefore seek a
more principled rebuttal of Popper’s charge.3 3 For other Bayesian rebuttals see Autzen

(2019) and Romeijn and van de Schoot
(2008); see also Templeton (2010a),
Berger et al. (2010), and Templeton
(2010b).

Before proceeding, recall that Chapter 12 featured four pancake
forecasters –Tabea, Sandra, Elise, and Vukasin– each of whom specified
a beta distribution on EJ’s bacon proclivity θEJ , that is, the probability
that a given pancake baked by EJ has bacon. Tabea specified HT : θ ∼
beta(4, 4); Sandra specified HS : θ ∼ beta(4, 7); Elise specified HE :

θ ∼ beta(9, 3); and Vukasin specified HV : θ ∼ beta(10, 1). These
forecasters started out with a prior probability of 1/4 each, and (after
observing that three out of eight pancakes had bacon) ended up with
posterior probabilities of about .40 (Tabea), .48 (Sandra), .11 (Elise), and
.01 (Vukasin). According to Popperian thinking, all forecasters ought
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to have the same posterior probability of capturing the true value, as all
four started by assigning θEJ a beta distribution with nonzero prior
density across the entire interval from 0 to 1, which results in a beta
posterior distribution that likewise assigns nonzero density across the
entire interval from 0 to 1. However, the forecasters were not equally
successful, and it seems that this difference in performance ought to
translate to a difference in posterior probabilities.4 4Here and in the remainder of this

chapter we ignore the complication
that in a continuous distribution (such
as the beta distribution), the prior
mass assigned to any single value is
infinitesimal; worried readers may
imagine a discrete approximation to
the continuous beta distribution where
non-infinitesimal prior mass is assigned
to small intervals.

Similarly, suppose that you are about to flip a standard coin a large
number of times, with the goal to learn about the chance θ with which
the coin lands heads. Consider two rival models, Hx : θ ∼ beta(1000, 1000)
(i.e., a prior distribution narrowly centered on θ = 1/2) and Hy : θ ∼
beta(2000, 2) (i.e., a prior distribution with almost all mass close to
θ = 1). Because Hx and Hy both assign nonzero prior mass to all values
in the interval from 0 to 1, Popper may judge these models to be equally
likely to be true (both a priori and a posteriori). Yet, Hx seems to reflect
our expectations much better than Hy (cf. Gaifman 1986; Romeijn
2005, Chapter 9; Romeijn 2013). These examples —in which the overlap
is not partial but complete– suggest that the model probabilities that
form the basis of Popper’s analysis may not be the kind of probabilities
that we are interested in when comparing models.

Prior Probability and Truth

Popper’s analysis hinges on the notion that ‘prior probability’ refers to
‘the prior probability that the model is true’, that is, ‘the prior prob-
ability that the model assigns nonzero prior mass to the true data-
generating process in nature’. The connection between prior probability
and truth was also made by Wrinch and Jeffreys:

“The existence of simple laws is, then, apparently, to be regarded as a
quality of nature; and accordingly we may infer that it is justifiable to pre-
fer a simple law to a more complex one that fits our observations slightly
better. In other words, the simple law may be supposed to be ipso facto
more probable than a complex one. Some such tacit assumption evidently
underlies the widespread use of inference from simple laws, and the great
confidence usually placed in the results; for the only alternative reason for
the adoption of the simple law is its convenience, and one would hardly
place much reliance on an inference dependent on a hypothesis chosen
merely for convenience. Thus scientific practice seems to require the as-
sumption that an inference drawn from a simple scientific law may have a
very high probability, often not far from unity. It cannot be exactly unity,
for that would mean that no other law was possible; and this is never the
case.” (Wrinch and Jeffreys 1921, p. 380)

In a similar vein, the influential Bayesian José Bernardo later argued
that there exists an important distinction between ‘M-closed’ and ‘M-
open’ scenarios (Bernardo and Smith 1994; for a critique see Gronau



342 bayesian inference from the ground up

and Wagenmakers 2019, pp. 37-39 and references therein). In theM-
closed scenario, one of the candidate models is true in the sense that
it corresponds exactly to the data-generating process. In this scenario,
Bernardo argued, it is valid to assign each candidate model a prior prob-
ability (i.e., the probability of the candidate model being ‘true’). In
theM-open scenario, however, the true data-generating process is not
among the set of candidate models that is being entertained. In practi-
cal modeling applications, theM-open scenario is arguably the norm.
This is underscored by George Box’s well-worn maxim: “all models are
wrong, but some are useful”. Poincaré expressed a similar sentiment in
more poetic fashion:

“[To the question “Does science teach us the true nature of things?”]
no one would hesitate to reply, no; but I think we may go farther; not
only science can not teach us the nature of things; but nothing is capable
of teaching it to us, and if any god knew it, he could not find words to
express it. Not only can we not divine the response, but if it were given
to us we could understand nothing of it; I ask myself whether we really
understand the question.5 5 This anticipates a famous fragment from

Douglas Adams’ book The Hitchhiker’s
Guide to the Galaxy, where the supercom-
puter Deep Thought is tasked to provide
the answer to “the Ultimate Question
of Life, the Universe, and Everything”.
After computing for 7.5 million years,
Deep Thought returns the answer: “42”.
Unfortunately, nobody knows what the
question is.

When, therefore, a scientific theory pretends to teach us what heat
is, or what is electricity, or life, it is condemned beforehand; all it can
give us is only a crude image. It is, therefore, provisional and crumbling.”
(Poincaré 1913, p. 350)

Suppose we accept the Poincaré-Box claim that all our models are at
best abstractions, and hence never a perfect reflection of the underlying
physical, biological, or psychological reality that they aim to describe.
That is, suppose we accept that we almost always find ourselves in the
M-open scenario. Is it then still meaningful to assign the candidate
models a prior probability? Several statisticians have stated that it is
not (Bernardo and Smith 1994, pp. 383-407; Li and Dunson 2020; Yao
et al. 2018). Their argument seems reasonable at first glance – what
would prior and posterior model probabilities represent, if not the prob-
ability that the model under consideration is true? However, accepting
this argument comes with a host of highly undesirable consequences.
For instance, we also could no longer assign any prior and posterior
probability to the probability that a parameter θ falls in a particular
interval, say p(θ ∈ (a, b)); according to the Bernardo perspective on
M-openness, the prior and posterior mass assigned to an interval comes
with the implicit assumption that there exists a value of θ which is true;
that is, p(θ ∈ (a, b)) needs to be interpreted as “the probability that
the true value of θ is higher than a and lower than b’. Bernardo may “I do not know what I may appear to the

world; but to myself I seem to have been
only like a boy playing on the seashore,
and diverting myself in now and then
finding a smoother pebble or a prettier
shell than ordinary, while the great ocean
of truth lay all undiscovered before me.”
Sir Isaac Newton, as cited in Brewster
(1835, p. 301).

have introduced the concept ofM-openness as an argument against
Jeffreyian Bayesian hypothesis testing; however, Bernardo’s argument
unintentionally dooms Laplacean parameter estimation as well, effec-
tively taking the axe to the entire Bayesian tree instead of just to the
hypothesis testing branch. If prior and posterior probabilities only have
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meaning when one of the candidate accounts of the world is absolutely
true, and if we accept that our models are only ever ‘provisional and
crumbling’, this implies that we are never licensed to use any prior and
posterior probabilities. Bayesian inference would be founded upon a
mistake.6 This, in fact, was Popper’s conclusion. 6 See also Wenmackers and Romeijn

(2016).The Popper-Bernardo assault on Bayesianism7 leaves open several
7 This formulation is deliberately cheeky,
since Bernardo is an arch-Bayesian
who would rightly protest that his life’s
work was to build Bayes up, not tear it
down. Such is the depth of our dislike
for the idea that hypothesis testing is
meaningless in theM-open scenario.

escape paths. For instance, Feldman (2015) has argued that the issue of
truth is irrelevant, as the Bayesian hypothesis test is not absolute, but
relative – what matters are the merits and demerits of the candidate
models when compared to one another, irrespective of the truth:

“But such a strong assumption [that one of the candidate models is true]
is not really necessary in a Bayesian framework–at least, it is not required
or implied by any of the equations. Rather, Bayesian inference only as-
sumes that there is some setM of possible models under consideration,
which are tied to the data via likelihood functions p(X|M). Bayes’ rule
allows these models to be compared to each other in terms of plausibility,
but says nothing whatsoever about whether any of the models is true in
a larger or absolute sense (…). The ‘truth’ of the models (whatever that
even means (…)) never enters into it.” (Feldman 2015, p. 1524; italics in
original)

But if ‘the truth of the models never enters into it’, what exactly
does prior plausibility reflect? What exactly is meant with the merits and
demerits of the candidate models?

Prior Probability and Verisimilitude
“My words do not proclaim the truth,
like a Pythian priestess; but I conjecture
what is probable, like a plain man;
and where, I ask, am I to search for
anything more than verisimilitude?” (a
popular but loose translation of Cicero’s
Tusculanae Disputationes I.17; for an in-
depth treatment of verisimilitude see e.g.,
Niiniluoto 1987; 2020).

In an earlier draft of this chapter, we were not yet ready to sever the
connection between prior probability and truth completely. In line with
Cicero and Popper, we felt attracted to the concept of verisimilitude or
truthlikeness. Our initial idea therefore was to define prior probability
in terms of verisimilitude, and measure verisimilitude by expected
predictive performance. Even when our models are not identical to
the truth, some are closer to it then others, and truthlike models issue
forecasts that are more reasonable than models that are not truthlike.
After additional reflection8 we realized that there is no need to in- 8 And some gentle yet insistent nudging

from Riet.voke the concept of verisimilitude at all. Thus, we aim for a radical
divorce between the concepts of prior probability and truth. Not even
verisimilude is needed; instead, prior plausibility can be defined directly
as the expected adequacy of the model forecasts. Hence the mantra of
this chapter: plausible models issue reasonable forecasts.9 9 For a different approach see for instance

Kleijn and van der Vaart (2006), De Blasi
and Walker (2013), and Grünwald and
van Ommen (2017).Prior Probability and Predictive Adequacy

Several methodologists before us have already suggested that the con-
cept of truth or even truthlikeness is irrelevant for the assessment of
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prior plausibility, and that instead it is more realistic to evaluate models
by their predictive performance:

“In modeling phenomena such as economic growth, social decision-
making or the atmospheric system and climate change, statistical models
are just idealizations of an excessively complex reality. Often it is unreal-
istic to assume that the “true model” (i.e., the data-generating process) is
found among the candidate models: data sets are often huge and messy,
the underlying processes are complex and hard to describe theoretically,
and they contain lots of noise and confounding factors (…). Furthermore,
candidate models are often generated by automatic means (e.g., as lin-
ear combinations of potential predictor variables). This means that they
usually do not provide the most striking mechanism for explaining a
phenomenon. Rather, they are supposed to be a reliable device for future
predictions. Therefore it has been argued that the real epistemological
question surrounding simplicity is not whether simple models are more
likely to be true but whether they are more likely to be predictively ade-
quate (Forster 2002; Sober 2002). If so, simplicity has genuine cognitive,
epistemic value because it contributes to attaining another cognitive value,
namely predictive accuracy, whose epistemic significance stands undis-
puted (…)” (Sprenger and Hartmann 2019, p. 263; bold text in original)

More generally, we may view rival models as competing forecasters.
For instance, we may wish to learn which of two meteorologists, A and
B, is better at predicting the weather. Each day the meteorologists issue
probabilistic predictions for the weather on the next day (e.g., ‘there
is a 70% chance of rain’), and the comparison of their accumulative
prediction errors quantifies the degree to which the data support or un-
dercut the hypothesis that meteorologist A is better than meteorologist
B (cf. Wagenmakers et al. 2006).10 Before we commence the forecasting 10 This example is discussed in more

detail in Chapter 26.competition, we may assign both forecasters a prior probability of 1/2,
reflecting the fact that, a priori, there is no reason to believe that A is
better than B or vice versa. If we knew, however, that A is a trained
meteorologist and that B is not, more prior weight should be assigned
to forecaster A.
The setup of the meteorological forecasting competition seems rela-

tively innocuous. Assigning a prior probability of 1/2 to each meteorol-
ogist merely signals that we lack advance information about the relative
expected predictive performance of the meteorologists. Moreover, it
goes without saying that the meteorologists are not a perfect reflection
of the weather itself, and that neither meteorologist corresponds to the
truth in any way. “But what is a model? From the de

Finetti perspective, a model is essentially
a predictive machine for observable quan-
tities (…) If we take the view that models
are just simplified artefacts for helping
to structure the way that we think, the
status of [prior model probabilities] is, to
say the least, debatable.” (Smith 1995, pp.
120-121)

Now suppose that after the forecasting competition has ended, you
learn that the predictions of meteorologist A and B originate completely
from statistical modelsMA andMB , respectively. Should this infor-
mation cause us to discard the forecasting competition as meaningless,
because neitherMA norMB is true exactly? We don’t think so. In the
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same vein, suppose we learn thatMA andMB have overlapping in-
tervals; for instance, underMA a parameter γ may have been assigned
a uniform prior from 0 to 1/2, whereas underMA this same parame-
ter was assigned a uniform prior from 0 to 1. Should this knowledge
prompt us to declare the outcome as invalid, and start a new forecast-
ing competition with models without overlapping intervals? Again, we
don’t think so.
By viewing models as forecasting systems it becomes more intuitive

that models are abstractions, and reflect reality only imperfectly. As
summarized by O’Hagan and Forster (2004):

“The most obvious definition of a ‘correct’ model is one where the data
are genuinely generated by a random process consistent with fm(x | θm)

[the likelihood for observed data x under model m – EWDM], with the
prior distribution fm(θm) giving reasonable support to the unknown
‘true’ value of parameter θm. However, this definition is unlikely to be
useful in many practical situations. (…)

An alternative way of thinking about model uncertainty in a Bayesian
framework is purely subjectively. (…) There is no requirement for any
fm(x | θm) to represent the ‘correct’ data-generating process, if indeed
such a process is plausible. (…) The posterior model probabilities f(m |x)
can be interpreted, not as the probabilities of each model being true, but
as weights, reflecting the importance that should be assigned to each
model when making predictive inferences. This is particularly relevant in
circumstances where we do not necessarily believe that any of the models
m = 1, ...M is ‘correct’, but that they comprise the most appropriate set
we can formulate for the purposes of prediction.” (O’Hagan and Forster
2004, pp. 166-167; see also pp. 90-91; Berger and Pericchi 2001, p. 157;
Geisser 1971; 1985; Aitchison and Dunsmore 1975; Wasserman 2000, p.
103)

Prior Probability Defined More Precisely

The core idea is to determine the prior probability of a model by the
plausibility of its predictions, thereby removing any connection to
the concept of truth.11 This idea is not new, and for similar propos- 11 The original meaning of the word

‘plausibility’ is particularly apt, as it de-
rives from the Latin plausibilis, ‘deserving
applause’ (the verb plaudere means ‘to
applaud’). That a prediction or a model is
praiseworthy does not imply it is true in
some absolute sense. Note that through-
out this book, the word ‘plausibility’ is
not meant to imply a connection to some
kind of absolute truth.

als the reader may consult for instance Dawid (2011), Shimony (1970),
Solomonoff (1964a;b), Shiffrin et al. (2016), Chandramouli and Shiffrin
(2016; 2019), Smith (1995) Rosenkrantz (1980), Vanpaemel (2020), and
Villarreal et al. (2023). However, we hope to introduce a few novel
ideas.
But first we ask you to consider a standard coin, with tails on one

side and heads on the other. Let θ be the unknown chance that the coin
lands heads on any one toss. Two rival models, H1 and H2, differ only
in the prior distribution that they assign to θ: H1 : θ ∼ beta(1, 1) (i.e.,
every value of θ is equally likely a priori) and H2 : θ ∼ beta(10, 10) (i.e.,
values of θ are more plausible the closer they are to 1/2). Now we know



346 bayesian inference from the ground up

that standard coins tend to land heads with a chance that is extremely
close to 1/2 (Bartoš et al. 2023).12 Model H1 does not incorporate this 12 Specifically, Bartoš et al. (2023) re-

ported 175,420 heads out of 350,757
tosses, for a sample proportion of
0.5001183.

common background knowledge at all, and therefore appears badly
specified; before we see any data we can already tell that H1 issues poor
predictions. Model H2 does incorporate the background knowledge
about coins to some degree, but the prior 95% credible interval on θ is
still relatively wide, extending from ≈0.29 to ≈0.71; consequently, we
can expect the predictions of H2 to be poor as well, but not as poor as
those of H1. In sum, our background knowledge leads us to expect that
H2 will outpredict H1: consequently, the prior probability for H2 ought
to be higher than that for H1.

Eliminating Aleatory Uncertainty

When associating a model’s prior probability with its expected predic-
tive performance, we need to do away with an important confounding
factor: sampling variability. To appreciate this, note that prior model
probability is a purely epistemic concept, an intensity of conviction that
ought to be unaffected by the aleatory component that invariably enters
a model’s prediction for any data set with a finite number of observa-
tions.
Consider again our two rival models for the chance θ that a standard

coin lands heads: H1 : θ ∼ beta(1, 1) and H2 : θ ∼ beta(10, 10). Now
suppose that the to-be-observed data will consist of a single toss. As
it happens, all beta(α, α) distributions predict that the next toss will
land heads up with a probability of 1/2. This follows directly from the
beta prediction rule (cf. Chapter 9)13; intuitively, this occurs because all 13 The beta prediction rule states that if

θ ∼ beta(α, β), the probability of the
next event being a success rather than
a failure equals α/(α+β), which equals
the mean of the beta distribution. For a
symmetric beta(α, α) distribution, the
probability that the next event will be a
success therefore equals α/(α+α) = 1/2.

beta(α, α) distributions are symmetric around θ = 1/2, which means
they do not encode any prior preference for heads or tails. If we wish to
determine prior probability by the plausibility of the model predictions
for a specific sample size n, this would mean that in the case of n = 1, all
models that postulate a beta(α, α) prior distribution on θ make identical
predictions and therefore would be deemed equally plausible a priori,
regardless of α. But this runs counter to common sense. When α → 0,
we obtain a model claiming that the coin is either double-heads or
double-tails; when α → ∞, we obtain a model claiming that the coin
is fair (i.e., θ → 1/2). For a standard coin, these two radically different
models are clearly not equally plausible.
Suppose we later learn that the to-be-observed data consists of ten

tosses instead of one; this would mean that the different beta(α, α)
models do make different predictions, and that these models conse-
quently will not be equally plausible a priori. The assessment of prior
probability would then depend on the sampling intentions of the
researcher, in violation of the core tenets of Bayesian inference (cf.



prior probability as expected relative predictive performance 347

Berger and Wolpert 1988). But even worse: the inference would no
longer be coherent. Specifically, suppose that we plan to toss the coin
once, and determine that p(H1) = p(H2) = 1/2, because the models
make identical predictions. After seeing the outcome, the prior model
probabilities are updated to posterior model probabilities (which remain
1/2, because the data are not diagnostic).14 Next, another batch of nine 14 See also Wagenmakers et al. (2020) and

Jeffreys (1961, p. 257).tosses unexpectedly comes in, resulting in an update of our knowledge.
Contrast this with the scenario where all ten tosses are planned before-
hand. In this scenario, the prior model probability will not be 1/2 and
hence the final inference will depend on whether the data are analyzed
all at once or in batches. This is incoherent.15 Hence, when we set out 15 See Chapters 6 and 26.

to assess a model’s prior probability by the quality of its predictions,
we cannot use any finite, specific sample size n. We must do away with
all sampling variability, and this is accomplished by considering the
predictions for the asymptotic case where n→∞.
In sum, prior probability may be conceptualized not in relation to

some abstract truth, but rather as expected relative asymptotic predic-
tive success. Breaking these terms down, the measure is (1) expected,
since predictive success is evaluated for expected data sets (i.e., under
a data prior); (2) relative, since it is always based on a comparison of
predictive performance to the other candidate models of interest; (3)
asymptotic, since the expected data sets have infinitely many observa-
tions, eliminating the confounding impact of sampling variability from
the assessment of prior probability, which is inherently epistemic (cf.
Fong et al. in press for a similar methodology).

Example

Let’s consider more closely the running example of assessing the rela-
tive prior plausibility of H1 : θ ∼ beta(1, 1) vs. H2 : θ ∼ beta(10, 10)
for the chance θ that a standard coin lands heads on any one toss. For
ease of exposition, we entertain a data prior that consists of a single
spike: s/n → 1/2 as n → ∞. This is the perfect ‘fair coin’, θ = 1/2 model
translated to data space. Under both H1 and H2, the probability of ob-
serving the infinite ‘fair coin’ data equals the height of their prior beta
distribution at θ = 1/2.16 16 As n increases, the posterior distri-

bution converges to the maximum
likelihood estimate (MLE; see Chapter 13)
– intuitively, infinite ‘fair coin’ data re-
fute all values of θ other than 1/2. The
prior density value of θ = 1/2 is given by
the height of the beta distribution at that
point. For mathematical details see ‘Ly’s
limit’ outlined in Chapter 30 as well as
Ly and Wagenmakers (2022).

The prior beta distributions of H1 and H2 are shown in Figure 20.1.
Under the beta(1, 1) prior distribution of H1, the density at θ = 1/2

equals 1; Under the beta(10, 10) prior distribution of H2, the density
at θ = 1/2 equals approximately 3.52. This implies that, in the limit
of infinitely many observations, H2 is expected to outpredict H1 by
a factor of 3.52. In other words, the prior probability for H2 equals
3.52/4.52 ≈ 0.78 and the prior probability for H1 equals 1/4.52 ≈ 0.22.
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Figure 20.1: Two prior distributions for the chance θ that a standard coin lands heads on
any one toss. H1 : θ ∼ beta(1, 1) and H2 : θ ∼ beta(10, 10). The strong expectation that
s/n → 1/2 as n → ∞ implies that the relative prior plausibility of H1 and H2 is given by
the proportion of their densities assigned to θ = 1/2. See text for details. Figure from the
JASP module Learn Bayes.

Note that H1 and H2 overlap completely – both models assign non-
zero prior mass to any value of θ from 0 to 1. Nevertheless, H2 makes
more specific predictions than H1, and these more specific predictions
are in line with our expectation. Hence, H2 is expected to outpredict H1

and hence it provides the more plausible account. Another interpreta-
tion is that we anticipate data to be less surprising (i.e., more probable)
under H2 than under H1. “When I know something, I can predict

something; when I can predict nothing
then I know nothing.” (De Groot 1969)

Averaging Across the Data Prior

The example above was relatively straightforward, because the data
prior consisted of a single spike. But what if the data prior consists of
multiple spikes, or even a continuous distribution? For concreteness,
consider a two-point data prior with mass 2/3 on s/n → 1/2 as n → ∞
and mass 1/3 on s/n → 0.60 as n → ∞. In light of this two-point data
prior, how do we assess the prior probability of our two rival models,
H1 : θ ∼ beta(1, 1) vs. H2 : θ ∼ beta(10, 10)? It is clear that we need
to average across the two hypothetical data sets, but it is less clear what
quantity should be averaged; options include the Bayes factors17, the 17Or the logarithm of the Bayes factors,

see Chapter 23.predictive probabilities, or the posterior probabilities. Each of these
options will generally give a different answer.18 18 See Appendix B to this chapter for a

more detailed account.
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Consider first the scenario where the data prior is given by the mod-
els under consideration. In other words, here we start by assigning
prior probabilities to the models; for instance, You19 may believe that 19We capitalize ‘You’ in order to em-

phasize the fact that this assessment is
based on background knowledge that is
possibly subjective.

p(H1) = p(H2) = 1/2 and You also may believe that one of the mod-
els corresponds to the true data-generating process, and that no other
candidate models are plausible. You have no other information at your
disposal that can influence Your predictions for unseen data. Through
the law of total probability, this specification then implies the following
data prior p(yn) across possible future realizations of data y consisting
of n observations:

p(yn) = p(yn | H1) p(H1) + p(yn | H2) p(H2). (20.1)

The marginal predictive probability across possible data yn is simply the
weighted average of the probabilities assigned to yn under the different
models.20 20 For an early example see Figure 7.4.

Thus, in the ‘M-closed’ scenario, the data prior p(yn) is implied by
the specification of the models and their priors – it can be derived from
the law of total probability. Hence, ‘learning’ about this data prior does
not provide any new information, and should leave the model priors
unaffected. This idea can be expressed mathematically as follows:

p(H1) =
∑
i

p(H1 | yni ) p(yni )

=
∑
i

p(H1)
p(yni | H1)

p(yni )
p(yni )

= p(H1)
∑
i

p(yni | H1),

(20.2)

where the summation runs across all possible outcomes with sample size
n.21 The first line applies the law of total probability; the second line 21 So p(yni ) is the probability of a par-

ticular outcome yi with sample size
n, whereas p(yn) refers to the entire
distribution of outcomes.

uses Bayes’ rule to decompose the posterior probability p(H1 | yni ) into
the prior probability times the predictive updating factor; the final line
obtains because the marginal probability for the data p(yni ) divides out
and the prior model probability p(H1) can be taken outside the sum.
Lastly, the sum of probabilities across all possible data outcomes equals
1, which then brings us back to p(H1). Hence, in theM-closed scenario
the prior probability for a model equals a weighted average of its an-
ticipated posterior probabilities; more succinctly, the prior probability
equals the expected posterior probability (cf. Chamley 2004, Goldstein 1983,
Skyrms 1997, Van Fraassen 1984; see also Cook et al. 2006, Gandy and
Scott 2021, Geweke 2004, Schad et al. in press, Talts et al. 2018).22 This

22 Also called the reflection principle
(Huttegger 2017).

makes perfect sense: just before you observe the data you have no infor-
mation as to whether they will support H1 or H2 – if you did have such
information at your disposal, you would have already used it to adjust
your prior model probabilities.23

23 The change from prior to posterior
probability is known as the relative belief
ratio (Evans 2015), and its expected value
is therefore equal to 1. In the statistical
literature such a process is known as
a martingale and typifies a fair game
(de Finetti 1974, pp. 345-346; see also
DeGroot 1970, Skyrms 1997, Ville 1939,
Doob 1953; 1971, Lévy 1937, Williams
1991).
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Now suppose we are in theM-open scenario, when none of the can-
didate models are true, and our data prior p(yn) is no longer implied
by the candidate models, but reflects additional background knowledge.
For instance, p(y |H1) and p(y |H2) might represent the probabilistic
next-day weather forecast from your two best friends, based on their
gut-level assessment; on the other hand, p(y |You) may be the forecast
from your phone’s weather app, which is based on a quantitative me-
teorological model and detailed weather data. In Your assessment, the
relative plausibility of your first friend’s ‘model’ should therefore equal

p(H1 | You) =
∑
i

p(yi | H1) p(H1)

p(yi | H1) p(H1) + p(yi | H2) p(H2)
p(yi |You),

(20.3)
the expected posterior probability across Your data prior. Because Your
data prior p(y |You) is no longer equal to the marginal data prior un-
der H1 and H2, the data prior no longer divides out as it did in Equa-
tion 20.2. However, Equation 20.2 does strongly suggests that when
we account for the uncertainty in Your data prior, we should do so by
averaging the anticipated posterior model probabilities.24

24 This approach is conceptually similar to
the ‘expected-posterior prior’ methodol-
ogy (Pérez and Berger 2002), except that
our approach aims to obtain prior model
probabilities rather than prior parameter
distributions (and our imaginary sample
size is very large instead of very small).

One complication remains. In Equations 20.2 and 20.3, the prior
probability is expressed as the expected posterior probability – but this
posterior probability itself is based on a prior probability. Hence, it may
appear unclear what can be gained from defining a prior probability in
terms of itself. This is where the asymptotic sample size comes in. As
the hypothetical data set increases in size, the Bayes factor will generally
overwhelm the prior model odds, and this allows a definition of the
prior model probabilities that does not suffer from circularity.

Figure available at BayesianSpectacles.
org under a CC-BY license.

For example, consider the assessment of prior probability for two
point hypotheses, H1 : θ = 0.15 versus H2 : θ = 0.20, in light of a
two-point data prior with mass 4/10 on s/n → 0.16 as n → ∞ and mass
6/10 on s/n → 0.19 as n → ∞. Under the s/n → 0.16 data, the pos-
terior probability for H1 approaches 1, and under the s/n → 0.19 data,
the posterior probability for H1 approaches 0. This can only mean that
p(H1) = 4/10 and consequently p(H2) = 6/10. In other words, when the
models do not overlap, then the asymptotic posterior model probability
p(H· | yni ) almost always equals either 0 or 1, irrespective of the prior
model probability. In these cases, Equation 20.3 can therefore be ex-
pressed purely as a function of expected relative predictive performance:

p(H1 | You) =
∑
i

lim
n→∞

p(yni | H1)/p(y
n
i | H2)

[p(yni | H1)/p(yni | H2) + 1]
p(yni |You)

=
∑
i

lim
n→∞

BF12(yni )
BF12(yni ) + 1

p(yni |You).
(20.4)

BayesianSpectacles.org
BayesianSpectacles.org


prior probability as expected relative predictive performance 351

This equation shows that we can assess the relative plausibility of rival
models by quantifying the degree to which they are expected to outpre-
dict one another.25 Thus, with a data prior in place, you may repeatedly 25 For a continuous data prior, the sum

needs to be replaced by an integral.draw hypothetical, infinitely large samples from it, and evaluate the as-
sociated posterior model probabilities (or, equivalently, the Bayes factors
transformed to the probability scale); averaging these probabilities yields
the implied prior probabilities.
It may be objected that our focus on predictive performance is taking

things too far. In particular, there are scenarios in which the asymptotic
posterior model probability does not equal either 0 or 1. The first case
is when the rival models predict the anticipated data equally well. For
instance, we may contrast the performance of two point priors, H1 : θ =

.40 versus H2 : θ = .60, for a data prior that has a spike at s/n = 1/2

as n → ∞. The prior probabilities inferred by using Equation 20.4 are
then p(H1) = p(H1) = 1/2. The second case is where the rival models
are overlapping. For instance, we have already discussed the comparison
between H1 : θ ∼ beta(1, 1) versus H2 : θ ∼ beta(10, 10) for a data
prior that has a spike at s/n = 1/2 as n → ∞ (cf. Figure 20.1). The
comparison of expected asymptotic predictive performance yielded
p(H1) ≈ 0.78. In these cases the prior probability is not overwhelmed
by the data, and this means that background information may play an
additional role.
One way to interpret Equation 20.4 is to argue that all relevant infor-

mation with regard to a model’s plausibility is assumed to be encoded in
the data prior. This is an instrumentalist definition of prior model prob-
ability – it accommodates the possibility that all candidate models may
be false, but that their relative plausibility is nevertheless given by their
expected predictive adequacy, a concept that relates to data and can in
principle be verified empirically.26 26 For an overview of instrumentalist

philosophy see John (2018) and references
therein.

Recall our example with the two-point data prior that assigned mass
2/3 to s/n → 1/2 as n → ∞ and mass 1/3 to s/n → 0.60 as n → ∞.
In order to evaluate the prior plausibility of H1 : θ ∼ beta(1, 1) vs.
H2 : θ ∼ beta(10, 10) we note that in the case of s/n → 1/2 as n → ∞,
BF12(yni ) equals approximately 3.52; in the case of s/n→ 0.60 as n→∞,
BF12(yni ) equals 2.44. Applying Equation 20.4 then yields p(H2) =
2/3 · 3.52/4.52 + 1/3 · 2.44/3.44 ≈ 0.76 and consequently p(H1) ≈ 0.24.

Exercises

1. Do you agree with the definition of prior probability proposed in this
chapter? If not, at what point do you get off the bus?

2. Read this chapter’s Appendix B. Are you concerned about the lack of
transitivity? Why or why not?



352 bayesian inference from the ground up

Scientific Progress When All Models Are Wrong

In this chapter we confronted the M-open challenge: if we accept
that all our models are at best “provisional and crumbling”, where
does this leave Bayesian inference with its fixed collection of candi-
date models? What do the probabilities represent if all models are
false? We suggested that models have predictive value even though
they are not exactly true. Other defenses can be mounted as well:

◦ All of Bayesian inference is conditional on background knowledge.
To make this explicit, many Bayesians condition all of their infer-
ential statements on K, denoting background knowledge. This
background knowledge also governs the selection of candidate
models under consideration. This is somewhat similar to coun-
terfactual reasoning (cf. Wenmackers and Romeijn 2016): ‘if we
were to choose, from an infinite collection of possible models, a
specific subset for consideration, and assign them these particular
prior probabilities, then the data would cause an update to these
particular posterior probabilities’.

◦ All models may be wrong, but our immediate goal is not to find
the correct model. Our goal is scientific progress:

“Several speakers mentioned the problem of unconsidered al-
ternatives, but hardly any mentioned my main standpoint, that
scientific method consists of successive approximation. (…) We
can compare probabilities over the range of hypotheses already
thought of; we do not consider them as final.” (Jeffreys 1963, p.
409)

◦ Scientific progress demands that concrete models are proposed
and tested:

“the only kinds of hypotheses that are not of scientific value are
those that are contradicted by the data and those that lead to
no verifiable inferences. A mistake can be found out if it makes
predictions, and may then lead to something better; vagueness
leads nowhere.” (Jeffreys 1937a, p. 66)

and

“The answer to anybody who says that we have not discussed all
possible theories is “produce a better one”.” (Jeffreys 1936a, p.
346)
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3. If we follow the reasoning in this chapter, should we also use the
data prior to determine the prior probability distribution for param-
eters inside the models, in addition to the prior probabilities across
models?

Chapter Summary

Figure available at BayesianSpectacles.
org under a CC-BY license.

Karl Popper argued that by making models more complex (e.g., through
adding a free parameter), they would always gain probability and never
lose probability: the additional complexity simply affords the model
more opportunities to capture the true data-generating process (i.e.,
assign non-zero prior mass to the truth). Popper’s reasoning is diamet-
rically opposed to the first simplicity postulate and strikes at the root of
the entire Bayesian framework.
To explain why prior probability can be higher for models that are

more restricted, prior probability needs to be interpreted not in relation
to absolute truth, but in relation to anticipated predictive success. In other
words, if You anticipate that modelMA will outpredict modelMB (in
the limit of many observations, so that only our epistemic uncertainty
remains), then this means that we expect the data to be less surprising
underMA than underMB . From an instrumentalist perspective, this
must mean that we believe that p(MA) > p(MB). In other words, the
prior plausibility of a model can be quantified by the reasonableness of
its forecasts.
If You believe (rightly or wrongly!) that one of an exhaustive list of

candidate models is true, then the prior model probability simply equals
the expected posterior model probability (cf. Equation 20.2). In the
limit of many observations, this prior model probability is determined
entirely by expected predictive success. If You know that all candidate
models are wrong, You can still average the anticipated posterior model
probabilities across Your data prior to obtain the implied prior model
probabilities.
In sum, simple models can be more probable than complex mod-

els because simple models can have higher anticipated predictive per-
formance. The concept of prior probability therefore has predictive
meaning even when none of the models are true; their prior probability
can be evaluated by recourse to their anticipated performance across a
data prior, which quantifies Your background knowledge and acts as
an instrumentalist stand-in for an abstract ‘truth’ that may be beyond
reach.

BayesianSpectacles.org
BayesianSpectacles.org
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Want to Know More?

3 Fong, E., Holmes, C. C., & Walker, S. G. (in press). Martingale pos-
terior distributions. Journal of the Royal Statistical Society Series B:
Statistical Methodology. From the abstract:

“The prior distribution is the usual starting point for Bayesian uncer-
tainty. In this paper, we present a different perspective which focuses
on missing observations as the source of statistical uncertainty, with
the parameter of interest being known precisely given the entire popu-
lation. We argue that the foundation of Bayesian inference is to assign
a distribution on missing observations conditional on what has been
observed. In the i.i.d. setting with an observed sample of size n, the
Bayesian would thus assign a predictive distribution on the missing
Yn+1:∞ conditional on Y1:n, which then induces a distribution on the
parameter. We utilize Doob’s theorem, which relies on martingales,
to show that choosing the Bayesian predictive distribution returns the
conventional posterior as the distribution of the parameter. (…) We
introduce the martingale posterior distribution, which returns Bayesian
uncertainty on any statistic via the direct specification of the joint
predictive.” (Fong et al. in press, p. 1; italics in original)

The ideas in this article resonate with the key concepts put forward
in this chapter, particularly the notion of deducing the implied quan-
tity of interest (for Fong and colleagues, the posterior distribution on
a parameter; for us, the prior probability for a model) from a set of
samples of infinite size.

3 Rosenkrantz, R. D. (1977). Inference, Method and Decision. Dor-
drecht: Reidel.
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(Eds.), Reproducibility: Principles, Problems, Practices, and Prospects
(pp. 115–140). Hoboken (NJ): John Wiley & Sons. We are ashamed
to admit that the importance of this work initially escaped us. Two
relevant quotations:

“Models offering insights into the infinitely complex universe in
which we reside are always wrong but vary among many dimensions
of usefulness. (…) we cannot match “truth” to models directly. Thus
in a limited experimental domain we represent “truth” by a distri-
bution of possible experimental outcomes. Inference is carried out
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by assuming the observed data are a sample from that unknown data
distribution. (…) We present an extension of Bayesian model selection
(BMS) that infers posterior probabilities that a given model instance
predicts a data distribution that is the best match to the “true” data
distribution.” (p. 115)

and

“(…) the prior probabilities can be specified as the probabilities of each
data distribution; when these are summed across the distributions for
which a given model instance is the best approximation, the result
becomes the prior probability of that instance. Such a result makes
data priors and model priors consistent while placing the emphasis on
data.” (p. 124)

3 van Bork, R., Romeijn, J.–W., & Wagenmakers, E.–J. (2024). Sim-
plicity in Bayesian nested–model comparisons: Popper’s disagreement
with Wrinch and Jeffreys revisited. Preprint url: https://osf.io/
preprints/psyarxiv/p57cy.

3 Vanpaemel, W. (2020). Strong theory testing using the prior predictive
and the data prior. Psychological Review, 127, 136-145. “Without
establishing that the precise theory rules out plausible outcomes,
there is no fundamental difference between the precise theory and
the vague theory.” (p. 141). Food for thought.

3 Villarreal, J. M., Etz, A. J., & Lee, M. D. (2023). Evaluating the
complexity and falsifiability of psychological models. Psychological
Review, 130, 853–872.

Appendix A: Relation to Rosenkrantz and to Shimony

Below we briefly discuss two earlier proposals to define prior model
probabilities using data priors. The first suggestion is by Rosenkrantz,
whose earlier work on why “conforming instances need not be confirm-
ing” was already covered in Chapter 9. In a 1980 article that was ahead
of its time27, Rosenkrantz notes that our scientific theories are, to quote 27 Yet cited only 33 times, by a handful of

authors (Google Scholar, October 10th,
2023).

Poincaré, only “provisional and crumbling”; however, these theories
may nevertheless yield accurate predictions:

“Even the most admired scientific theories of the past were eventually
found inadequate to account for given experimental findings and were
overthrown when a more adequate theory was discovered. It is widely
suspected that the same fate awaits the most celebrated theories of the
present. Indeed, in many fields of contemporary interest, there is little
pretense that our deliberately oversimplified models represent more than
a crude facsimile of the complex system under study. Nevertheless, such
models may faithfully capture ‘first order effects’ and throw consider-
able light on the functioning and inter-relations of the most important

https://osf.io/preprints/psyarxiv/p57cy
https://osf.io/preprints/psyarxiv/p57cy
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variables, leading to quite accurate predictions and useful preliminary
explanations.” (Rosenkrantz 1980, p. 463)

“simpler theories give sharper predic-
tions” (Rosenkrantz 1977, p. 126)In this ‘M-open setting’, Rosenkrantz proposes to quantify truthlike-

ness by the expected support averaged over a data prior:

“All of this suggests relativizing a theory’s truthlikeness, like its content,
to an experiment or domain of application and then equating truthlike-
ness with expected support (i.e., the theory’s support averaged over the
possible outcomes of a suitably chosen experiment). On this conception
a highly truthlike theory is one which is supported by ‘typical’ outputs
of the system.” (Rosenkrantz 1980, p. 465; italics in original; see also
Rosenkrantz 1983, pp. 76–77)

Rosenkrantz then continues to make these ideas concrete. The
main conceptual difference between Rosenkrantz proposal and ours
is twofold: (1) Rosenkrantz believed that Bayesians are barred from
testing overlapping models (cf. Rosenkrantz 1977, p. xi), whereas we be-
lieve that the essence of Rosenkrantz’s proposal allows Bayesians to test
any sort of model as long as it is able to make probabilistic predictions;
(2) the Rosenkrantz data prior is defined with respect to ‘typical outputs’
from a suitably chosen experiment. We believe that an assessment of
prior probability (or truthlikeness) is purely epistemic and ought not
to be confounded by aleatory uncertainty; hence we proposed to assess
truthlikeness using an asymptotic data prior.
The second suggestion is by Shimony (1970), who argued that hy-

potheses that are probably false may still inspire credence in terms of
predictive accuracy:

“This suggests that a person whose belief in the literal truth of a general
proposition h, given evidence e, is extremely small may nevertheless have
a nonnegligible credence that h is related to the truth in the following
way: (i) within the domain of current experimentation h yields almost
the same observational predictions as the true theory; (ii) the concepts
of the true theory are generalizations or more complete realizations of
those of h; (iii) among the currently formulated theories competing with
h, there is none which better satisfies conditions (i) and (ii). If a word is
needed for this modality of belief, I suggest “commitment.” If “rational
degree of commitment,” is identified as the explicandum of “probability”
in the context of scientific inference, there will be no prima facie obstacle
to finding that even very strong theories upon appropriate evidence have
probabilities close to 1. Furthermore, the use of “probability” in this way
would permit a formulation of scientific inference which fits the contours
of the actual thinking of investigators, by focussing attention upon the
progress of knowledge rather than upon the ultimate truth of theories.”
(Shimony 1970, pp. 94–95)

Shimony’s proposal is relatively abstract, but it appears consistent
with the ideas outlined in this chapter. One difference is that our pre-
dictive measure of prior probability is relative, so that a high probability



prior probability as expected relative predictive performance 357

can be assigned to a hypothesis that is blatantly false, just as long as it
it clearly less false than its competitors. For instance, consider a data
prior that consists of the single point s/n → 1/2 as n → ∞, with two
competing hypotheses: H1 : θ = 0 and H2 : θ = 0.01. If these are the
only two models under consideration, an application of Equation 20.4
yields p(H2) = 1, even though the data prior suggests that H2 is not at
all truthlike in an absolute sense.

Appendix B: Transitivity Lost

This chapter is special in the sense that it took us years to write, and we
are still unsure whether our proposal is correct. We do believe that prior
probability can be conceptualized by expected relative asymptotic pre-
dictive success; what we are unsure of is how exactly to average across a
data prior. Below we consider several alternatives and the problems that
beset them.

The Argument Against Averaging Bayes Factors

It is relatively easy to demonstrate that averaging Bayes factors across a
data prior is not generally recommended.28 For instance, assume that 28 See also Chapter 23.

we have a 50−50 data prior on whether or not it will rain tomorrow:
p(rain |You) = p(no rain |You) = 1/2. In light of this data prior, you
wish to gauge the plausibility of two forecasters; F1 believes rain is less
likely, p(rain | F1) = 1/3, p(no rain | F1) = 2/3, whereas F2 believes rain
is more likely, p(rain | F2) = 2/3, p(no rain | F2) = 1/3. From symmetry
it is clear that the accounts of F1 and F2 are equally plausible a priori.
However, the average Bayes factor BF12 (i.e., the evidence in favor of F1

over F2) is 1/2 · 1/2 + 1/2 · 2 = 5/4. This is larger than 1, presumably
indicating that we anticipate more support for F1 than for F2. This is
strange, but is becomes stranger still when we calculate BF21 (i.e., the
evidence in favor of F2 over F1) which equals 1/2 · 2 + 1/2 · 1/2 = 5/4

too. This presumably indicates that we anticipate more support for F2

than for F1. Bayes factors are not symmetric around 1, meaning that
averaging x and 1/x does not yield the desired state of perfect evidential
indifference.

The Argument Against Averaging Log Bayes Factors

The log transform ensures that the Bayes factor is symmetric, and sev-
eral prominent Bayesian statisticians have recommended to compute the
expected weight of evidence by averaging log Bayes factors.29 29 For details on the logarithmic transfor-

mation of Bayes factors, see Chapter 23
again.

For a counterexample consider Your data prior for the probability
that it will rain tomorrow in the Atacama Desert, Chile. A brief on-
line search will inform you that the Atacama is one of the driest places
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on earth: it is fifty times drier than Death Valley, and some measure-
ment stations there have never registered rain. Let’s say Your data prior
is p(rain |You) = 1/18,000 (i.e., one over approximately the number
of days in a half century) and p(no rain |You) = 17,999/18,000. As be-
fore, you seek to evaluate the prior plausibility of two rival forecasters
in light of Your data prior. The first forecaster is certain that it will
not rain: p(rain | F1) = 0, p(no rain | F1) = 1. For some reason, the
second forecaster is highly confident (but not certain) that it will rain:
p(rain | F1) = 0.99, p(no rain | F1) = 0.01.
In light of Your data prior, F2 makes predictions that are outright

preposterous. However, when we average the log Bayes factors across
Your data prior, we obtain

Average log BF12 = p(rain | You) · log
[
p(rain | F1)

p(rain | F2)

]
+ p(no rain | You) · log

[
p(no rain | F1)

p(no rain | F2)

]
=

1

18,000
· log

[
0

0.99

]
+

17,999

18,000
· log

[
1

0.01

]
= −∞+ 2 = −∞,

suggesting that the anticipated predictive success is infinitely larger for
F2 than it is for F1.30 If Your data prior assigns any non-zero proba- 30Using the base-10 logaritm,

17,999/18,000 · log(1/0.01) ≈ 2.bility, however minuscule, to an event that is flat-out impossible under
one of the candidate models, then this event will produce a log Bayes
factor of plus or minus infinity, and this will utterly dominate the an-
swer (or make the answer meaningless). Statisticians who are aware
of this complication have sometimes suggested that the problem lies
not with the procedure but with the models, which should be adjusted
such that they do not deem any outcome impossible. We believe this
adjustment is a band-aid that merely hides the deeper problem from
view.

The Argument Against Averaging Marginal Likelihoods

Another approach is to first average the predictive probabilities (i.e., the
marginal likelihoods) across Your data prior, separately for each model.
Afterwards, these model-specific averaged predictive probabilities are
then used to compute an anticipated posterior probability.
Our argument against this procedure is that it does not recover

the prior model probabilities in theM-closed scenario. For exam-
ple, assume that H0 : θ = 1 and H1 : θ ∼ beta(1, 1), and that
p(H0) = p(H1) = 1/2, and assume that these specifications perfectly
reflect Your beliefs. Then, as we have argued in the chapter, knowledge
of the marginal prior predictive provides no new information and ought
to leave the prior model probabilities unaffected.
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Consider then the case of n = 3. Your data prior is the marginal
prior predictive across H0 and H1 as shown in Figure 20.2. Note that
H0 puts all of its prior mass on s = n, whereas p(H1) distributes its
prior mass evenly across the 4 possible outcomes. Hence Your marginal
prior predictive assigns probability 1/2+1/8 = 5/8 = 0.625 to the outcome
s = n, and probability 1/8 = 0.125 to each of the three other outcomes.
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Figure 20.2: The marginal prior predictive for the number of successes in three observa-
tions, where H0 : θ = 1, H1 : θ ∼ beta(1, 1), and p(H0) = p(H1) = 1/2. The height
of each of the first three bars is 1/8, and the height of the left-most bar is 5/8. Figure from
the JASP module Learn Bayes.

For H0, the average marginal likelihood equals 5/8 (i.e., there is a
chance of 5/8 of getting a marginal likelihood of 1 as evaluated under
H0, and a chance of 3/8 of getting a marginal likelihood of 0); for H1,
the average equals 1/4 (i.e., regardless of the data, the marginal likeli-
hood as evaluated under H1 equals 1/4). Crucially, the average marginal
likelihood for H0 is considerably higher than that of H1, falsely suggest-
ing that learning the data prior ought to shift our beliefs toward H0;
that is, averaging the marginal likelihoods suggests that H0 is likely to
outpredict H1, which conflicts with our knowledge that both models are
in fact equally plausible a priori.

The Argument Against Averaging Log Marginal Likelihoods

In the previous section we discussed the averaging of predictive prob-
abilities (i.e., marginal likelihoods) over Your data prior. Instead, we
may choose to average the log of these probabilities. This was proposed
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as a measure of verisimilitude by Rosenkrantz (1980)31. This proposal 31 For a similar idea see Villarreal et al.
2023.faces two challenges. First, the use of the logarithm introduces neg-

ative infinities for data deemed impossible under the model (as we
illustrated above for the log of the Bayes factor). Second, the measure
does not recover the prior model probabilities in theM-closed sce-
nario. For instance, assume that we wish to test H0 : θ = 1/2 versus
H1 : θ ∼ beta(1, 1) for the case of n = 3, and p(H0) = p(H1) = 1/2.
Under H0, the prior predictive distribution assigns probability 1/8 each
to the two events of 0 successes and 3 successes (i.e., 1/2 × 1/2 × 1/2) and
probability 3/8 to each of the two events of 1 and 2 successes (i.e., a spe-
cific sequence has probability 1/8, but there are three different sequences
that produce the outcome of interest). Under H1, the prior predic-
tive distribution assigns probability 1/4 to each of the four outcomes.
When we combine these prior predictions across the two models, the
marginal prior predictive assigns probabilities 3/16, 5/16, 5/16, and 3/16

to the outcomes of 0, 1, 2, and 3 successes, respectively. This marginal
prior predictive distribution in shown in Figure 20.3.
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Figure 20.3: The marginal prior predictive for the number of successes in three observa-
tions, where H0 : θ = 1/2, H1 : θ ∼ beta(1, 1), and p(H0) = p(H1) = 1/2. The height
of the middle two bars is 5/16 = 0.3125, and the height of the two bars on either side is
3/16 = 0.1875. Figure from the JASP module Learn Bayes.

In theM-closed scenario, the marginal prior predictive acts as Your
data prior. For H0, we have an average log probability of 3/16 · log(1/8) +
5/16 · log(3/8) + 5/16 · log(3/8) + 3/16 · log(1/8) ≈ −1.393. For H1, we
have an average log probability of 3/16 · log(1/4) + 5/16 · log(1/4) + 5/16 ·
log(1/4) + 3/16 · log(1/4) = log(1/4) ≈ −1.386. In this example, the
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difference is slight; however, it is nonetheless true that the average is
slightly lower for H0 than it is for H1. When interpreted as truthlike-
ness, the Rosenkrantz measure suggests that knowledge of the marginal
data prior reveals H1 to be closer to the truth than H0, even though (a)
in theM-closed setting the data prior is a direct consequence of the
model specification, and hence does not impart new knowledge; (b) the
two models were deemed equally plausible a priori.

The Argument Against Averaging Posterior Probabilities

As explained earlier, in theM-closed scenario the prior probabilities
equal the expected posterior probabilities, suggesting that the averaging
process across the data prior ought to involve the anticipated posterior
probabilities. For the example from Figure 20.2, the expected posterior
probability for H0 equals 3/8 · 0 + 5/8 · 4/5 = 20/40 = 1/2, as required.32 32Note that when s = n = 3, the Bayes

factor BF12 = n + 1 = 4, and the
associated posterior probability equals
4/5.

The same calculation may be repeated for p(H1), and this yields the
complementary expected posterior probability: 3/8 · 1 + 5/8 · 1/5 = 1/2.
In general, we found that the process of averaging posterior probabil-

ities across a data prior yields intuitive and reasonable results. Unfortu-
nately, however, not all is well.
Consider three models shown in Figure 19.1. The top-left panel

displays H1 : θ ∼ beta(2, 2); the top-right panel displays H+ :

θ ∼ beta(2, 2)I(1/2, 1); the bottom-left panel displays H− : θ ∼
beta(2, 2)I(0, 1/2). Thus, H1 is the most complex model, with H+ and
H− representing two simpler versions in which the parameter space has
been restricted to values of θ that are either larger or smaller than 1/2,
respectively.
Now imagine a data prior, p(yn |You) that assigns probability 1/4 to

values of s/n (as n → ∞) lower than 1/2 and probability 3/4 to values
of s/n higher than 1/2. Based on the procedure of averaging posterior
probabilities, we may draw the following conclusions:

1. Omitting H1 for the moment, the comparison between H− and H+

suggests a prior probability of 1/4 for H− and 3/4 for H+. This makes
sense, as 1/4 of the data prior is associated with values of θ smaller
than 1/2, and 3/4 is associated with values of θ larger than 1/2.

2. Omitting H− for the moment, the comparison between H1 and H+

suggests a prior probability of 1/2 for H1 and 1/2 for H+. Intuitively,
if repeated samples were drawn equally often from H1 and H+, a
proportion of 3/4 would fall in the interval where s/n > 1/2.33 This 33 To confirm: p(H+) = 1/4 · 0 + 3/4 ·

2/3 = 1/2.result therefore also makes sense.

3. Omitting H+ for the moment, the comparison between H1 and H−

yields a prior probability of 1/4 · 1/3 + 3/4 · 1 = 5/6 for H1 and
1/4 · 2/3 = 1/6 for H−.
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The final conclusion is where the problems become evident. One the
one hand, it does make sense for H1 to be much preferred over H−

in light of the data prior. However, note that if data were repeatedly
generated from p(H1) = 5/6 and p(H−) = 1/6, the results would be
inconsistent with the data prior, as the probability of selecting a true
value lower than θ = 1/2 equals 5/6 · 1/2 + 1/6 · 1 = 7/12. Moreover,
the three conclusions above are not transitive. Specifically, when the
data prior suggests that H1 and H+ are equally plausible, then both
models should stand in exactly the same relation to H−. However, in
the comparison to H−, the general model H1 fares a little better than
H+. The reason is that for the cases where s/n < 1/2, the general model
H1 is still competitive and collects a posterior probability of 1/3, whereas
H+ collects nothing. Although we can explain the intransitivity, we find
it difficult to accept. Perhaps intransitivity is simply the price that must
be paid for using a data prior that differs from the one that is implied
by the candidate models. Such incommensurabily represents a state of
epistemic schizophrenia; transitivity may then be too much to ask for.
We wish to stress that all of the five averaging methods yield ex-

pected values that are perfectly legitimate. Given the data prior we
may compute an expected Bayes factor, an expected log Bayes factor,
an expected marginal likelihood, an expected log marginal likelihood,
and an expected posterior probability. What we seek to determine is
the averaging method that lends itself best for quantifying prior model
probabilities as formalized through anticipated relative asymptotic pre-
dictive success.



21 Interlude: The Primacy of Poincaré

To sum up, ordinarily every law is held to be simple till the contrary is proved.

Poincaré, 1913

Chapter Goal

Henri Poincaré (1854-1912). Known as
the ‘The Last Universalist’, the contri-
butions of Poincaré to mathematics and
physics are too varied and numerous to
fit into this margin.

This chapter summarizes the philosophy of science advocated by
mathematician-physicist-philosopher Henri Poincaré. We show that
Poincaré’s 1913 trilogy The Foundations of Science contains insights that
form a central component of the later work by Wrinch and Jeffreys.
Several of Poincaré’s key phrases and expressions resurface in the work
of Jeffreys almost verbatim, further underscoring the similarities in
philosophical outlook between Poincaré and Wrinch & Jeffreys.

Poincaré and the First Simplicity Postulate

“As for myself, I must confess, I am
absolutely incapable even of adding
without mistakes.” (Poincaré 1913, p.
385)

Henri Poincaré is best known for his groundbreaking contributions to
mathematics and physics. For instance, Poincaré is one of the founding
fathers of chaos theory and topology, and a pioneer of the theory of
special relativity. Less well remembered are Poincaré’s contributions
to probability theory (Poincaré 1896) and to the philosophy of science
(Poincaré 1913). Of interest here is Poincaré’s philosophy of science
as outlined in the 1913 trilogy The Foundations of Science, which brings
together Poincaré’s earlier books Science and Hypothesis (1902), The Value
of Science (1905), and Science and Method (1908). In The Foundations of Sci-
ence, Poincaré expresses a view on scientific procedure that is strikingly
similar to the one advocated decades later by Wrinch and Jeffreys. The
similarity may be merely coincidental: our three actors were scientists as
well as philosophers of science, and all three shared the common scien-
tific knowledge of their day. But even after we take into account their
common interests and shared knowledge, the similarities in their philos-
ophy remain surprising. Even more surprising is the fact that Wrinch
and Jeffreys never mentioned the conceptual overlap with Poincaré’s
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philosophy, even though they did cite Poincaré’s books. Specifically,
Wrinch and Jeffreys (1919, p. 721) cite ‘La Science et l’Hypothèse, 1904,
213-245’ for Poincaré’s support for the principle of sufficient reason,
and Wrinch and Jeffreys (1921, p. 371) cite ‘Science et Méthode, pp.
192-214 (1908)’ for Poincaré’s critique on Cantor’s theory of infinite
numbers. Furthermore, in a footnote on the simplicity postulate, Jef-
freys states:

“Eddington (P. P. S. p. 4) [this refers to The Philosophy of Physical Science,
Eddington 1939 – EWDM] says that he “can find no indication that the
scientific researches of Pearson and Poincaré were in any way inspired
or guided by their particular philosophical outlook.” Some of Pearson’s
might have been better had they been more so guided, but the sentence
as it stands us ungenerous to the inventor of χ2, the contingency table,
and the best method of estimating the correlation coefficient.” (Jeffreys
1941, p. 179)

Note that Jeffreys does not discuss the position of Poincaré. Finally,
Jeffreys (1918) refers to Poincaré’s work Leçons sur les Hypothèses Cosmogo-
niques in relation to the origin of the solar system. The remainder of
this chapter highlights the philosophy of Poincaré, especially where it
connects to the first simplicity postulate. Throughout the chapter we
cite Poincaré at length, and the purpose of this is twofold. First, direct
quotations allow the reader to make up their own mind regarding the
similarity to the philosophy of Wrinch and Jeffreys. Second, Poincaré’s
writing is sublime and borders on the poetic; nothing would be gained
by trying to summarize his opinion in our own words, and much could
be lost.
Our examination of Poincaré’s philosophy starts with the fragments

below, in which Poincaré first outlines the necessity for induction and
generalization, and then draws the conclusion that “we are led to act
as if a simple law weer more probable than a complicated law.” Just as
Wrinch and Jeffreys, Poincaré considers the first simplicity postulate as
an essential precondition for learning and science:

Stamp “Henri Poincaré” (N◦ Yvert & Tel-
lier 933) by Jean Pheulpin. Reproduced
with permisson of ©La Poste.

“But then what gives us the right to attribute to the principle [of con-
servation of energy – EWDM] itself more generality and more precision
than to the experiments which have served to demonstrate it? This is to
ask whether it is legitimate, as is done every day, to generalize empirical
data, and I shall not have the presumption to discuss this question, after
so many philosophers have vainly striven to solve it. One thing is certain;
if this power were denied us, science could not exist or, at least, reduced
to a sort of inventory, to the ascertaining of isolated facts, it would have
no value for us, since it could give no satisfaction to our craving for order
and harmony and since it would be at the same time incapable of fore-
seeing. As the circumstances which have preceded any fact will probably
never be simultaneously reproduced, a first generalization is already neces-
sary to foresee whether this fact will be reproduced again after the least of
these circumstances shall be changed.
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But every proposition may be generalized in an infinity of ways.
Among all the generalizations possible, we must choose, and we can
only choose the simplest. We are therefore led to act as if a simple law were,
other things being equal, more probable than a complicated law.

Half a century ago this was frankly confessed, and it was proclaimed
that nature loves simplicity; she has since too often given us the lie. To-
day we no longer confess this tendency, and we retain only so much of it
as is indispensable if science is not to become impossible.

In formulating a general, simple and precise law on the basis of ex-
periments relatively few and presenting certain divergences, we have
therefore only obeyed a necessity from which the human mind can not free
itself.” (Poincaré 1913, pp. 119-120; italics added for emphasis)

and, similarly: Henri Poincaré’s cousin, Raymond
Poincaré, was the French President
from 1913 to 1920. Some of Raymond
Poincaré’s actions may have strained
Franco-German relations. For instance,
Poincaré initiated the Occupation of the
Ruhr (11 January 1923 – 25 August 1925)
because Germany was defaulting on its
WWI reparation payments.

“I wish to determine an experimental law. This law, when I know it,
can be represented by a curve. I make a certain number of isolated ob-
servations; each of these will be represented by a point. When I have
obtained these different points, I draw a curve between them, striving to
pass as near to them as possible and yet preserve for my curve a regular
form, without angular points, or inflections too accentuated, or brusque
variation of the radius of curvature. This curve will present for me the
probable law, and I assume not only that it will tell me the values of the
function intermediate between those which have been observed, but also
that it will give me the observed values themselves more exactly than
direct observation. This is why I make it pass near the points, and not
through the points themselves.

Here is a problem in the probability of causes. The effects are the mea-
surements I have recorded; they depend on a combination of two causes:
the true law of the phenomenon and the errors of observation. Know-
ing the effects, we have to seek the probability that the phenomenon
obeys this law or that, and that the observations have been affected by
this or that error. The most probable law then corresponds to the curve
traced, and the most probable error of an observation is represented by
the distance of the corresponding point from this curve.

But the problem would have no meaning if, before any observation,
I had not fashioned an a priori idea of the probability of this or that law,
and of the chances of error to which I am exposed.

If my instruments are good (and that I knew before making the ob-
servations), I shall not permit my curve to depart much from the points
which represent the rough measurements. If they are bad, I may go a
little further away from them in order to obtain a less sinuous curve; I
shall sacrifice more to regularity.

Why then is it that I seek to trace a curve without sinuosities? It is
because I consider a priori a law represented by a continuous function (or
by a function whose derivatives of high order are small), as more probable
than a law not satisfying these conditions. Without this belief, the problem
of which we speak would have no meaning; interpolation would be impossible;
no law could be deduced from a finite number of observations; science would not
exist.

Fifty years ago physicists considered, other things being equal, a simple
law as more probable than a complicated law. They even invoked this
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principle in favor of Mariotte’s law as against the experiments of Reg-
nault. To-day they have repudiated this belief; and yet, how many times
are they compelled to act as though they still held it! However that may
be, what remains of this tendency is the belief in continuity, and we have
just seen that if this belief were to disappear in its turn, experimental
science would become impossible.” (Poincaré 1913, pp. 169-170; italics
added for emphasis)

In October 2022, one of us [EJ] pre-
sented the contents of this chapter at a
conference on Bayesian methods, which
was held in Paris, at the Institute Henri
Poincaré.

With respect to the simplicity postulate, the main advance of Wrinch
and Jeffreys over Poincaré is that they are more specific. Wrinch and
Jeffreys propose that prior probability has to be distributed across an
infinite sequence of increasingly complex models according to a conver-
gent series, and outline a concrete method to quantify complexity. In
general, however, the above fragments highlight that Poincaré’s perspec-
tive on parsimony and prior probability was essentially identical to the
one that was promoted later by Wrinch and Jeffreys. In the next section
we break down the points of overlap into its separate components.

Twelve Ways in Which Poincaré Anticipated Wrinch
and Jeffreys

Below we list twelve interrelated convictions regarding proper scientific
procedure that unite Poincaré and Wrinch & Jeffreys.

1. Science Proceeds by Induction

The argument that science proceeds by induction was put forward by
Poincaré: “Thus in a multitude of circumstances

the physicist is in the same position as
the gambler who reckons up his chances.
As often as he reasons by induction, he
requires more or less consciously the
calculus of probabilities (…)” (Poincaré
1913, p. 155)

“The method of the physical sciences rests on the induction which makes
us expect the repetition of a phenomenon when the circumstances under
which it first happened are reproduced. If all these circumstances could
be reproduced at once, this principle could be applied without fear; but
that will never happen; some of these circumstances will always be lack-
ing. Are we absolutely sure they are unimportant? Evidently not. That
may be probable, it can not be rigorously certain. Hence the important
rôle the notion of probability plays in the physical sciences. The calculus
of probabilities is therefore not merely a recreation or a guide to play-
ers of baccarat, and we must seek to go deeper with its foundations.”
(Poincaré 1913, p. 30; italics in original)

Similarly, Jeffreys also stressed the importance of induction for scien-
tific progress throughout his work:

“The fundamental problem of this work is the question of the nature of
inference from empirical data so as to predict experiences that may occur
in the future. An astronomer accepts without question the positions of
the planets as given, for some years in advance, in the Nautical Almanac;
a botanist is equally confident that the plant that grows from a mustard
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seed will have yellow flowers with four long and two short stamens. In
both cases the predictions are made by way of ‘scientific laws’, which
are based on previous instances. This type of inference is not confined
to what is usually called ‘science’, but pervades ordinary life and even
art. When I taste the contents of a jar labelled ‘raspberry jam’ I expect
a definite sensation, inferred from previous instances. When a musical
composer scores a bar he expects a definite set of sounds to follow when
an orchestra plays it.” (Jeffreys 1973, p. 1)

2. The Scientific Burden of Proof Lies with the Advocate of the More
Complicated Hypothesis

Poincaré notes that in earlier times, the prevailing opinion was that na-
ture is simple. He then proceeds and anticipates Jeffreys’s razor almost
to the letter:

“To-day ideas have greatly changed; and yet, those who do not believe
that natural laws have to be simple, are still often obliged to act as if
they did. They could not entirely avoid this necessity without making
impossible all generalization, and consequently all science.

It is clear that any fact can be generalized in an infinity of ways, and it
is a question of choice. The choice can be guided only by considerations
of simplicity. Let us take the most commonplace case, that of interpo-
lation. We pass a continuous line, as regularly as possible, between the
points given by observation. Why do we avoid points making angles and
too abrupt turns? Why do we not make our curve describe the most capri-
cious zigzags? It is because we know beforehand, or believe we know, that
the law to be expressed can not be so complicated as all that.

We may calculate the mass of Jupiter from either the movements of its
satellites, or the perturbations of the major planets, or those of the minor
planets. If we take the averages of the determinations obtained by these
three methods, we find three numbers very close together, but different.
We might interpret this result by supposing that the coefficient of gravita-
tion is not the same in the three cases. The observations would certainly
be much better represented. Why do we reject this interpretation? Not
because it is absurd, but because it it needlessly complicated. We shall only
accept it when we are forced to, and that is not yet. To sum up, ordinarily
every law is held to be simple till the contrary is proved.” (Poincaré 1913, p.
131; italics added for emphasis)

Poincaré statement that in scientific practice, “every law is held to be
simple till the contrary is proved” almost literally anticipates Jeffreys’s
mantra “variation is random until the contrary is shown” (Jeffreys 1961,
p. 342) and “The onus of proof is always on the advocate of the more
complicated hypothesis.” (Jeffreys 1961, p. 343)
In other words, scientific procedure demands that positive proof is

provided before a simple hypothesis is abandoned in favor of a more
complex hypothesis. Until such proof is provided, the simple hypothe-
sis holds the higher ground.
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3. Scientists Prefer Simple Models

Poincaré states:

“But every proposition may be generalized in an infinity of ways. Among
all the generalizations possible, we must choose, and we can only choose
the simplest.” (Poincaré 1913, p. 120)

This is eerily similar to Jeffreys’s statement presented in Chapter 18:

“An infinite number of laws agree with previous experience, and an
infinite number that have agreed with previous experience will inevitably
be wrong in the next instance. What the applied mathematician does,
in fact, is to select one form out of this infinity; and his reason for doing
so has nothing whatever to do with traditional logic. He chooses the
simplest.” (Jeffreys 1961, pp. 3-4)

4. Without a Preference for Simplicity, Science Becomes Impossible

Poincaré argues that when we do not prefer simple laws over complex
laws a priori, we lose the ability to generalize. In the first fragment
below, Poincaré points out that scientists need to go beyond mere facts:

“(…) merely to observe is not enough. We must use our observations, and
to do that we must generalize. This is what men always have done; only
as the memory of past errors has made them more and more careful, they
have observed more and more, and generalized less and less.

Every age has ridiculed the one before it, and accused it of having
generalized too quickly and too naïvely. Descartes pitied the lonians;
Descartes, in his turn, makes us smile. No doubt our children will some
day laugh at us.

But can we not then pass over immediately to the goal? Is not this the
means of escaping the ridicule that we foresee? Can we not be content
with just the bare experiment? No, that is impossible; it would be to
mistake utterly the true nature of science. The scientist must set in order.
Science is built up with facts, as a house is with stones. But a collection
of facts is no more a science than a heap of stones is a house.” (Poincaré
1913, p. 127)

A few paragraphs later, Poincaré reinforces his argument that general-
ization is of central importance to science:

“What then is a good experiment? It is that which informs us of some-
thing besides an isolated fact; it is that which enables us to foresee, that is,
that which enables us to generalize.

For without generalization foreknowledge is impossible. The circum-
stances under which one has worked will never reproduce themselves all
at once. The observed action then will never recur; the only thing that
can be affirmed is that under analogous circumstances an analogous ac-
tion will be produced. In order to foresee, then, it is necessary to invoke
at least analogy, that is to say, already then to generalize.” (Poincaré 1913,
p. 128)



interlude: the primacy of poincaré 369

“scientific conquest is to be made only by
generalization.” (Poincaré 1913, p. 220)So generalization and prediction are key scientific goals. But “every

generalization implies in some measure the belief in the unity and
simplicity of nature.” (Poincaré 1913, p. 130) Is nature really simple?
Poincaré adopts a pragmatic stance:

“those who do not believe that natural laws have to be simple, are still
often obliged to act as if they did. They could not entirely avoid this
necessity without making impossible all generalization, and consequently
all science.” (Poincaré 1913, p. 131)

This line of reasoning is also present in the work of Jeffreys. For in-
stance, in Theory of Probability, Jeffreys argues that when simple models
are discarded out of hand, generalization is impossible:

“In the last resort, if this interpretation [that the observed difference may
be attributed solely to chance and deemed irrelevant to future observa-
tions – EWDM] is rejected, there is no escape from the admission that a
new parameter may be needed for every observation, and then all combi-
nation of observations is meaningless, and the only valid presentation of
data is a mere catalogue without any summaries at all.” (Jeffreys 1939, pp.
318-319)

In addition, Jeffreys argues that retaining the simple null hypothesis
in favor a the more complex alternative hypothesis can yield predictive
benefits:

“The question is, when we do this, do we expect thereby to get more or
less correct inferences than if we followed the rule of keeping the esti-
mation solution regardless of any question of significance? I maintain
that the only possible answer is that we expect to get more. The differ-
ence as estimated is interpreted as random error and irrelevant to future
observations.” (Jeffreys 1939, pp. 318)

Jeffreys follows this up with a concrete example that showcases the
advantages with respect to generalization and ‘foresight’:

“Suppose that a Mendelian finds in a breeding experiment 459 members
of one type, 137 of the other. The expectations on the basis of a 3:1 ratio
would be 447 and 149. The difference would be declared not significant
by any test. But the attitude that refuses to attach any meaning to the
statement that the simple rule is right must apparently say that if any
predictions are to be made from the observations the best that can be
done is to make them on the basis of the ratio 459/137, with allowance
for the uncertainty of sampling. I say that the best is to use the 3/1 rule,
considering no uncertainty beyond the sampling errors of the new ex-
periments. In fact the latter is what a geneticist would do. The observed
results would be recorded and might possibly be reconsidered at a later
stage if there was some question of differences of viability after many
more observations had accumulated; but meanwhile it would be regarded
as confirmation of the theoretical value.” (Jeffreys 1939, pp. 319-320)
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5. A Priori, Simple Laws Have to be Considered More Probable Than
Complex Laws

Without much discussion, Poincaré assumes that the scientist’s pref-
erence for simplicity reflects the belief that simple laws are deemed
more probable than complex laws a priori. As mentioned in Chapter 2,
Poincaré considered Bayesian inference (i.e., the probability of causes, in
the words of Poincaré), “the most interesting from the point of view of
their scientific applications”, and a solution to “the essential problem of
the experimental method.” In other words, Poincaré was a Bayesian. “If we were not ignorant, there would be

no probability, there would be room for
nothing but certainty. But our ignorance
can not be absolute, for then there
would no longer be any probability at all,
since a little light is necessary to attain
even this uncertain science. Thus the
problems of probability may be classed
according to the greater or less depth of
this ignorance.” (Poincaré 1913, p. 159)

Thus, Poincaré came tantalizingly close to proposing the Wrinch
and Jeffreys simplicity postulate. But although he argued that simple
models are deemed more probable a priori than complex models, he did
not propose to distribute prior model probability as a convergent series
across an infinite number of models of ever increasing complexity.

6. Simple Models Are Probably False

Poincaré was clearly uncomfortable with the fact that the science of his
day had made it increasingly apparent that nature was more complex
than previously thought. For instance: “However varied may be the imagination

of man, nature is still a thousand times
richer.” (Poincaré 1913, p. 285)“Half a century ago this was frankly confessed, and it was proclaimed that

nature loves simplicity; she has since too often given us the lie. To-day
we no longer confess this tendency, and we retain only so much of it as is
indispensable if science is not to become impossible.” (Poincaré 1913, pp.
120)

and

“Fifty years ago physicists considered, other things being equal, a simple
law as more probable than a complicated law. (…). To-day they have
repudiated this belief; and yet, how many times are they compelled to act
as though they still held it!” (Poincaré 1913, p. 170)

and

“For all these reasons, no particular law will ever be more than approx-
imate and probable. Scientists have never failed to recognize this truth;
only they believe, right or wrong, that every law may be replaced by
another closer and more probable, that this new law will itself be only
provisional, but that the same movement can continue indefinitely, so
that science in progressing will possess laws more and more probable,
that the approximation will end by differing as little as you choose from
exactitude and the probability from certitude.” (Poincaré 1913, p. 341)1

1 Compare to the end of the 1939 edition
of Theory of Probability: “If we should
ever reach a stage where all laws were
known, science need not end; for the
relevant parameters could be determined
with ever-increasing accuracy by increas-
ing the number of observations. The
conclusion seems to be, therefore, that
science cannot end. It must always either
discover new laws or increase the accu-
racy of the estimates of the parameters
in the old ones. Human interest may fail,
however, if the new laws were not such
as to arouse it; or if the accuracy already
obtained was as great as was needed.(…) I
think, therefore, that it is impossible for
science to end, but it is possible for it to
become uninteresting. But that will not
be for some time yet.” (Jeffreys 1939, p.
355)

and

“If we look at any particular law, we may be certain in advance that it
can only be approximate (…) We should always expect that more precise
measurements will oblige us to add new terms to our formulas” (Poincaré
1913, p. 340)
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This tension is also present in Jeffreys’s work. Initially, Wrinch and
Jeffreys advocated the position that nature is simple: “The existence of
simple laws is, then, apparently, to be regarded as a quality of nature”
(Wrinch and Jeffreys 1921, p. 380). In later work, however, Jeffreys
backpedalled and defended the position put forward earlier by Poincaré:
simple models may be false, but they are necessary in order to achieve
scientific progress:

“we have only to remember that ‘true value’ is not to be understood in
an absolute sense, but in the sense that any law relating measures, if it is
to be of any use, must be clearly stated, in probability terms, and that a
possible way of progress (apparently the only possible way) is to treat the
variation as the resultant of a part that would be exactly predictable, given
exact statements of the values of certain parameters, and a random error.
The law in its naive form would deal only with the former part. The
parameters in this part may be called the true values of the parameters,
and the observed values that they would lead to if the random part was
neglected the true values.” (Jeffreys 1961, p. 73)

and

“ Scientific progress, then, does not depend on exactness; a law may
be useful and lead to progress for centuries or millennia and be in fact
wrong, and we cannot say in advance when it will be found to be wrong
or by how much. If a man refuses ever to be wrong he will never do
scientific work of any value, because he will never dare to say anything.”
(Jeffreys 1937a, p. 66)

“[making hypotheses] indeed is neces-
sary, since no scientist has ever been
able to get on without them. The es-
sential thing is never to make them
unconsciously.” (Poincaré 1913, p. 6)

So, in the end Jeffreys agreed with Poincaré that scientists are “com-
pelled to act” as if the first simplicity postulate were true.

7. Induction Needs No Justification

Poincaré pointed out that scientific forecasts (based on generalization)
are never certain, but only probable:

“Thus, thanks to generalization, each fact observed enables us to foresee a
great many others; only we must not forget that the first alone is certain,
that all others are merely probable. No matter how solidly founded a pre-
diction may appear to us, we are never absolutely sure that experiment will
not contradict it, if we undertake to verify it. The probability, however, is
often so great that practically we may be content with it. It is far better to
foresee even without certainty than not to foresee at all.” (Poincaré 1913,
p. 129; italics in original)

and

“Then as one can never be certain of not having forgotten some essential
condition, it can not be said: If such and such conditions are realized,
such a phenomenon will occur; it can only be said: If such and such
conditions are realized, it is probable that such a phenomenon will occur,
very nearly. ” (Poincaré 1913, pp. 340-341)
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Although scientific forecasts are fallible, it is the best that can be achieved:

“Science foresees, and it is because it foresees that it can be useful and
serve as rule of action. I well know that its previsions are often contra-
dicted by the event; that shows that science is imperfect, and if I add that
it will always remain so, I am certain that this is a prevision which, at
least, will never be contradicted. Always the scientist is less often mis-
taken than a prophet who should predict at random. Besides the progress
though slow is continuous, so that scientists, though more and more bold,
are less and less misled. This is little, but it is enough.” (Poincaré 1913, p.
324)

Finally, Poincaré takes a pragmatic view on the inductive process of
scientific progress:

“I do not at all wish to investigate here the foundations of the principle
of induction; I know very well that I should not succeed; it is as difficult
to justify this principle as to get on without it. I only wish to show how
scientists apply it and are forced to apply it.” (Poincaré 1913, p. 345)

“a chess player, for example, does not
create a science in winning a game.
There is no science apart from the
general.” (Poincaré 1913, p. 33)

The foregoing fragments are strikingly similar to the concluding para-
graph of the 1961 edition of Theory of Probability:

“The present theory does not justify induction. I do not consider justifi-
cation necessary or possible; what the theory does is to provide rules for
consistency. A prediction is never in the form ‘so-and-so will happen’. At
the best it is of the form ‘it is reasonable to be highly confident that it will
happen’. This may be disappointing, but in the last resort that is all that
we can say. The former statement is a fallacious claim to deductive cer-
tainty; the latter is attainable by a consistent process. In this sense we can
justify particular applications, and it is enough.” (Jeffreys 1961, p. 424)

“Our object, in short, is not to prove
induction; it is to tidy it up.” (Jeffreys
1961, p. 8)

8. Science is Always Provisional: it is a Process of Successive
Approximation

Throughout his work, Poincaré stressed the idea that science is a pro-
cess of “successive approximation” (e.g., Poincaré 1913, p. 137). For
instance: “it is analogy with the simple which

enables us to comprehend the complex.”
(Poincaré 1913, p. 381)“Every age has ridiculed the one before it, and accused it of having gener-

alized too quickly and too naïvely. Descartes pitied the lonians; Descartes,
in his turn, makes us smile. No doubt our children will some day laugh at
us.” (Poincaré 1913, p. 127)

and

“Why, then, does science actually need general theories, despite the fact
that these theories inevitably alter and pass away? What is the service of
a philosophy of science, when it is certain that the philosophy of science
which is best suited to the needs of one generation must be superseded
by the advancing insight of the next generation? Why must that which
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endlessly grows, namely, man’s knowledge of the phenomenal order of
nature, be constantly united in men’s minds with that which is certain to
decay, namely, the theoretical formulation of special knowledge in more
or less completely unified systems of doctrine? I understand our author’s
volume to be in the main an answer to this question.” (Royce, in Poincaré
1913, pp. 14-15)

and

“The laity are struck to see how ephemeral scientific theories are. After
some years of prosperity, they see them successively abandoned; they see
ruins accumulate upon ruins; they foresee that the theories fashionable
to-day will shortly succumb in their turn and hence they conclude that
these are absolutely idle. This is what they call the bankruptcy of science.

Their scepticism is superficial; they give no account to themselves of
the aim and the rôle of scientific theories; otherwise they would compre-
hend that the ruins may still be good for something.” (Poincaré 1913, p.
140; italics in original)

and finally

“The advance of science is not comparable to the changes of a city, where
old edifices are pitilessly torn down to give place to new, but to the con-
tinuous evolution of zoologic types which develop ceaselessly and end by
becoming unrecognizable to the common sight, but where an expert eye
finds always traces of the prior work of the centuries past. One must not
think then that the old-fashioned theories have been sterile and vain. ”
(Poincaré 1913, pp. 208)

“Let us try to go back and picture to
ourselves what a Greek would have
thought if told that red light vibrates
four hundred millions of millions of
times per second. Without any doubt,
such an assertion would have appeared
to him pure madness, and he never
would have lowered himself to test it
(…) Habituated to the contemplation
of the infinitely great, we have become
apt to comprehend the infinitely small.”
(Poincaré 1913, p. 293)

Jeffreys advanced the same idea, albeit in more prosaic terms. For
instance:

“Every law is provisional in the sense that its parameters are capable
of revision with additional data, and even that new parameters not yet
considered at all may be introduced when there is adequate evidence
to support them; some of these parameters may represent a variation
according to an exact formula and the others random departures from it,
but from an epistemological point of view the random variation is just as
much a part of the law as the systematic variation is.” (Jeffreys 1938d, p.
442)

and

“We do not try to predict exact observed values. Any process starts with
random variation as a primitive idea; as we proceed we find that more
and more of the actual variation can be explained as calculable from other
information. Thus actual scientific method consists of successive approx-
imations to probability distributions. Its connection with what philoso-
phers call reality is a further question, but I think not an important one
scientifically.” (Jeffreys 1957, p. 349; italics added for emphasis)

and
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“It is a fact that revision of scientific laws has often been found necessary
in order to take account of new information–the relativity and quantum
theories providing conspicuous instances–and there is no conclusive rea-
son to suppose that any of our present laws are final. But we do accept
inductive inference in some sense; we have a certain amount of confi-
dence that it will be right in any particular case, though this confidence
does not amount to logical certainty.” (Jeffreys 1961, p. 9)

and

“Several speakers mentioned the problem of unconsidered alternatives,
but hardly any mentioned my main standpoint, that scientific method
consists of successive approximation. (…) We can compare probabilities over
the range of hypotheses already thought of; we do not consider them as
final.” (Jeffreys 1963, p. 409; italics added for emphasis)

and

“This is typical of the normal course of scientific method. There is no
finality; but there is a definite expectation that a suggested law that gives
a marked improvement in representing observations will give a still
greater one when its consequences are more fully worked out and the
observations become more accurate. Both for Newton’s law and those of
Euclid discrepancies have finally been revealed; but that does not alter the
fact that the present departures from either are 1/300 and perhaps 1/1,000
of anything known to their proposers. If Euclid had waited for modern
accuracy of measurement or for Einstein’s theory there would never have
been either modern accuracy nor a theory of relativity; unless indeed
there was a more venturesome Euclid who would not wait.” (Jeffreys
1937a, p. 66)

and

“Some feeling of discomfort seems to attach itself to the assertion of the
special value as right, since it may be slightly wrong but not sufficiently to
be revealed by a test on the data available; but no significance test asserts
it as certainly right. We are aiming at the best way of progress, not at the
unattainable ideal of immediate certainty.” (Jeffreys 1961, p. 388; italics in
original)

9. The Key Scientific Question is a Hypothesis Test: “Is it This or That?”

According to Poincaré, the eternal challenge that confronts scientists is
to ascertain whether the observed deviations from a general law (e.g.,
the null hypothesis) are due to chance alone, or whether they are sys-
tematic. In the words of Poincaré: “is it this or that?”:

“Is it probable that there is a general law according to which y would be
proportional to x, and that the small divergencies are due to errors of
observation? This is a type of question that one is ever asking, and which
we unconsciously solve whenever we are engaged in scientific work.”
(Poincaré 1913, p. 160)
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and

“We now come to the problems of the probability of causes, the most
important from the point of view of scientific applications. Two stars,
for instance, are very close together on the celestial sphere. Is this ap-
parent contiguity a mere effect of chance? Are these stars, although on
almost the same visual ray, situated at very different distances from the
earth, and consequently very far from one another? Or, perhaps, does the
apparent correspond to a real contiguity?” (Poincaré 1913, p. 168)

and finally

“The experimenter puts to nature a question: Is it this or that? and
he can not put it without imagining the two terms of the alternative.”
(Poincaré 1913, pp. 239-240)

This sentiment was echoed by Jeffreys:

“Thus in any significance problem the question will be: Is the new pa-
rameter supported by the observations, or is any variation expressible by
it better interpreted as random? Thus we must set up two hypotheses for
comparison, the more complicated having the smaller initial probability.”
(Jeffreys 1961, p. 246)

10. New Parameters Should be Tested One at a Time

Poincaré proposed that hypotheses ought to be evaluated sequentially
instead of simultaneously:

“Let us notice besides that it is important not to multiply hypotheses
beyond measure, and to make them only one after the other. If we con-
struct a theory based on a number of hypotheses, and if experiment
condemns it, which of our premises is it necessary to change? It will be
impossible to know. And inversely, if the experiment succeeds, shall
we believe that we have demonstrated all the hypotheses at once? Shall
we believe that with one single equation we have determined several
unknowns?” (Poincaré 1913, pp. 134-135)

Jeffreys expressed the same opinion:

“new parameters expressing systematic differences, when they are sug-
gested, must be tested one at a time unless there is specific reason to the
contrary” (Jeffreys 1937c, pp. 489-490)

Jeffreys reiterated this statement in Theory of Probability (p. 342, 1961
edition) which elaborated as follows:

“This rule for arranging the analysis of the data is of the first importance.
We saw before that progress was possible only by testing hypotheses in
turn, at each stage treating the outstanding variation as random (…) It
is necessary to a practical development, for if it could be asked that an
indefinite number of possible changes in a law should be considered
simultaneously we should never be able to carry out the work at all.”
(Jeffreys 1961, pp. 342-343)
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11. Support Equals Unsurprise

The eleventh way in which Poincaré anticipated Wrinch and Jeffreys
relates to the support that observed data can provide for a ‘simple cause’
hypothesis (e.g., all zombies are hungry) over a more complex ‘chance’
hypothesis. In earlier chapters the Bayes factor was shown to quan-
tify the relative predictive success of two rival hypotheses; when the
observed data are less surprising under the ‘simple cause’ hypothesis
than under the more complex ‘chance’ hypothesis, this indicates that
the ‘simple cause’ hypothesis enjoys a gain in credibility whereas the
‘chance’ hypothesis decreases suffers a decline. In the words of Jeffreys
(1961, p. 248), “we adopt the less remarkable coincidence”.2 Although 2 This will be elaborated upon in the next

chapter.Poincaré did not compute a Bayes factor, he did articulate the basic line
of reasoning: “we refuse to believe that an unforeseen

harmony may be a simple effect of
chance. It seems that our conquest is the
dearer to us the more effort it has cost
us, or that we are the surer of having
wrested her true secret from nature the
more jealously she has hidden it from us.”
(Poincaré 1913, p. 121)

“When we reach a simple result, when we find for example a round
number, we say that such a result can not be due to chance, and we seek,
for its explanation, a non-fortuitous cause. And in fact there is only a very
slight probability that among 10,000 numbers chance will give a round
number; for example, the number 10,000. This has only one chance in
10,000. But there is only one chance in 10,000 for the occurrence of any
other one number; and yet this result will not astonish us, nor will it be
hard for us to attribute it to chance; and that simply because it will be less
striking.

Is this a simple illusion of ours, or are there cases where this way of
thinking is legitimate? We must hope so, else were all science impossible.
When we wish to check a hypothesis, what do we do? We can not verify
all its consequences, since they would be infinite in number; we content
ourselves with verifying certain ones and if we succeed we declare the
hypothesis confirmed, because so much success could not be due to
chance. And this is always at bottom the same reasoning.

I can not completely justify it here, since it would take too much
time; but I may at least say that we find ourselves confronted by two
hypotheses, either a simple cause or that aggregate of complex causes we
call chance. We find it natural to suppose that the first should produce a
simple result, and then, if we find that simple result, the round number
for example, it seems more likely to us to be attributable to the simple
cause which must give it almost certainly, than to chance which could
only give it once in 10,000 times. It will not be the same if we find a
result which is not simple; chance, it is true, will not give this more than
once in 10,000 times; but neither has the simple cause any more chance
of producing it.” (Poincaré 1913, p. 412)

Moreover, Poincaré expressed a preference for the Bayes factor (i.e.,
the evidence) over the posterior odds, as he found the prior odds to be
subjective. Jeffreys would have disagreed, but at the same time it cannot
be denied that Jeffreys’s work revolved almost completely around the
Bayes factor. In the context of court cases, Poincaré states the Bayes
factor in words:
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“Since it is absolutely impossible for us [the experts] to know the a priori
probability, we cannot say: this coincidence proves that the ratio of the
forgery’s probability to the inverse probability is a real value. We can only
say: following the observation of this coincidence, this ratio becomes X
times greater than before the observation.” (as translated by Taroni et al.
1998, p. 192, from the French report)

12. It is Irrelevant Whether or Not the Preference for Simplicity is Due to
the Limitations of the Human Mind

Poincaré discussed the suggestion that scientists prefer simple models
because of the inherent limitations of the human mind (and deems the
suggestion irrelevant):

“What I have sought to explain in the preceding pages is how the scientist
should guide himself in choosing among the innumerable facts offered to
his curiosity, since indeed the natural limitations of his mind compel him
to make a choice, even though a choice be always a sacrifice. (…)

There is a hierarchy of facts; some have no reach; they teach us noth-
ing but themselves. The scientist who has ascertained them has learned
nothing but a fact, and has not become more capable of foreseeing new
facts. Such facts, it seems, come once, but are not destined to reappear.

There are, on the other hand, facts of great yield; each of them teaches
us a new law. And since a choice must be made, it is to these that the
scientist should devote himself.

Doubtless this classification is relative and depends upon the weakness
of our mind. The facts of slight outcome are the complex facts, upon
which various circumstances may exercise a sensible influence, circum-
stances too numerous and too diverse for us to discern them all. But I
should rather say that these are the facts we think complex, since the
intricacy of these circumstances surpasses the range of our mind. Doubt-
less a mind vaster and finer than ours would think differently of them.
But what matter; we can not use that superior mind, but only our own.”
(Poincaré 1913, p. 544 )

Jeffreys discusses the same suggestion, and likewise discards it (using
similar phrases):

“It is sometimes said, again, that the trust in the simple law is a pecu-
liarity of human psychology; a different type of being might behave
differently. Well, I see no point whatever in discussing at length whether
the human mind is any use; it is not a perfect reasoning instrument, but it
is the only one we have.” (Jeffreys 1961, p. 5)

Why Did Jeffreys Not Acknowledge Poincaré?

As detailed above, the overlap between Poincaré vs. Wrinch & Jeffreys
is truly remarkable. Not only do these authors advance the same phi-
losophy of science, but they even use highly similar phrases. This
immediately invites the speculation of whether the overlap is due to
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‘chance’ (i.e., merely the result of a common scientific background–see
the next sections), or whether it is due to a young Jeffreys having read
Poincaré’s work, internalizing the contents and then gradually forget-
ting the source. Note that this is a ‘key scientific question’

in the sense of point #9 above – “is it
this or that?”.

It seems unlikely that Jeffreys purposefully failed to acknowledge the
conceptual overlap with Poincaré. Jeffreys was not shy about acknowl-
edging the contribution of his co-workers (e.g., Dorothy Wrinch), of
researchers who explored similar ideas (e.g., J. B. S. Haldane and V. S.
Huzurbazar), and of researchers who provided inspiration (e.g., Karl
Pearson). Moreover, it would actually have been to Jeffreys’s advantage
to point out that the famous Poincaré was a close philosophical ally.
The possibility cannot be excluded, however, that Jeffreys was aware

of the conceptual overlap with the position of Poincaré, but did not
deem it sufficiently relevant to acknowledge explicitly. In our opinion,
this would have constituted an error of judgment.

de Finetti on Poincaré
Jeffreys may not have acknowledged being inspired by Poincaré, but
other prominent Bayesians did. These include Frank Ramsey, and
especially Bruno de Finetti (see also Galavotti 2019):

“Henri Poincaré, the immortal scientist whose name this institute
honors, and who brought to life with his ingenious ideas so many
branches of mathematics, is without doubt also the thinker who
attributed the greatest domain of application to the theory of proba-
bility and gave it a completely essential role in scientific philosophy.”
(de Finetti 1964, p. 99)

In a different article, de Finetti first quotes Poincaré at length and
then states:

“(…) [Poincaré] clearly understood that only an accomplished fact is
certain, that science cannot limit itself to theorizing about accom-
plished facts but must foresee, that science is not certain, and that
what really makes it go is not logic but the probability calculus. (…)
I would not need to change a single syllable in order to express my
own opinion in Poincaré’s words” (de Finetti 1931/1989, p. 173)

George Darwin

There are many more similarities between Poincaré and Jeffreys. Both
were polymaths, pragmatists, and philosophers of science who con-
tributed to geophysics, quantum mechanics, and mathematics. Both
Poincaré and Jeffreys were also inspired by some of the same researchers.
One of these is Ernst Mach (1838–1916), the Austrian physicist and
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philosopher who argued that the role of science is to produce economy
of thought (e.g., Galavotti 2019, p. 1).

George Howard Darwin (1845-1912).

Another scientist who connects Poincaré to Jeffreys is the Britsh as-
tronomer and mathematician Sir George Darwin (1845–1912). Poincaré
inspired Darwin, and Darwin in turn inspired Jeffreys. The English
translation of Poincaré’s trilogy The Foundations of Science starts as fol-
lows:

Sir GEORGE DARWIN, worthy son of an immortal father, said, referring
to what Poincaré was to him and to his work: ”He must be regarded as
the presiding genius—or, shall I say, my patron saint?” (…) Of his treatise
Les Méthodes nouvelles de la Méchanique céleste, Sir George Darwin says: “It
is probable that for half a century to come it will be the mine from which
humbler investigators will excavate their materials.” ” (Poincaré 1913, pp.
ix-x; from the introduction by the translator, George Halsted)

And in an interview, a 89-year old Jeffreys repeatedly emphasized the
impact of George Darwin on nearly all of his work:

“I suppose I had been interested in astronomy since I was about 10. When
I was an undergraduate, my interest in geophysics was aroused by a
popular book on the tides by Sir George Darwin (Charles Darwin’s son).
The great majority of my work has arisen directly or indirectly from this
book and from his collected papers.” (Spall 1980, p. 50)

and then

“I never knew Sir George Darwin personally, although I think that nearly
all of my work has been inspired by him. When I was taking walks on
Coe Fen near Cambridge, I often used to see a man practicing archery.
I found out much later that Darwin was an archer, and his home was
nearby. So I must have seen him without knowing who he was.” (Spall
1980, p. 52)

Moreover, Jeffreys’s book The Earth (first edition: 1924; sixth edition:
1976) is dedicated “to the memory of Sir George Howard Darwin”.

The Internal Structure of the Earth

A notable commonality in the scientific interests of Poincaré and Jef-
freys concerns the internal structure of the earth. Poincaré writes:

“Every one understands our interest in knowing the form and dimensions
of our earth (…)

We know not what is within our globe. The shafts of mines and
borings have let us know a layer of 1 or 2 kilometers thickness, that is to
say, the millionth part of the total mass; but what is beneath?

Of all the extraordinary journeys dreamed by Jules Verne, perhaps that
to the center of the earth took us to regions least explored.

But these deep-lying rocks we can not reach, exercise from afar their
attraction which operates upon the pendulum and deforms the terres-
trial spheroid. Geodesy can therefore weigh them from afar, so to speak,
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and tell us of their distribution. Thus will it make us really see those
mysterious regions which Jules Verne only showed us in imagination.

This is not an empty illusion. M. Faye, comparing all the measure-
ments, has reached a result well calculated to surprise us. Under the
oceans, in the depths, are rocks of very great density; under the conti-
nents, on the contrary, are empty spaces.

New observations will modify perhaps the details of these conclu-
sions.” (Poincaré 1913, pp. 535-536)

Inge Lehmann (1888–1993), the Danish
seismologist who discovered the earth’s
internal structure. Photo from 1932.

Future work modified more than just the details of these conclusions.
One of Jeffreys’s main scientific contributions was his discovery that the
earth’s core was fluid:

“Combining the mean densities found for the shell and core with the
velocities of distortional waves in the shell, it is found that the tidal
yielding of the earth implies a low rigidity in the core, certainly less than
the mean rigidity of the shell, and possibly zero. An examination of the
elastic stability of the earth shows that incompressibility would maintain
stability for radial displacements even if the rigidity were zero everywhere.
There seems to be no reason to deny that the earth’s metallic core is truly
fluid.” (Jeffreys 1926, p. 383)

Jeffreys was not entirely correct, however: the inner core is in fact solid,
although it is surrounded by an outer core that is indeed molten. The
correct structure was discovered by Danish seismologist and geophysicist
Inge Lehmann (1888–1993; Lehmann 1936; 1987, Bolt 1997; see also
Deuss et al. 2000).

Chapter Summary
“To doubt everything and to believe
everything are two equally convenient
solutions; each saves us from thinking.”
(Poincaré 1913, p. 27)

The French mathematician Henri Poincaré had articulated the first
simplicity postulate two decades before it was quantified by Dorothy
Wrinch and Harold Jeffreys. More precisely, Poincaré anticipated
Wrinch and Jeffreys by making the following claims: “To doubt everything does not suf-

fice, one must know why he doubts.”
(Poincaré 1913, p. 437)1. Science proceeds by induction.

2. The scientific burden of proof lies with the advocate of the more
complicated hypothesis.

3. Scientists prefer simple models.

4. Without a preference for simplicity, science becomes impossible.

5. A priori, simple laws have to be considered more probable than com-
plex laws.

6. Simple models are probably false.

7. Induction needs no justification.
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8. Science is always provisional: it is a process of successive approxima-
tion.

9. The key scientific question can be cast as a hypothesis test: “is it this
or that?”

10. New parameters should be tested one at a time.

11. Support equals unsurpise.

12. It is irrelevant whether or not the preference for simplicity is due to
the limitations of the human mind.

The overlap between the position of Poincaré and that of Wrinch
and Jeffreys is striking; the authors even used similar phrases. For in-
stance, Poincaré states “(…) ordinarily every law is held to be simple till
the contrary is proved”, whereas Jeffreys states “variation is random un-
til the contrary is shown.” And Poincaré states “But every proposition
may be generalized in an infinity of ways. Among all the generaliza-
tions possible, we must choose, and we can only choose the simplest”,
whereas Jeffreys states “An infinite number of laws agree with previous
experience (…) What the applied mathematician does, in fact, is to select
one form out of this infinity (…). He chooses the simplest.” Based on
the material presented in this chapter we believe a case can be made
that the philosophical foundation for the statistical innovations made
by Harold Jeffreys were laid down earlier, and they were laid down by
Henri Poincaré.

Want to Know More?

3 Poincaré was also interested in psychology. Specifically, Poincaré con-
tributed ideas on ‘Mathematical creation’ and unconscious thought
(Poincaré 1913, pp. 383-397), on embodiment (Poincaré 1913, pp.
244-252; pp. 418-424), and on teaching mathematics (Poincaré 1913,
pp. 430-447).

3 Del Vecchio Junior, J. (2016). Chance and probability in Poincaré’s
epistemology. Philosophia Scientiæ, 20, 177–196.

3 Diaconis, P. (2012). Poincaré’s probability. Presentation for the Insti-
tut Henri Poincaré. Available on YouTube.

3 Poincaré, H. (1896). Calcul des Probabilités. Paris: Gauthier–Villars et
Fils. Poincaré’s main contribution to probability theory.

3 Poincaré, H. (1913). The Foundations of Science. Translated by G. B.
Halsted. New York: The Science Press. This trilogy comprises the
English translations of Poincaré’s earlier books on the philosophy of
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science: Science and Hypothesis (1902), The Value of Science (1905), and
Science and Method (1908). Poincaré was not only a famous mathemati-
cian but also a gifted writer. The work is surprisingly accessible.

3 Sheynin, O. B. (1991). H. Poincaré’s work on probability. Archive for
History of Exact Sciences, 42, 137–171.

Appendix: The Scientific Poetry of Poincaré

The scientist does not study nature because it is useful; he studies it because he
delights in it, and he delights in it because it is beautiful. If nature were not
beautiful, it would not be worth knowing, and if nature were not worth
knowing, life would not be worth living.

Poincaré, 1913

(…) geologic history shows us that life is only a short episode between two
eternities of death, and that, even in this episode, conscious thought has lasted
and will last only a moment. Thought is only a gleam in the midst of a long
night. But it is this gleam which is everything.

Poincaré, 1913

At his funeral in 1912, the director of the Académie française Jules
Claretie called Poincaré “a kind of poet of the infinite, a kind of bard
of science”.3 As a testament to this claim, the margins of this book 3 The complete eulogy is available online

at http://www.annales.org/archives/
x/poincare5.html.

are peppered with quotations from Poincaré. Nevertheless, we could
not present all of Poincaré’s poetic statements in the margins: some
quotations were simple too long, and others were not directly relevant
to the material under study. This appendix brings together a set of
statements by Poincaré that we wish to present but could not place
in the margins. We have included these statements because they are
beautiful.

The Search for Truth

Modern science is under increasing pressure to produce research that is
useful in the sense that it boosts economic activity or makes people live
longer. Poincaré would not have had any of that:

“All that is not thought is pure nothingless” (Poincaré 1913, p. 355)

and

“The search for truth should be the goal of our activities; it is the sole
end worthy of them. Doubtless we should first bend our efforts to as-
suage human suffering, but why? Not to suffer is a negative ideal more
surely attained by the annihilation of the world. If we wish more and

http://www.annales.org/archives/x/poincare5.html
http://www.annales.org/archives/x/poincare5.html
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more to free man from material cares, it is that he may be able to employ
the liberty obtained in the study and contemplation of truth.” (Poincaré
1913, p. 205)

and

“You have doubtless often been asked of what good is mathematics and
whether these delicate constructions entirely mind-made are not artificial
and born of our caprice.

(…) practical people ask of us only the means of money-making. These
merit no reply; rather would it be proper to ask of them what is the good
of accumulating so much wealth and whether, to get time to acquire it,
we are to neglect art and science, which alone give us souls capable of
enjoying it, ‘and for life’s sake to sacrifice all reasons for living.’

Besides, a science made solely in view of applications is impossible;
truths are fecund only if bound together. If we devote ourselves solely
to those truths whence we expect an immediate result, the intermediary
links are wanting and there will no longer be a chain.

The men most disdainful of theory get from it, without expecting it,
their daily bread; deprived of this food, progress would quickly cease,
and we should soon congeal into the immobility of old China.” (Poincaré
1913, p. 279)

and

“if I admire the conquests of industry, it is above all because if they
free us from material cares, they will one day give to all the leisure to
contemplate nature. I do not say: Science is useful, because it teaches us
to construct machines. I say: Machines are useful, because in working
for us, they will some day leave us more time to make science.” (Poincaré
1913, p. 294)

and

“It should not even be said that action is the goal of science; should we
condemn studies of the star Sirius, under pretext that we shall probably
never exercise any influence on that star? To my eyes, on the contrary, it
is the knowledge which is the end, and the action which is the means.”
(Poincaré 1913, p. 325)

What is Reality?

The following fragments underscore the appeal of Poincaré’s position
on subjective Bayesians such as Bruno de Finetti. The data cannot
‘speak for themselves’:

“We seek reality, but what is reality? The physiologists tell us that or-
ganisms are formed of cells; the chemists add that cells themselves are
formed of atoms. Does this mean that these atoms or these cells consti-
tute reality, or rather the sole reality? The way in which these cells are
arranged and from which results the unity of the individual, is not it
also a reality much more interesting than that of the isolated elements,
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and should a naturalist who had never studied the elephant except by
means of the microscope think himself sufficiently acquainted with that
animal?” (Poincaré 1913, p. 217)

and

“To know the height of the mainmast does not suffice for calculating the
age of the captain. When you have measured every bit of wood in the
ship you will have many equations, but you will know his age no better”
(Poincaré 1913, p. 86)

and

“It is often said experiments must be made without a preconceived idea.
That is impossible. Not only would it make all experiment barren, but
that would be attempted which could not be done. Every one carries in
his mind his own conception of the world, of which he can not so easily
rid himself. We must, for instance, use language; and our language is
made up only of preconceived ideas and can not be otherwise. Only these
are unconscious preconceived ideas, a thousand times more dangerous
than the others.

Shall we say that if we introduce others, of which we are fully con-
scious, we shall only aggravate the evil? I think not. I believe rather that
they will serve as counterbalances to each other—I was going to say as
antidotes; they will in general accord ill with one another—they will come
into conflict with one another, and thereby force us to regard things un-
der different aspects. This is enough to emancipate us. He is no longer a
slave who can choose his master.” (Poincaré 1913, p. 129)

The final quotation is particularly apt in a book on Bayesian infer-
ence. Statistical inference cannot be conducted without prior knowl-
edge.

How to Govern Nature

“The stars send us not only that visible and gross light which strikes our
bodily eyes, but from them also comes to us a light far more subtle, which
illuminates our minds and whose effects I shall try to show you. You
know what man was on the earth some thousands of years ago, and what
he is to-day. Isolated amidst a nature where everything was a mystery
to him, terrified at each unexpected manifestation of incomprehensible
forces, he was incapable of seeing in the conduct of the universe anything
but caprice; he attributed all phenomena to the action of a multitude of
little genii, fantastic and exacting, and to act on the world he sought to
conciliate them by means analogous to those employed to gain the good
graces of a minister or a deputy. Even his failures did not enlighten him,
any more than to-day a beggar refused is discouraged to the point of
ceasing to beg.

To-day we no longer beg of nature; we command her, because we have
discovered certain of her secrets and shall discover others each day. We
command her in the name of laws she can not challenge, because they
are hers; these laws we do not madly ask her to change, we are the first to
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submit to them. Nature can only be governed by obeying her.” (Poincaré
1913, p. 290)

Chance

“The greatest bit of chance is the birth of a great man. It is only by
chance that meeting of two germinal cells, of different sex, containing
precisely, each on its side, the mysterious elements whose mutual reaction
must produce the genius. One will agree that these elements must be rare
and that their meeting is still more rare. How slight a thing it would have
required to deflect from its route the carrying spermatozoon. It would
have sufficed to deflect it a tenth of a millimeter and Napoleon would not
have been born and the destinies of a continent would have been changed.
No example can better make us understand the veritable characteristics of
chance.” (Poincaré 1913, pp. 410-411)

The Future of Science

“In the history of the development of physics we distinguish two inverse
tendencies.

On the one hand, new bonds are continually being discovered be-
tween objects which had seemed destined to remain forever unconnected;
scattered facts cease to be strangers to one another; they tend to arrange
themselves in an imposing synthesis. Science advances toward unity and
simplicity.

On the other hand, observation reveals to us every day new phenom-
ena; they must long await their place and sometimes, to make one for
them, a corner of the edifice must be demolished. In the known phe-
nomena themselves, where our crude senses showed us uniformity, we
perceive details from day to day more varied; what we believed simple
becomes complex, and science appears to advance toward variety and
complexity.

Of these two inverse tendencies, which seem to triumph turn about,
which will win? If it be the first, science is possible; but nothing proves
this a priori, and it may well be feared that after having made vain efforts
to bend nature in spite of herself to our ideal of unity, submerged by the
ever-rising flood of our new riches, we must renounce classifying them,
abandon our ideal, and reduce science to the registration of innumerable
recipes.” (Poincaré 1913, p. 148)





22 The Second Simplicity Postulate:

Evidence and Predictive Performance

[with Frederik Aust]

Simple models tend to make precise predictions.

MacKay

Chapter Goal

Scientific thinking generally respects the principle of parsimony known
as Ockham’s razor: researchers favor simple models, to abandon them
only when forced to do so by empirical data. Moreover, scientific claims
are accepted only when they are supported by evidence – a claim with-
out evidence is merely a conjecture or speculation.
The Bayesian implementation of Ockham’s razor consists of two

blades or simplicity postulates. The previous chapters focused on the first
simplicity postulate, which states that simple models are more plausible
than complex models a priori–that is, before any data is considered. The
present chapter discusses the more popular second simplicity postulate,
which addresses how these prior plausibilities are updated when data
become available: When the observed data are perfectly consistent both
with a simple model and with a more complex model, it is the simple
model that receives the most support. This occurs because the complex
model hedges its bets and spreads out its predictions across a wider
range of data patterns, whereas the predictions from the simple model
are relatively precise. The degree of the support for and against a simple
model is quantified by the Bayes factor. The methodology is illustrated
with two examples.
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The Price of Vagueness

As detailed throughout the previous chapters, the Poincaré-Jeffreys ra-
zor holds that “every law is held to be simple till the contrary is proved”
(Poincaré) and “variation is to be taken as random until there is positive
evidence to the contrary” (Jeffreys). This basic scientific attitude has
been given a Bayesian interpretation by means of two complementary
simplicity postulates. As outlined in Chapter 19, the first postulate holds
that simple models are judged to be more plausible a priori than com-
plex models. Consequently, the first postulate refers to the prior model
probability, which we interpreted in Chapter 20 as expected relative
predictive performance.
The present chapter discusses the second simplicity postulate, which

is based on evidence or experienced relative predictive performance.
Simple models make risky predictions whereas complex models make
vague predictions; consequently, whenever its predictions are validated
the simple model gains more credibility than the complex model.1 1 As explained in Bayesian thinking for

toddlers, “knowing the answer precisely
is more impressive than knowing it
vaguely.” (Wagenmakers 2020, p. 42)

We have already seen the second simplicity postulate in action for
the test of a universal generalization such a ‘all birds have beaks’ (i.e.,
H0 : θ = 1, where θ denotes the proportion of birds with beaks), where
observing an unbroken sequence of confirmatory instances –birds with
beaks– causes a gain in credibility for H0 which grows without bound
as the sequence lengthens (cf. Chapters 15, 16, and 17). The universal
generalization H0 : θ = 1 gains credibility because it makes only a single
prediction: ‘the next bird will have a beak’. It therefore assigns proba-
bility 1 to the unbroken sequence of confirmatory instances. In contrast,
more complex models relax the restriction on θ by assigning it a prior
distribution and allowing values of θ other than 1; consequently, these
models will assign the event that the next observation yields another
confirmatory instance a probability lower than 1 (e.g., ‘the probability
that the next bird will have a beak, given that the previous eight all had
beaks, is 0.90’). The observed data (i.e., a sequence of birds with beaks)
are therefore more surprising –a more remarkable coincidence– under
H1 than under H0, and this drives a preference towards H0:

“Now one way of stating the principle of inverse probability is that
in comparing two hypotheses we choose the one that requires the less
remarkable coincidence to give the observed data.” (Jeffreys 1937c, p. 483)

The Bayes factor test of a universal generalization is a highly spe-
cific example that was introduced for historical reasons and because
it clearly reveals the basic principles involved: (1) models that make
risky predictions are rewarded when those predictions come true (Lee
and Wagenmakers 2013); (2) models are generally punished for making
vague predictions, as these models have to waste predictive mass on
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events that do not materialize; (3) models that make risky predictions
are greatly punished when those predictions turn out to be false.2 2 For instance, the observation of a single

bird without a beak will ‘irrevocably
explode’ the universal generalization
(Pólya 1954a, p. 6).

In this chapter we showcase the Bayes factor hypothesis test for more
common scientific hypotheses, and demonstrate once more how the
Bayes factor acts as an automatic Ockham’s razor (Jefferys and Berger
1992, Myung and Pitt 1997, Vandekerckhove et al. 2015), thereby set-
ting the stage for the remainder of this book.

A Formal Rule in General Accordance with Common Sense
“We may then state the principle of inverse probability [i.e., Bayesian
inference – EWDM] in the form: The posterior probabilities of the
hypotheses are proportional to the products of the prior probabilities
and the likelihoods. (…)

The use of the principle is easily seen in general terms. If there
is originally no ground to believe one of a set of alternatives rather
than another, the prior probabilities are equal. The most probable,
when evidence is available, will then be the one that was most likely
to lead to that evidence. We shall be most ready to accept the
hypothesis that requires the fact that the observations have occurred
to be the least remarkable coincidence. On the other hand, if the
data were equally likely to occur on any of the hypotheses, they
tell us nothing new with respect to their credibility, and we shall
retain our previous opinion, whatever it was. The principle will deal
with more complicated circumstances also; the immediate point is
that it does provide us with what we want, a formal rule in general
accordance with common sense, that will guide us in our use of
experience to decide between hypotheses.” (Jeffreys 1961, p. 29;
italics in original)

The Bayes Factor

Earlier chapters already introduced the Bayes factor, but tied to a spe-
cific context (e.g., tests of a universal generalization such as ‘all birds
have beaks’; tests of relative predictive accuracy of rival pancake fore-
casters, see Chapter 12). Here we demonstrate that Bayes factors can be
used generally to test a wide variety of models. In order to keep this
chapter somewhat self-contained we first reiterate some of the earlier
material on Bayes factors.
In order to obtain a Bayes factor only two theoretical prerequisites

need to be fulfilled: there have to be at least two rival models, and each
model must make probabilistic predictions about to-be-observed data.
For concreteness and consistency with earlier chapters, we discuss a
test between (1) a simple model (the ‘null hypothesis’) H0 in which a
binomial chance θ is fixed to a particular value of interest θ0; hence,
H0 : θ = θ0; and (2) a complex model (the ‘alternative hypothesis’) in
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which the binomial chance is assigned a beta distribution with particu-
lar parameters α and β; hence, H1 : θ ∼ beta(α, β). This generic setup
was also employed in Chapter 15.3 3 This popular setup can be generalized

in multiple ways, but doing so is beyond
the scope of this chapter. The interested
reader may consult Chapter 27 for an
alternative model specification.

A Laplacean analysis would disregard H0 completely, and draw infer-
ences solely from the posterior distribution under H1. Here we follow
Wrinch and Jeffreys and acknowledge the special nature of θ0 by assign-
ing H0 a non-zero prior probability. Doing so transforms a problem of
parameter estimation to a problem of hypothesis testing. With this prior
probability for H0 in place, Bayes’ rule dictates how the data transform
the probabilities for the rival models from prior to posterior (cf. Chap-
ter 3). Specifically, for the null hypothesis H0 we have the updating
equation

p(H0 | data) = p(H0)×
p(data | H0)

p(data)
,

and for the alternative hypothesis H1 we likewise have:

p(H1 | data) = p(H1)×
p(data | H1)

p(data)
.

These two equations are redundant in the sense that with only the
two hypotheses H0 and H1 in play, the prior and posterior model
probabilities complement one another: p(H0) = 1 − p(H1) and
p(H0 | data) = 1 − p(H1 | data). In both updating equations, the pos-
terior model probability equals the prior model probability times an
updating factor that quantifies the extent to which conditioning on the
model at hand makes the data more or less coincidental/surprising. If
the data are less surprising (i.e., more probable) under the hypothesis
than they are on average, the updating factor is larger than 1 and the
plausibility of the hypothesis is increased. Note that according to the
law of total probability,

p(data) = p(H0)p(data | H0) + p(H1)p(data | H1).

“In God we trust; all others must bring
data.” – attributed (perhaps incorrectly)
to W. Edwards Deming.

Thus, focusing for the moment on H0, the expanded updating equation
is

p(H0 | data) = p(H0)×
p(data | H0)

p(H0)p(data | H0) + p(H1)p(data | H1)︸ ︷︷ ︸
Relative belief ratio

.

This shows that the updating factor for the model probabilities (i.e., the
‘relative belief ratio’, Evans 2015; see also Carnap 1950, pp. 326-333;
Horwich 1982/2016, p. 48; Keynes 1921, p. 170) depends partly on the
prior model probabilities p(H0) and p(H1). The relative belief ratio
therefore does not achieve a clean separation between prior opinion and
evidence (i.e., the degree to which the data change the relative plausi-
bility of competing hypotheses). Moreover, the relative belief ratio is
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bounded to a value lower than 1/[p(H0) × 1 + p(H1) × 0] = 1/p(H0);
for instance, when p(H0) = 1/2, the relative belief ratio must be smaller
than 2, as a factor of 2 would indicate conclusive proof for H0 (i.e., a
posterior probability of 1 for H0, reflecting absolute certainty). On
the other hand, if p(H0) = 1/4, the same relative belief ratio of 2
corresponds to a modest update and yields a posterior probability of
p(H0 | data) = 2/4. This highlights the fact that the evidential interpreta-
tion of the relative belief ratio is not straightforward (cf. Good 1984b, p.
163; Good 1985, p. 253).4 4 See also the BayesianSpectacles.

org blog post “Misconception: The
relative belief ratio equals the marginal
likelihood”.

Hence it is arguably more straightforward conceptually to evalu-
ate the updating factor on the odds scale. Dividing the two updating
equations yields the odds form of Bayes’ rule, as introduced in Chap-
ter 3 and used for instance in Chapter 15 and 17 (and given already by
Wrinch and Jeffreys 1921, p. 387):

p(H0 | data)
p(H1 | data)︸ ︷︷ ︸
Posterior beliefs
about hypotheses

=
p(H0)

p(H1)︸ ︷︷ ︸
Prior beliefs

about hypotheses

× p(data | H0)

p(data | H1)︸ ︷︷ ︸
Bayes factor BF01

(evidence)

. (22.1)

“However, perhaps the most important
insight in ToP [Theory of Probability
– EWDM] concerns the necessity for a
prejudice in favour of simpler theories
if one wishes to try and rescue the
Laplacian proposal of insufficient reason.
I was once told by Peter Freeman that
when he and Dennis Lindley interviewed
Harold Jeffreys and asked him what
he considered his greatest scientific
achievement, they were stunned when he
replied that it was the invention of the
significance test.” (Senn 2009, p. 185)

The odds form of the updating equation does achieve a clean separa-
tion between prior beliefs about hypotheses and evidence. Chapter 23
presents the argument from Jack Good that the proper scale of evidence
is the logarithm of the Bayes factor. We are increasingly convinced that
the choice of scale for the updating factor –relative belief ratio, Bayes
factor, or log Bayes factor– is ultimately inconsequential and more a
matter of taste; with the prior model probabilities given, one measure
can be transformed into the other in a one-to-one fashion without loss
of information. In this book we prefer the Bayes factor scale as we be-
lieve that people find it easiest to interpret.
The Bayes factor from Equation 22.1 can be interpreted in two dif-

ferent ways. Firstly, the Bayes factor is the extent to which the data
mandate a change from prior model odds to posterior model odds. Sec-
ondly, the Bayes factor is the degree to which one hypothesis predicted
the data better than the other. The second interpretation is relative and
does not depend on one of the models being ‘true’ (Kass and Raftery
1995; see also Fong and Holmes 2020, Gneiting and Raftery 2007).
Importantly, the Bayes factor provides a pure measure of predictive per-
formance, untainted by post-hoc cherry picking of particular parameter
values (e.g., the value that best fits the observed data). To see this, we
can apply the law of total probability to the predictive performance of
H1 and write:

p(data | H1) =

∫
p(data | θ,H1) p(θ | H1) dθ, (22.2)

BayesianSpectacles.org
BayesianSpectacles.org
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which shows that the predictive performance for H1 is a weighted av-
erage of the predictive performance achieved for specific θs, where the
averaging weights reflect their prior probability as given by the prior
parameter distribution p(θ |H1).5 The key word here is ‘average’. In 5 See also Chapter 12 in which we com-

pared the predictive performance of
different pancake forecasters.

Chapter 18, we saw that standard statistical methods base their conclu-
sions on the maximum likelihood point estimate or MLE (for a binomial
chance, the MLE under H1 equals θ̂ = s/n, where s is the number of
successes out of n trials). When the MLE is highly representative of the
prior distribution (i.e., when the prior distribution just happens to be
tightly peaked around the MLE) it may fairly reflect the predictive per-
formance of H1; but when the MLE is not representative (i.e., because
it is far removed from the bulk of the prior distribution, or because the
prior distribution is very wide), it will paint an overly positive picture of
H1’s predictive performance.
Several properties of the Bayes factor are worthy of attention:

◦ The Bayes factor is sensitive to prior information, that is, the Bayes
factor depends crucially on the prior distribution for the model pa-
rameters. This happens because a model’s predictive performance is
a prior-weighted average across the performances for the individual
parameter values. While some consider it a fatal flaw, we believe that
this sensitivity is both inevitable (because it is dictated by the law of
total probability, cf. Equation 22.2) and desirable (cf. Chapter 17:
different questions demand different answers).

◦ Bayes factors are ‘sequentially’ or ‘dynamically’ coherent (cf. Chap-
ter 15). For instance, if data are collected in two batches, A and B,
then the ‘both-batches-analyzed-at-once’ Bayes factor BFA,B01 exactly
equals the ‘two-step’ Bayes factor, in which one multiplies the Bayes
factor for batch A with the Bayes factor for batch B (while taking
care to update the parameter prior with the data already obtained
from batch A): BFA,B01 = BFA01 × BF

B |A
01 (see also Ly et al. 2019). In

Chapter 26 we argue that the reason why Bayes factors are sequen-
tially coherent is because they are sensitive to prior information in
precisely the right way.

◦ Bayes factors are transitive (Jeffreys 1961, p. 341). With three hy-
potheses, Hx, Hy, and Hz, two Bayes factors suffice to determine the
third:

BFxy = BFxz × BFzy

=
p(data | Hx)

p(data | Hz)
× p(data | Hz)

p(data | Hy)

=
p(data | Hx)

p(data | Hy)
,
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where the first ‘BF’ subscript indicates the hypothesis in the numera-
tor, and the second indicates the hypothesis in the denominator.

◦ It is arbitrary which hypothesis is in the Bayes factor numerator vs
denominator. For instance, the report BF10 = 4 (‘the data are four
times more likely under H1 than under H0’) is the same as the report
BF01 = 1/4 (‘the data are one-fourth times more likely under H0

than under H1’). It is clear that Bayes factors lower than 1 are more
difficult to interpret, and hence we generally reserve the numerator
for the model that predicted the data best.

◦ As already remarked above, Equation 22.1 shows that the Bayes factor
is not affected by the prior odds. This is an elegant property, but it
does invite misinterpretation. Specifically, Bayes factors are often
interpreted as posterior odds, something that is licensed only when
the prior odds is 1, that is, when both hypotheses are equally likely a
priori. This misinterpretation was discussed in Chapter 15.

◦ Consider the common scenario where a point-null hypothesis (e.g.,
H0 : θ = θ0) is pitted against an alternative hypothesis that assigns
θ a prior distribution with non-zero mass for all values of θ ∈ [0, 1].
Then the Bayes factor is consistent both under H0 and under H1:
Suppose H0is true in one world, and H1 is true in the other; then,
as the data accumulate indefinitely, the Bayes factor will eventually
correctly indicate with infinite evidence which world we are in.

◦ The Bayes factor is a relative measure of evidence. The fact that
model X outpredicts model Y does not imply that model X is the
‘true’ model, or even an adequate or appropriate model. For instance,
consider the following scenario. We recently bought a large collection
of polyhedral dice – one of them is the common six-sided cube (i.e.,
the ‘D6’), but the others are shaped differently in order to have either
more or fewer sides (e.g., the ‘D4’, the ‘D12’, the ‘D60’, etc.).6 We 6 For a more extensive treatment of

polyhedral dice see Chapter 23.inform you that we have thrown either the D12 or the D60, and
your task is to infer, from the observed outcomes, which die was
thrown. The sequence of outcomes is {3, 3, 5, 5, 4, 1, 1, 2, 3, 5, 6, 1}.
These outcomes are much, much more probable under the D12 die
than they are under the D60 die, and hence the Bayes factor will be
hugely in favor of D12 over D60. Nevertheless, the outcomes are
deeply improbable under the D12 die (none of the numbers from 7

to 12 have come up), and such data would arouse a deep suspicion
that instead of the D12 die, we in fact had been throwing the D6 die
instead.

◦ The Bayes factor has three qualitatively different states: evidence in
favor of H0, evidence in favor of H1, and little or no evidence for
either model. It is important for scientific practice that Bayes factors
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are able to quantify evidence in favor of the absence of an effect (i.e.,
when BF01 ≫ 1) and distinguish this from absence of evidence (i.e.,
when BF01 ≈ 1; Keysers et al. 2020).

◦ The strength of evidence provided by a Bayes factor can be intuited
in different ways, as detailed in Chapter 23. In this chapter we will
give examples of how Bayes factors can be interpreted for concrete
cases.

◦ When the prior distribution of θ under H1 is relatively wide, prior
mass is inevitably wasted on values of θ that predict the data very
poorly. This is the price of vagueness that allows the simple model
H1 to outpredict H0 (cf. Chapters 15 and 17 for the case of a univer-
sal generalization).

◦ In direct comparison, models can fare badly either because they ut-
terly fail to predict the outcome or because their predictions are
stretched thin, that is, their predictions are unspecific (cf. Equa-
tion 22.2). Here we highlight that the Bayes factor rewards simple
models that make specific predictions (when these predictions are
borne out by the data). It is worth repeating, however, that simplicity
is particularly relevant to comparisons of models that both antici-
pate the observed outcome reasonably well. A stretched-thin model
will be favored over a model that makes precise but abysmal predic-
tions. The rewards that the Bayes factor grants to simple models are
dwarfed by the scathing punishment that awaits models that utterly
fail to predict the data. In Chapter 27, we discuss how to mitigate the
punishment for prediction failures that result from strongly misin-
formed prior distributions.

Much more can be said about Bayes factors, but we prefer to show-
case its properties and practical advantages with the help of two con-
crete data analysis problems below. Example 1 (‘Is π normal?’) demon-
strates how evidence can be obtained in favor of the null hypothesis,
and how this evidence may be monitored as the data accumulate. Ex-
ample 2 (‘Laplace’s birth rate anomaly’) highlights that extraordinary
claims require extraordinary evidence, shows transitivity in action, and
demonstrates that with large numbers of observations it can be difficult
to discriminate models when they make highly similar predictions.7 7 Additional examples are presented in

the next chapter.

Example 1: Is π Normal? Monitoring Evidence in Favor
of the Null Hypothesis

The first example invites a statistical perspective on the decimal ex-
pansion of π (i.e., the ratio of a circle’s circumference to its diameter;
see also ‘Buffon’s needle’ covered in Chapter 11). Specifically, a long-
standing problem in mathematics is whether π is ‘normal’. If π is nor-
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mal, then its decimal expansion contains an equal number of even and
odd digits.8 The conjecture that π is normal is plausible and may at 8 The mathematical definition of what

it means for a number to be ‘normal’
is much more strict and implies that
no digit or digit sequence is favored in
the sense that it occurs more frequently
than the others. Here we test a simpler
consequence of what it means for π to be
a normal number. See also Gronau and
Wagenmakers (2018).

some point be proven mathematically.
Here we specify the null hypothesis H0 : θ = θ0 = 1/2, where θ is

the proportion of even digits in the decimal expansion of π. Clearly the
value θ0 = 1/2 demands special attention, which brings us in the domain
of hypothesis testing rather than parameter estimation:

“the parameter value θ0 is eminently special and quite different from any
neighboring value. This value θ0 was selected for a reason and with a
motive, brought to the experimenter’s attention by a theoretical construct,
and this was done before the observation stage rather than suggested from
the data. From a Bayesian viewpoint, this ultimate specificity implies that
prior information is available (to a certain degree) as to why θ0 is a special
value of the parameter θ.” (Robert 2014, pp. 223-224)

The first part of the 100-digit decimal expansion of π equals .14159265
which is coded as ‘odd, even, odd, odd, odd, even, even, odd’. The first
100 digits yielded 51 even numbers and 49 odd numbers, an almost per-
fect split. Are these data evidence in favor of H0 or is there absence of
evidence?9 9We realize this is not a standard prob-

lem of statistical inference; for instance,
all of the uncertainty is epistemic.

To address this question we need to specify a prior distribution for
θ under H1. We know little about the modern mathematical work on
π (and we purposefully forget the little we think we know) and this
implies a relatively wide prior on θ. We may know just enough about
π to rule out θ = 0 (i.e., all digits are odd) and θ = 1 (i.e., all digits are
even). This motivates the use of a beta(2, 2) prior distribution under
H1.10

10NB. For real data analysis problems,
we strongly recommend that the prior
distributions are formulated before the
data outcomes are known, as this helps
prevent hindsight bias and motivated
reasoning from contaminating the
inference.

An analysis in JASP reveals that the data support H0 over H1: the
Bayes factor BF01 equals about 5.3. This means that the observed data
are about five times more likely to occur under H0 than under H1.
This can be visualized directly by a comparison of the prior predictive
distributions, as is done in Figure 22.1.11 11 In JASP, binomial Bayes factors can be

obtained with the Learn Bayes module,
the Frequencies → Bayesian → Binomial
Test ribbon functionality, or the Summary
Statistics → Frequencies → Bayesian
Binomial Test module.

The prior predictive shows that the ‘π is normal’ hypothesis H0

makes a relatively precise prediction, and that this prediction is fully
validated by the data (i.e., the cross that marks the observed proportion
is near the mode of the peaked predictive distribution). In contrast,
the ‘π is not normal’ hypothesis H1 is relatively vague and wastes a
lot of predictive mass on extreme outcomes that did not materialize.
As a result, insufficient mass is left to boost the predictive probability
for the observed data. So even though the predictions from H1 are
validated in the sense that the observed proportion is near the mode of
the predictive distribution, the predictive distribution is relatively flat
indicating that the observed proportion was not anticipated with much
confidence: this is the price of vagueness visualized.
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Figure 22.1: Two prior predictive distributions for the number of even decimals of π out
of the first 100. Rival models are specified as H0 : θ = 1/2 and H1 : θ ∼ beta(2, 2). The
cross marks the observed data (i.e., out of the first 100 digits of π, a total of 51 are even).
Figure from the JASP module Learn Bayes.

The upshot is that the ‘π is normal’ hypothesis H0 has outpredicted
the ‘π is not normal’ hypothesis H1 by a factor of more than five. The
exact factor equals the ratio of the prior predictive ordinates evaluated
at the observed number of even digits; this ratio is the Bayes factor.
How should one interpret a Bayes factor of 5.3? To us, a relative

strong result has a Bayes factor larger than 10 or even 20, and a weak
result has a Bayes factor lower than 3. This result hangs somewhere in
the middle; if H0 and H1 were deemed equally plausible a priori, the
data would have mandated an increase in probability for H0 from 0.50

to 0.84 (i.e., 5.3/6.3). This is not a lot of evidence, but perhaps just
enough to spark an interest.
Figure 22.2 shows the sequential development of the Bayes factor

BF01. That is, the Bayes factor is updated as if the data came in one
digit at a time. In general the evidential flow meanders in the direction
of support for the hypothesis that π has an equal number of even and
odd decimals.
We wish to stress that, just like detectives searching for clues or

sharks exploring a reef, Bayesians should feel entirely uninhibited to
enter more information in order to update their knowledge. In this ex-
ample, evidence can be monitored as the digits accumulate, expanding
Figure 22.2 continually and indefinitely.12 12 This violates the intuition of classically-

schooled statisticians. An attempt to
rectify these intuitions is presented in
Wagenmakers et al. (2018b).

“For any assessment of the prior proba-
bility the principle of inverse probability
will give a unique posterior probability.
This can be used as the prior probability
in taking account of a further set of data,
and the theory can therefore always take
account of new information.” (Jeffreys
1961, pp. 36-37)
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Figure 22.2: Evidential flow for the Bayes factor BF01 based on an increasing sequence
of digits in the decimal expansion of π. Rival models are specified as H0 : θ = 1/2 and
H1 : θ ∼ beta(2, 2). Out of the first 100 digits of π, a total of 51 are even. Figure from
the JASP module Learn Bayes.

Predicting the Parity of the Next Decimal

There remains one issue, seemingly minor but conceptually critical.
Suppose that with the data and models in hand, we wish to predict
the parity of the next decimal (i.e., we wish to predict whether the
101st digit of the decimal expansion of π is even or odd, given that we
have see the first 100 digits). There are several ways open to us. One
reasonable option is to issue a prediction from the single model with the
highest posterior probability. Assuming that π might well be normal
(it could be proven any day and nobody would blink an eyelid), and
that the data from the first 100 digits support this conjecture, it is likely
that H0 is the more plausible model a posteriori, which means that the
prediction could be issued assuming θ = θ0 = 1/2.
Another option is to predict the parity of the 101st digit using H1. A

classical statistician may be tempted to use the MLE θ̂ = .51. A Bayesian
who uses a Laplacean parameter estimation approach might instead use
the beta prediction rule13 based on the beta(2 + 51, 2 + 49) posterior 13 See Chapter 9.

distribution, which also yields a probability of 53/104 ≈ .51 of the 101th
digit being even. What would you do?
As mentioned in Chapter 21, Jeffreys believed that in situations such

as these, the best predictive performance would be given by θ0 = 1/2,
as this is the value from the model that predicted better across the past
100 digits (cf. Jeffreys 1939, pp. 318–320). However, one may argue,
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wasn’t the best predictive performance actually attained by θ̂ = .51?
Specifically, didn’t θ̂ = .51 predict the data better than θ0 = 1/2?
This is true, but we have to take into consideration that θ̂ = .51 is a
cherry-picked value for which there is no theoretical rationale: it is a
value that did not demand special attention a priori. Any enthusiasm
about the predictive performance of value θ̂ = .51 therefore needs to
be tempered by the fact that, under H1, many other values of θ were
also in the running initially. We need to correct for the fact that the
select value θ̂ = .51 happens to perform particularly well for the data at
hand but may or may not be representative of the broader alternative
hypothesis ‘θ does not equal 1/2’. From a Bayesian perspective, the
correction for selection is accomplished automatically by assigning
θ a prior distribution, and then assessing overall model adequacy by
averaging predictive performance across that prior distribution:

“The possibility of getting actual support for the null hypothesis from the
observations really comes from the fact that the value of θ0 indicated by
it is unique. H1 indicates only a range of possible values, and if we select
the one that happens to fit the observations best we must allow for the
fact that it is a selected value.” (Jeffreys 1961, p. 248 with the notation
modernized)

Imagine that H0 : θ = θ0 = 1/2 is the true data-generating model.
Then the MLE θ̂ = s/n will usually provide predictions that are inferior
to those from H0 – the best that the MLE can do is tie H0 whenever
s = n/2, a possibility that becomes increasingly unlikely as n grows. The
MLE provides inferior predictions because it overfits the data: it misuses
the flexibility to tune θ and captures non-replicable idiosyncratic noise,
that is, properties of the sample that do not generalize. The Bayesian
who issues predictions using the full posterior distribution for θ under
H1 does not fare much better and essentially suffers from the same
problem.
This discussion harks back to the main motivation for the second

simplicity postulate, which was to address the fundamental concern
that any data whatsoever would always cast doubt on the simple model
(i.e., the MLE θ̂ under H1 would almost always appear to outpredict the
value θ0 specified under H0, unless allowance is made for selection):

“The reason for the name “simplicity postulate” is that if the theory of
probability did not contain it the observational evidence would always
lead to the acceptance of the more complicated hypothesis.” (Jeffreys 1941,
p. 178)

In the foregoing we have argued that when H0 : θ = θ0 is more
plausible than H1 : θ ∼ beta(α, β), predictions are best made using
θ0. However, as we have seen in Chapter 12 (cf. Figure 7.4: the tree
diagram that helped address the question ‘will the ninth pancake have
bacon?’) when multiple rival models are in play, the correct procedure
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is to model-average the predictions. Consider again the question of
whether π is normal. When we commit to equal prior model probabil-
ities p(H0) = p(H1) = 1/2, the evidence from the first 100 decimals in-
creased the plausibility for the null hypothesis to p(H0 | data) = 0.84.14

14 The assignment of equal prior probabil-
ities violates the first simplicity postulate,
according to which we ought to assign
H0 a prior probability that is slightly
larger than that of H1. In practice this
complication is usually ignored, as the
assessment of posterior plausibility does
not critically on modest differences in
prior probabilities – and the difference in
prior probabilities will be modest because
in terms of complexity, only a single
parameter separates H0 from H1.

Consequently, the model-averaged probability that the next decimal y is
even equals

p(y101 is even | y1:100) = p(H0 | y1:100) · θ0 + p(H1 | y1:100) ·
53

104

≈ 0.84 · 0.50 + 0.16 · 0.51
≈ 0.502.

The possibility of such model-averaging was already pointed out by
Wrinch and Jeffreys (1921, p. 387).

Example 2: Laplace’s Birth Rate Anomaly. Large
Samples May Yield Modest Evidence

In one of the earlier chapters of his ‘Essai Philosophique sur les Proba-
bilités’, Laplace (1814/1995) discusses “the ratio of the births of boys to
that of girls observed in various European countries” (p. 39):

“(…) we find that this ratio, which is everywhere nearly equal to 22:21 [a
probability of 0.512 – EWFA], indicates with a very high probability that
there is a greater propensity for male births. Bearing in mind, then, that
it is the same in Naples and in St Petersburg, we see that climate has a
negligible effect in this respect. (…) He [‘Mr de Humboldt’ – EWDM] has
found in the tropics the same ratio of births of boys to those of girls as
we have seen in Paris, which ought to make us regard the excess of male
births as a general law of the human race. (…)

Since the ratio of male to female births differs very little from 1, even
the very large numbers of births observed in one place could produce in
this respect a result contrary to the general law, without which one was
right in concluding from it that this law did not exist there. To arrive at
this result it is necessary to use very large numbers, and to make sure that
it has a high probability of being true. Buffon, for example, cites in his
Arithmétique Morale the case of several parishes in Burgundy where female
births exceeded male. Among these parishes, Carcelle-le-Grignon had
2,009 births in a five-year period, 1,026 of these being female and 983

male. Although these numbers are considerable, they indicate, however,
a greater possibility of female births only with a probability of 9/10.
This probability, which is smaller than that of not getting heads four
times running in a game of heads or tails, is not enough to warrant an
investigation into the cause of this anomaly – an anomaly that, in all
likelihood, would vanish if one were to follow the births in this parish
over a century.” (Laplace 1814/1995, p. 39; italics in original)

It is interesting that, as far as the strength of evidence is concerned,
Laplace deems a Bayes factor of 9 (i.e., a change from a prior odds of 1
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to a posterior odds of 9) in favor of the anomalous result “not enough
to warrant an investigation”. This underscores how a proper assessment
of evidence does not occur in a vacuum, and that prior knowledge
needs to be taken into account. Laplace was even cautious about a Bayes
factor of 99:

“When a similar calculation comparing the probability of a male birth
in Paris [i.e., 0.50971 – EWDM] with that in the Kingdom of Naples
(0.51162) gave a posterior probability of about 1/100, however, Laplace
demurred: “This probability …is not sufficiently extreme for an irrevoca-
ble pronouncement” ” (Stigler 1986a, p. 135)

Laplace’s hesitation makes perfect sense in light of the strong back-
ground knowledge concerning the universality of the boy-girl birth
ratio. Indeed it was Laplace himself who wrote that “The weight
of evidence for an extraordinary claim must be proportioned to its
strangeness.” (cf. the box ‘Extraordinary claims require extraordinary
evidence’ in Chapter 7). We return to this issue in Chapter 23. Some of Laplace’s work on male birth

rates (including a comparison between
London and Paris) is given in Stigler
(1986a, pp. 134-135).On the Shoulders of Laplace

With respect to Buffon’s birth-rate data, Laplace appears to have
had his numbers mixed up. Andrew Dale, translator of Laplace’s
‘Essai’ notes on p. 163 that

“The figures given by Buffon for the period 1770 to 1774 were in
fact 36 boys and 37 girls. Laplace seems to have confused these
figures with the total number of births of all parishes before Carcelle-
le-Grignon in Buffon’s list (a list of parishes having more female than
male births in that period, the total numbers for the 42 parishes
being 1,690 male and 1,840 female births).”

Moreover, even when we accept the numbers given by Laplace as
correct, his conclusion is a little off numerically. Again, the translator
Andrew Dale issues a correction (p. 164):

“With m = 983 and n = 1, 026 (Laplace’s figures), the (exact) value
0.8312486408 is obtained for this probability [the probability of a
male birth – EWFA].”

Dale’s correction is confirmed in JASP, as shown in Figure 22.3.
Laplace was a brilliant scientific pioneer from Napoleonic times, and
we can hardly blame him for lacking access to JASP. Scientists are
said to stand on the shoulders of giants, and all Bayesians are forever
rooted to the shoulders of Laplace.

Laplace’s analysis can be critiqued on the grounds that he assigned
a uniform beta(1, 1) prior to the probability θ of a male birth, which
does not do justice to the available background knowledge. For instance,
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Figure 22.3: A beta(1, 1) prior distribution on θ is updated using 983 male births and
1,026 female births to yield a beta(984, 1027) posterior distribution. The probability of a
male birth is about 0.83, as pointed out by Andrew Dale. See the box ‘On the shoulders
of Laplace’ for details. Figure adapted from the JASP module Learn Bayes.

Laplace ignores the fact that, in the early stages of an investigation, one
may seriously consider the null hypothesis that the birth rates are equal,
and hence that θ = θ0 = 1/2. In the current context a more informed
and reasonable null hypothesis is Hinf

0 : θ = θ0 = 22/43 ≈ 0.512.15 This 15One could assign θ0 a prior distribution
highly peaked around 0.512, but this
would hardly affect the results.

hypothesis is mentioned by Laplace explicitly, but the uniform beta(1, 1)
prior does not do it justice. Furthermore, the alternative hypothesis
would be the presence of a birth rate anomaly, which would mean that
θ ≤ 1/2. We explore two types of anomalies: (1) the weak anomaly
H1 : θ = 1/2, which asserts that the boy-girl birth ratio equals 1, and (2)
the strong anomaly H2 : θ ∼ beta(200, 200)I(0, 1/2), which assert that
there is a girl birth ratio advantage, although the size of this advantage
is likely to be very small.16 16 The interval operator ‘I’ following

the beta distribution conveys that this
distribution is truncated to have mass
only on values of θ from 0 to 1/2.

Before executing these informative hypothesis tests in JASP, it should
be kept in mind that the data from Buffon are expected to show ev-
idence against the general law of a boy birth ratio advantage – after
all, these data had been cherry-picked from a larger corpus exactly be-
cause the numbers appeared to contradict the law. In general, a superior
analysis strategy is to account for all of the data in a single model, as
detailed in the box ‘Modern analyses of birth-rate data’.
We now seek to obtain the Bayes factors for the models under consid-

eration. Using the Learn Bayes module, we can compare the predictive
performance for the informed null hypothesis Hinf

0 versus the weak
anomaly H1, and this yields BF10 ≈ 4.68; note that since both Hinf

0 and
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Modern Analyses of Birth-Rate Data

A modern analysis of Buffon’s birth-rate data would be considerably
more involved than the inference for a single binomial parameter. For
instance, one could entertain a hierarchical model where each parish
i has its own ‘boy birth rate advantage’, and these parish-specific
advantages are draws from a group-level distribution with a particu-
lar group mean (i.e., the overall boy birth rate advantage across the
parishes) and a particular spread (i.e., the between-parishes hetero-
geneity in the boy birth rate advantage). One may then restrict the
model parameters in several ways to conduct informative tests – for
instance, one may test whether the overall boy birth rate advantage
is positive, whether there is any heterogeneity between the parishes,
whether all parishes show a positive boy birth rate effect (Haaf and
Rouder 2019), and so forth. If there is evidence for heterogeneity,
one may attempt to account for it by adding covariates such as ambi-
ent temperature (Catalano et al. 2008).

H1 are ‘spikes’ (i.e., they assign point-masses to specific values of θ), this
Bayes factor is in fact a simple likelihood ratio. As expected, the data
offer modest evidence in favor of the weak anomaly; had Hinf

0 and H1

been equally likely a priori (which is most definitely not the case!) the
probability for H1 would have risen from 0.50 to 0.82, and the probabil-
ity for Hinf

0 would correspondingly have fallen from 0.50 to 0.18. Next,
using the Summary Statistics module, we obtain the Bayes factor for the
strong anomaly H2 over H1, which yields BF21 ≈ 0.968 – the data are
almost equally likely under the two models, and the simpler model H1

is favored only by a hair.17 With these two Bayes factors in hand, the 17Naturally we encourage the reader to
verify these results using JASP.third one can be obtained by transitivity:

BF20 = BF21 × BF10

=
p(data | H2)

p(data | H1)
× p(data | H1)

p(data | H0)

≈ 0.968 × 4.68

≈ 4.53,

from which we may conclude that the data also offer modest evidence in
favor of the strong anomaly.
Consistent with the earlier remarks by Laplace, we find that even

thousands of observations do not yield compelling evidence – this
occurs because the hypothesized effects are relatively small, and con-
sequently the models involved make predictions that are highly similar.
In order for the data to discriminate between these highly similar pre-
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dictions, hundreds of thousands of observations are required (cf. Bartoš
et al. 2023).

Exercises

1. If θ = 1/2 (i.e., a spike) under H0, where does the variability in the
data come from?

2. Consider two models for a binomial chance parameter θ. Model A
postulates that θ ∼ Beta(2, 2); model B postulates that θ ∼ Beta(8, 8).
The data consists of s successes and f failures, with s = f = n/2.
Why does model B obtain more support from the data than model A?
How large is the preference of B over A (1) when n = 10? (2) when
n = 1000?

3. (Advanced) In March 2021, German authorities decided to pause
their nation-wide COVID-19 inoculation rollout. Surveillance data
had shown that, out of 1.6 million people who were inoculated with
the AstraZeneca vaccine in a 14-day period, 7 had developed Throm-
bozytopenie – a potentially deadly case of thrombosis. The expected
number of such cases was only 1, and our null hypothesis is therefore
defined as H0 : θ = 1/1, 600, 000. Construct a Bayesian test by defin-
ing H1 as a reasonable prior beta distribution on θ, and compute the
corresponding Bayes factor.

4. The main message of this chapter can be underscored with a simple
example:

“Their insights [those of Bayesians following in the footsteps of
Harold Jeffreys – EWDM] can be illustrated with the assistance of
two dice: a simple six-sided die and a more complex 60-sided die. Say
I have both dice and hidden I throw one of them (…) and ask you to
guess which die I have thrown (…) I call out the number 5. This num-
ber could have been generated by a throw of either die. Since they
have the same prior probability, are both dice equally likely? Both Oc-
cam’s razor and Bayesian inference insist that the simpler hypothesis,
the six-sided die, should be preferred.” (McFadden 2023, p. 13)

What is the posterior probability for the six-sided die?

Chapter Summary

According to the second simplicity postulate, a simple model H0 gains
support whenever its precise predictions are validated by the observed
data. A simple model such as H0 makes relatively precise predictions,
as it specifies a unique value for the parameter: θ = θ0. In contrast, a
more complex model such as H1 makes relatively vague predictions, as
it assigns the parameter θ a prior distribution, and averaging across that
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distribution causes the predictions to be spread out across a wider range
of data patterns. As summarized by Jeffreys:

“Thus the more precise the inferences given by a law are, the more its
probability is increased by a verification, even if the contradictory law also
gives a prediction consistent with the observation. (…) We may say that to
make predictions with great accuracy increases the probability that they
will be found wrong, but in compensation they tell us much more if they
are found right.” (Jeffreys 1973, p. 39)

The second simplicity postulate is formalized by means of the Bayes
factor, which compares the predictive performance of two rival hypothe-
ses such as H0 and H1. This chapter first outlines several properties
of the Bayes factor (e.g., consistency, dynamic coherence, transitivity)
and then applies the methodology to two examples. The example on
the digits of π shows that evidence can be obtained in favor of the null
hypothesis, and demonstrates that this evidence may be monitored as
the data accumulate. The example on Laplace’s birth rate anomaly uses
transitivity and shows that similar models can be difficult to discrim-
inate even with large numbers of observations. It also highlights that
extraordinary claims require extraordinary evidence.
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23 The Strength of Evidence

[with Frederik Aust]

None of these [Bayes factors] is very decisive (…) The most decisive is [a Bayes
factor of 3/16 ≈ 1/5.33], and even for that the odds in favour of [H1] are only
those in favour of picking a white ball at random out of a box containing
sixteen white ones and three black ones—odds that would interest a gambler,
but would be hardly worth more than a passing mention in a scientific paper.

Jeffreys, 1939

Chapter Goal

This chapter describes how to communicate and interpret the strength
of evidence (sometimes called ‘the weight of evidence’) provided by a
Bayes factor.

Bayes Factor Recap

Throughout this book we emphasize that evidence is the degree to which
the data mandate a change in plausibility for a set of two or more mod-
els or hypotheses. In the case of two rival hypotheses, say H0 and H1,
this change in plausibility is given by the Bayes factor, which quantifies
relative predictive adequacy:

p(H1 | data)
p(H0 | data)︸ ︷︷ ︸
Posterior beliefs
about hypotheses

=
p(H1)

p(H0)︸ ︷︷ ︸
Prior beliefs

about hypotheses

× p(data | H1)

p(data | H0)︸ ︷︷ ︸
Bayes factor BF10

. (23.1)

When the data are less surprising (i.e., better predicted) under H1 than
under H0, this means that p(data | H1) > p(data | H0); consequently,
the plausibility of H1 will rise and that of H0 will fall.1 For instance, 1 And vice versa when the data are less

surprising under H1 than under H0.when BF10 = 20 this means that the observed data are 20 times more
likely under H1 than under H0; when numerator and denominator are
switched this yields BF01 = 1/20, which means that the observed data



408 bayesian inference from the ground up

are 0.05 times more likely under H0 than under H1. These statements
are equivalent, but the first is more intuitive. For this reason we gener-
ally advise to have the larger of the two predictive probabilities as the
numerator, such that the Bayes factor is larger than 1. The Bayes factor
subscripts denote which model’s probability is in the numerator and
denominator, something that should always be made unambiguously
clear.

The Log Transform

It has often been suggested that Bayes factors are best interpreted on a
logarithmic scale.2 The logarithm of base b is defined as follows: when 2 See also the box From Probability to

Odds and Back Again in Chapter 3. For an
accessible introduction to logarithms see
Stewart (2012) as well as the manuscript
‘Understanding logarithms intuitively’
by Adam A. Smith, available at https:
//mathcs.pugetsound.edu/~aasmith/
logarithms.

x = bu, then u = logb(x). For instance, when x = 1000 = 103,
then u = log10(10

3) = 3. In what follows, the base is not critical, and
throughout this chapter we implicitly use base 10.
A defining property of the logarithm is that it changes multiplication

to addition:
log(a× b) = log(a) + log(b).

It follows that division is changed to subtraction:

log(a/b) = log(a)− log(b),

from which it is also evident that fractions of 1 are expressed as negative
numbers, log(1/b) = − log(b), and that log(1) = 0. Thus, on the log
scale, the updating equation becomes additive:

log

[
p(H1 | data)
p(H0 | data)

]
︸ ︷︷ ︸

Posterior beliefs
about hypotheses

= log

[
p(H1)

p(H0)

]
︸ ︷︷ ︸
Prior beliefs

about hypotheses

+ log

[
p(data | H1)

p(data | H0)

]
︸ ︷︷ ︸

log BF10

. (23.2)

Let’s say that H1 and H0 are equally likely a priori. This means that the One very rough intuition for the loga-
rithm is as follows. Suppose we have an
object with equal sides of length b (e.g.,
a square, a cube, or –in more than three
dimensions– a hypercube). Given the
dimension u of this object, what is its
volume x? The simple answer is bu. The
logarithm addresses a related question:
given the volume x, what is the dimen-
sion u of the object? For instance, when
b = 10 and x = 1000, the correspond-
ing object has to be a cube – and hence
log10(1000) = 3.

prior odds is 1, and the log prior odds is 0. Consider then the scenario
in which BF10 = 30. The base-10 logarithm of this number is approxi-
mately 1.5 (because 30 ≈ 101.5), a positive number that signals support
for H1 over H0. Alternatively, suppose BF10 = 1/30. The logarithm
of this number is approximately −1.5, a negative number that signals
support for H0 over H1. Thus, positive log Bayes factors signal support
in favor of the hypothesis in the numerator, whereas negative numbers
signal support against it. These log Bayes factors combine with the log
prior odds in additive fashion. This is illustrated in Figure 23.1, which
shows the change from prior to posterior belief for five different Bayes
factors.
The left panel of Figure 23.1 uses the traditional probability scale.

Notice that the effect of the Bayes factor depends on the prior probabil-
ity: Bayes factors have more of an impact when the prior probability is

https://mathcs.pugetsound.edu/~aasmith/logarithms
https://mathcs.pugetsound.edu/~aasmith/logarithms
https://mathcs.pugetsound.edu/~aasmith/logarithms
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away both from 0 and from 1 (i.e., the lines for different Bayes factors
converge at the ends of the scale). Also, notice that changes in strong
Bayes factors are generally much less consequential than changes in
weak Bayes factors; for example, the purple curve (BF = 100) and the
blue curve (BF = 30) are relatively close together, whereas the green
curve (BF = 3) and the yellow curve (BF = 1) are relatively far apart.
The right panel of Figure 23.1 shows prior and posterior odds on

base-10 logarithmic axes. It is immediately evident that these axes have
linearized the relation. Focus first on the 1:1 prior odds; the vertical
distances due to the different Bayes factors are equal. On the log scale,
the difference between a Bayes factor of 100 and 30 is just as large as
the difference, say, between a Bayes factor of 10 and 3. Mathemati-
cally, this happens because log(100) − log(30) = log(100/30), which
is the same as log(10) − log(3) = log(10/3).3 The five Bayes factors 3Notice that this holds regardless of the

base of the logarithm.shown in the figure (i.e., 1, 3, 10, 30, and 100) are approximately equal
to 100, 101/2, 101, 103/2, and 102, and the corresponding log Bayes fac-
tors therefore equal the equidistant values 0, 1/2, 1, 3/2, and 2.
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Figure 23.1: Transition from prior to posterior beliefs for five different Bayes factors. Left panel: regular scale; right panel: base-10 logarith-
mic scale. The advantages of the log scale are discussed in the main text. See also Figure 3.1 from Spiegelhalter et al. (2004).

To obtain an intuition for this regularity, consider a binomial test
between two point hypotheses: H0 : θ = 1/2 and H1 : θ = 1/20.
The first observation is a success and this yields BF01 = 10. Under
1:1 prior odds, this would lift us from the yellow center point of the
plot to the point on the teal line that corresponds to a 10:1 posterior
odds. Now suppose the second observation is also a success. This again
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yields a Bayes factor of 10. It would therefore seem appropriate that the
weight of the evidence for this second observation equals that of the
first observation (Good 1985). This is exactly what is accomplished with “I believe that the basic concepts of

probability and of weight of evidence
should be the same for all rational people
and should not depend on whether you
are a statistician. There should be a
unity of rational thought applying, for
example, to statistics, science, law, and
politics. (…) No concept is fundamental if
only statisticians use it.” (Good 1985, pp.
249-250)

the logarithmic scaling: the second success lifts us from the teal line
to the purple line that corresponds to a 100:1 posterior odds – on the
logarithmic scale, the change from 1 to 10 is just as large as the change
from 10 to 100. Finally, it is clear that this property manifests itself
regardless of the value for the prior odds. This happens because on the
logarithmic scale, the prior odds and the Bayes factor add instead of
multiply.
The next sections elaborate on four concrete advantages afforded by

the logarithmic transformation of the Bayes factor.

1. Achieving Symmetry

On the original Bayes factor scale, evidence in favor of the hypothesis
in the numerator can range from 1 to infinity; in contrast, evidence in
favor of the hypothesis in the denominator can range only from 1 to
0. Thus, strong evidence for the hypothesis in the numerator can be
well-separated: many values fall in between BF10 = 100, BF10 = 1000,
BF10 = 10000, etc. If these evidences were of the same strength but in
favor of the model in the denominator, however, they would all bunch
up near zero: BF10 = 1/100, BF10 = 1/1000, BF10 = 1/10000, etc. The log
transform makes the scale symmetric, as log(1/x) = − log(x). For the
example above, this means that the evidence in favor of H1 is expressed
as log(BF10) = 2, 3, 4, etc. and the same-strength evidence in favor of
H0 is expressed as log(BF10) = −2,−3,−4, etc. In other words, the log
transform ensures that evidence of the same strength is assigned the
same number, with the sign of the number indicating the direction of
that evidence.

2. Avoiding Averaging Artefacts

Two friends entertain competing point hypotheses about the proportion
of pterosaurs that have purple wings. Miruna holds that HM : θ = 1/3,
and Kate holds that HK : θ = 2/3. Let’s assume that HM and HK

are equally likely a priori. A pterosaur comes flying in from afar, but
its wing color cannot yet be ascertained. If the wing should be colored
purple, this observation supportsMK overMM by a Bayes factor of
2; if the wing should have a different color, this observation supports
MM overMK by a Bayes factor of 2. Note that in the absence of any
information about its wing color, the mere fact that a pterosaur is on
the approach is irrelevant as far as the plausibility ofMM versusMK is
concerned – at this point, the data are evidentially irrelevant.
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Undeterred by such abstract admonitions, Kate proceeds to compute
the expected Bayes factor in her favor. There is a probability of 1/2 that
the color will be purple4, which gives BFKM = 2, and a probability 4 See the relevant exercise at the end of

this chapter.of 1/2 that the color will not be purple, which gives BFKM = 1/2. The
expected value is the average of 2 and 1/2, which equals 2.5/2 = 5/4 > 1:
Kate expects the Bayes factor to favor her hypothesisMk. Not to be
outdone, however, Miruna also computes the expected Bayes factor in
her favor. There is a probability of 1/2 that the color will not be purple,
which gives BFMK = 2, and a probability of 1/2 that the color will be
purple, which gives BFMK = 1/2. The expected value is the average of 2
and 1/2, which equals 2.5/2 = 5/4 > 1: Miruna expects the Bayes factor
to favor her hypothesisMM . Both friends therefore await the arrival of
the pterosaur with slightly more confidence than they had before.
It is clear that both Kate and Miruna have drawn an incorrect con-

clusion: the evidence is just as likely to support either position, and
by the same strength – again, the mere fact that a pterosaur is on the
approach provides no basis for optimism or pessimism regarding the
rival hypotheses concerning the color of the creature’s wing. What
went wrong is that the possible Bayes factors were subjected to arith-
metic averaging, a procedure that does not treat the values 1/x and x
as symmetric (Berger and Pericchi 1996, p. 115; O’Hagan and Forster
2004, p. 189). The logarithmic transform solves the problem: depend-
ing on the wing color, the log Bayes factor will equal log(2) ≈ .30 or
log(1/2) = − log(2) ≈ −.30, averaging out to a log Bayes factor of 0,
which transforms back to a Bayes factor of 1, the desired position of
evidential neutrality.5 5 By averaging the logarithmic values

and then transforming back one obtains
the geometric mean. It can be obtained
directly by taking the nth root of the
product of the n values; in this case,
2
√

2 · 1/2 =
√
1 = 1.

Luckily, Bayes factors rarely need to be averaged. But if they do, the
foregoing illustrates that the arithmetic mean is problematic. A Bayes
factor of 1/x is just as strong as a Bayes factor of x, and differs only
in its direction. This crucial information is ignored by the arithmetic
average, but taken into account by the geometric average, which is
based on the logarithmic transform. Bayesian giant Tony O’Hagan
remarks: “Geometric averaging of Bayes factors is vastly more natural
than arithmetic averaging, and this is the only form that I could be
happy with.” O’Hagan (1995, p. 135). The appendix to this chapter
discusses another counterintuitive result that originates from subjecting
Bayes factors to the arithmetic average. It is interesting that a procedure
as common as averaging can yield such anomalous results.6 6 Are you now convinced that the geo-

metric mean is the right way to average
Bayes factors? The first exercise in this
chapter may cause you to reconsider.

3. Weighing the Evidence

As illustrated in Figure 23.1, the logarithm has created an additive scale
of evidence. One may imagine a balance scale in which one plate is
loaded with log(data |H0) and the other with log(data |H1) – the log
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Bayes factor is then simply the weight difference (i.e., the difference
between the two marginal likelihoods).
Moreover, new evidence can be combined with old evidence in an

additive fashion, akin to adding new weights to the balance scale. For
instance, suppose the data enter in two batches, A and B. Initially, the
balance scale is loaded with the marginal likelihoods for the batch A
data only: log(dataA |H0) on the first plate and log(dataA |H1) on the
second. As soon as the data from batch B arrive, new weights are added:
log(dataB | dataA,H0) for the first plate and log(dataB | dataA,H1) for
the second plate.7 For this reason, the Bayesian statistician Jack Good 7 For details see the section Combining the

Evidence in Chapter 13, the section Two
Sequential Analyses from Chapter 15, and
all of Chapter 26.

repeatedly suggested that log Bayes factors represent the ‘weight of
evidence’ (e.g., Good 1975; 1981; 1985 and references therein). Another
analogy is that to an evidential thermometer (Crofton 1885, p. 768;
Peirce 1878). It would be more accurate, though, to speak of the log
Bayes factor as a prolegometer, since ‘prolego’ means to foretell or predict,
and Bayes factors measure relative predictive performance.

“(…) Themis, the Greek goddess of
justice is usually represented as carrying
a pair of scales, these being for weights
of evidence on the two sides of an
argument.” (Good 1985, p. 249) CC-BY:
Artwork by Viktor Beekman, concept by
Eric-Jan Wagenmakers.

4. Representing Very Large Numbers

On the log10 scale, Bayes factors measure order of magnitudes. For in-
stance, Gronau and Wagenmakers (2018) analyzed the first 100 million
digits of π and reported an astronomically high Bayes factor in favor
of the null hypothesis that each of the ten digits occur equally often:
BF01 ≈ 1.86× 1030. Numbers such as these can be somewhat difficult to
represent, manipulate, and interpret. On the log10 scale, however, large
numbers are much more manageable, and we immediately see that the
log10 of 1.86× 1030 is about 30 (specifically, log(BF01) ≈ 30.27).

The Argument Against Logarithms

There is really only one counterargument to the standard report of
the log Bayes factor, but we feel it delivers a near-fatal blow: for many
people, the log transform is simply not intuitive. Without training,
most people will not be able to appreciate quickly that, say, log(BF10) =
−1.5 means that the observed data were about 30 times more likely
under H0 than under H1.
On the other hand, one may argue that it is perhaps helpful for peo-

ple who report Bayes factors to be trained on the use of the logarithmic
scale. Moreover, it is undeniably the case that there exist base-10 loga-
rithmic scales in popular use: for instance, the intensity of earthquakes
is measured on the Richter scale, and the intensity of sound is measured
on the decibel scale. As outlined in the section on Fechner’s law in
Chapter 18, there is evidence that people’s perception of loudness and
brightness follows a logarithmic law.8

8 Also, a logarithmic transformation of
the Scoville scale has been proposed to
allow for a more intuitive appreciation of
the spiciness level of chili peppers (Dou-
ventzidis and Landquist 2022). To the
best of our knowledge, validation of this
scale awaits a rigorous psychophysical
study.
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Banburismus
During World War II, a team of British mathematicians led by Alan
Turing succeeded in decrypting the Enigma code, which the Nazi-
German navy used for their top-secret communications throughout
the war, believing the code to be unbreakable (Turing 1941/2012).
Central to the team’s success was the concept of evidence expressed
as a log likelihood ratio. Bayesian statistician Jack Good was also a
member of the team and has described the key concept on several
occasions:

“The unit in terms of which weight of evidence is measured depends
on the base of its logarithms. The original cryptanalytic application
was an early example of sequential analysis. It was called Ban-
burismus because it made use of stationery printed in the town of
Banbury; so Turing proposed the name “ban” for the unit of weight
of evidence when the base of the logarithm is 10. Turing called one
tenth of this a deciban by analogy with a decibel in acoustics, and
we used the abbreviation db. Just as a decibel is about the smallest
unit of difference of loudness that is perceptible to human hearing,
the deciban is about the smallest unit of weight of evidence that is
perceptible to human judgment. It corresponds to a Bayes factor of
5/4 because log10 5 = .70 and log10 4 = .60. (…)

As a simple example, suppose we are trying to discriminate
between an unbiased die and a loaded one that gives a 6 one third
of the time. Then each occurrence of a 6 provides a factor of 1/3

1/6
=

2, that is, 3 db, in favour of loadedness while each non-6 provides a
factor of 2/3

5/6
= 4

5
, that is, 1 db, against loadedness. For example,

if in twenty throws there are ten 6’s and ten non-6’s then the total
weight of evidence in favour of loadedness is 20 db, or a Bayes factor
of 100.” (Good 1985, p. 253 and p. 254)

and

“Turing suggested further that it would be convenient to take over
from acoustics and electrical engineering the notation of bels and
decibels (db). In acoustics, for example, the bel is the logarithm
to base 10 of the ratio of two intensities of sound. Similarly, if f is
the factor in favour of a hypothesis, i.e. the ratio of its final to its
initial odds, then we say that the hypothesis has gained log10 f bels
or (10 log10 f) db. This may also be described as the weight of
evidence or amount of information for H given E, and (10 log10 o)
db may be called the plausibility corresponding to odds o. Thus T22
[the Bayes factor – EWDM] may be expressed:

“Plausibility gained = weight of evidence”,
where the weight of evidence is calculated in terms of the ratio of
the likelihoods.” (Good 1950, p. 63)
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How Much Evidence is Enough?

When researchers are first confronted with Bayes factors they often
wish to know what value is deemed sufficiently compelling; more con-
cretely, they wish to know what value is just good enough so that their
colleagues will accept their claims as deserving publication.
In his first article on Bayes factors, Jeffreys dodged the issue:

“Further, a journal may be unwilling to publish a new hypothesis if
its probability is only slightly more than that of an old one, though the
time has not been reached when an improvement of the probability in
any specified ratio can be given as the standard for publication. These
considerations lie outside the theory of probability (…)” (Jeffreys 1935a, p.
222)

“The concept of weight of evidence
completely captures that of the degree
to which evidence corroborates a hy-
pothesis. I think it is almost as much an
intelligence amplifier as the concept of
probability itself, and I hope it will soon
be taught to all medical students, law
students, and schoolchildren.” (Good
1983, p. xi)

In our opinion, the answer to the question ‘how large must a Bayes
factor be to merit publication?’ is simple: all Bayes factors merit pub-
lication, or rather, all results of theoretically relevant and carefully
conducted studies merit publication. The complete report of all high-
quality data is essential for an unbiased, cumulative science (e.g., Cham-
bers 2017, Goldacre 2012).
However, let’s say a researcher plans a study and wishes to set a target

level on the Bayes factor (Stefan et al. 2019). What is a reasonable tar-
get to pursue? The answer to this question depends, first and foremost,
on the prior plausibility of the hypothesis under test. Note that Equa-
tion 23.1 can be interpreted as ‘extraordinary claims require extraor-
dinary evidence’ – this means that the hypothesis ‘plants grow faster
when you occasionally water them’ will require a relatively low target
Bayes factor, whereas the hypothesis ‘plants grow faster when you occa-
sionally talk to them’ will require a target Bayes factor that is relatively
high.9 In other words, if you aim to convince the field that a widely dis- 9 See also the box on the same topic in

Chapter 7.regarded hypothesis H1 is nonetheless plausible, the presented evidence
BF10 will need to be strong enough to overcome the initial skepticism
that is expressed through the prior odds (i.e., p(H1)≪ p(H0)).
The second factor that ought to influence the target level of evidence

is the researcher’s personal level of audacity. Some researchers are
more gung-ho, and happy to make a claim based on evidence that is
only suggestive, whereas others are more hesitant and desire more
certainty before publicly making a particular claim. Such differences
in personality are unavoidable and unproblematic – just as long as the
evidence value is explicitly reported alongside the main claim.
The third factor that ought to impact the target level of evidence con-

cerns utility. For instance, when data collection is cheap and effortless10 10 From the perspective of a professor:
when the work is done by graduate
students.

a researcher can afford to set a target level of evidence that is relatively
ambitious. Likewise, when data collection is expensive and arduous, but
concerns a topic of great importance (e.g., research on a drug that could
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cure cancer), a more lenient level of evidence may be appropriate. The
topic of utilities resurfaces in the box ‘Evidence thresholds in forensics’.
A more fundamental concern is how a particular target level for the

Bayes factor ought to be interpreted: once it has been achieved, how are
we to intuit the strength of the evidence? This is the topic of the next
section.

How to Intuit the Strength of Evidence Provided by
a Bayes Factor

“Statue of Turing holding an Enigma
machine by Stephen Kettle at Bletchley
Park, commissioned by Sidney Frank,
built from half a million pieces of Welsh
slate.” (https://en.wikipedia.org/
wiki/Alan_Turing) CC BY-SA 3.0:
Original photo by Antoine Taveneaux.

The problem facing us here is the opposite of the one we confronted
in Chapter 5, ‘The measurement of probability’. In that chapter the
challenge was to assign a number to a given degree of belief or intensity
of conviction (i.e., transitioning from the ‘feeling’ to the number); in
this chapter the challenge is to intuit the strength of evidence from a
given Bayes factor (i.e., transitioning from the number to the ‘feeling’).
Similar probabilistic tools may luckily be applied in both cases.

Solution 1: Rouder’s Bananas

In his presentations on Bayes factors, Jeff Rouder usually dismisses the
issue. To paraphrase: “Suppose I return from the grocery store with
10 bananas,” he might say. “You may then ask me ‘did you buy many
bananas or only few bananas?’. I would answer that I bought 10 bananas.
You may decide to label this ‘many’ or ‘few’, but there are simply 10
bananas.” In other words, a Bayes factor of 10 is directly interpretable:
H1 predicts the data 10 times better than H0; put differently, the data
favor H1 over H0 10-to-1. Whether this is ‘a lot’ or ‘a little’ evidence
depends on the subject under study and the researcher’s prior beliefs.11 11 See the previous section, ‘How much

evidence is enough?’.Assigning ranges of Bayes factors to ordinal, discrete categories (i.e.,
‘weak’, ‘strong’) only discards information and inserts arbitrariness (cf.
Rouder et al. 2018). For patrons of betting parlors, 10-to-1 odds may
evoke a visceral sensation. For others, Rouder’s bananas may not answer
the pertinent pragmatic question: when a researcher obtains a Bayes
factor of 10, how can they best intuit its strength? “(…) for a proper interpretation of a

Bayes factor formal threshold values are
not needed because the relative evidence
for the hypotheses based on the Bayes
factor speaks for itself.” (Hoijtink et al.
2019).

Solution 2: Verbal Categories

The second solution provides a concrete, definitive answer to the key
question, and it does so by assigning verbal labels to different Bayes
factor intervals. In other words, it does attempt to answer the question
whether 12 bananas are ‘few’ or ‘many’. This solution was pioneered by
Harold Jeffreys in the late 1930s, as illustrated by the fragments below.
In order to decipher Jeffreys’s writing, it helps to realize that he denotes
BF01 by K, writes q for H0, and ∼ q for H1. In a pioneering effort from

https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Alan_Turing


416 bayesian inference from the ground up

1938, Jeffreys first notes that Bayes factors near 1 may be considered
“not sufficiently decisive”:

“The value of K to adopt for practical use must involve other considera-
tions than those of pure knowledge. Omitting cases of selection, where
the treatment can easily be adapted, we may say that ∼ q is supported by
the data whenever K is less than 1, and q when K > 1. But if K = 1, ∼q

has the same probability as the statement that an unbiased coin will throw
a head at the next trial or that an estimate is right within its probable
error, neither of which need be taken very seriously. If we are to assert
either q or ∼ q with much confidence K must be much more or much
less than 1. If we must draw an absolute line somewhere, K = 1 is likely,
as far as we know now, to produce a minimum number of mistakes; but
we are at liberty to surround K = 1 by two other values and say that
within this range the data are not sufficiently decisive, and even this de-
vice would be purely one of convenience and sacrifice some information
given by the actual values of K. Now these conditions of convenience
are biased. At the least the introduction of a new parameter involves ad-
ditional computation, the labour of which is not negligible. In economic
applications, if action is to be taken on a discovery, it may involve a tem-
porary loss during the transition, and it will be a matter for the economic
advisers to say whether the ultimate advantage will compensate for this. It
cannot be expected that these ethical values will be the same in all cases,
but it is clear that they will tend to encourage future action on q even
when the evidence is slightly against it. Some idea of the amount of this
bias may be obtained from observations of behaviour. A physicist would
hardly introduce a new parameter if it was only twice its standard error
as estimated from the observations, even if it was predicted by a reliable
theory independent of these observations, simply because the reduction
of the residuals by allowing for it would not compensate for the extra
trouble.” (Jeffreys 1938b, pp. 377-378)

Jeffreys then draws a comparison between his new Bayes factor test
and the popular test advocated by Ronald Fisher, which is based on the
p-value and the common threshold of 5%. He concludes:

“It appears therefore that the 5 % point of the t distribution never corre-
sponds to a value of K less than about 0.5, or to 2 to 1 odds on the need
for the new parameter. If we are entitled to interpret this as indicating at
what value of K we may consider a new parameter as worth introducing,
the value should be about 0.5; but there will then be just about as much
confidence in the need for it as in a statement that an estimate of a param-
eter, whose relevance is not in doubt, is right within its standard error.”
(Jeffreys 1938b, p. 379)12 12 Explanation: there is a probability of

about 0.682 that a value drawn from
a standard normal distribution falls
between −1 and 1; this corresponds to an
odds of approximately 2.

In other words, a comparison to p-values suggests that all Bayes factors
from 1/2 to 2 ought to be deemed insufficiently compelling; however,
Jeffreys finds those thresholds too lenient. He then makes the following
proposal:

“My own inclination, which is definitely a matter of personal impression
of the economic factors involved, is that it would be worth while to
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consider separately the cases K = 1, 1/3, 1/10, and 1/30. If K > 1, the
evidence is in favor of q. If 1 > K > 1/3, it is in favour of ∼ q, but not
sufficiently to repay special attention; 1/3 > K > 1/10, ∼ q is worth
adopting with reserve; 1/10 > K > 1/30, less reserve is needed; and if
K < 1/30, ∼q may be definitely asserted.” (Jeffreys 1938b, p. 381)

One year later, in the first edition of Theory of Probability, Jeffreys elabo-
rates:

“We do not need K with much accuracy. Its importance is that if K > 1

the null hypothesis is supported by the observations, while if K is very
small the null hypothesis may be rejected. But it makes little difference
to the null hypothesis whether the odds are 10 to 1 or 100 to 1 against
it, and no difference at all whether they are 104 or 104000 to 1; in any
case, whatever alternative is most strongly supported will be set up as
the hypothesis for use until further notice. I have gone as low as K =

0.01 to give a limit for unconditional rejection of the null hypothesis.
K = 10−

1/2 represents only about 3 to 1 odds, and would be hardly
worth mentioning in support of a new discovery; it is at K = 10−1 and
below that we can have strong confidence that a result will survive future
investigation. We may group the values into grades, as follows:

Grade 0. K > 1. Null hypothesis supported.
Grade 1. 1 > K > 10−

1/2. Evidence against q, but
not worth more than a bare comment.

Grade 2. 10−1/2 > K > 10−1. Evidence against q substantial.
Grade 3. 10−1 > K > 10−

3/2. Evidence against q strong.
Grade 4. 10−3/2 > K > 10−2. Evidence against q very strong.
Grade 5. 10−2 > K. Evidence against q decisive.” (Jeffreys 1939,

Appendix I, p. 357)

One may wonder why Jeffreys chose these particular threshold values.
Are they not just arbitrary and merely “a matter of personal impres-
sion”? Not quite. As outlined above, Jeffreys argued that a Bayes factor
of 2 (suggested by a comparison of his test to that of Fisher) was too
weak, and he then put the threshold at 3, which is approximately 0.5 on
the log10 scale. As mentioned in the discussion of Figure 23.1, and as
suggested by Jeffreys in the fragment above, the other category bound-
aries are obtained by setting equal intervals on the log10 scale, which
accords with the interpretation of the log Bayes factor as a weight of
evidence. Of course one may construct a different set of grades by set-
ting the first evidence threshold not at 3, but at some other number;
however, it seems that this number would be no higher than about 5,
such that alternative classification schemes would be relatively simi-
lar to what Jeffreys proposed. One such alternative scheme, based on
“Royall’s urn” will be discussed in the next section.13

13Other schemes have been proposed
for instance by Dudbridge (2022), Evett
(1987), Goodman (1999), Held and Ott
(2016), Kass and Raftery (1995), and
Chechile (2020).

Jeffreys’s classification scheme comes with (at least) three pitfalls.
First, the verbal labeling is coarse and discrete, whereas the Bayes factor
measures evidence on a continuous scale. The main pitfall of the verbal
classification scheme is that this is forgotten, and values just below a
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Table 23.1: Discrete evidence categories for the Bayes factor, based on Jeffreys (1961,
Appendix B); with labels adjusted by Wasserman (2000) and Lee and Wagenmakers (2013).
“This set of labels facilitates scientific communication but should only be considered
an approximate descriptive articulation of different standards of evidence.” (Lee and
Wagenmakers 2013, p. 105)

Bayes factor BF10 Interpretation

> 100 Extreme evidence for H1

30 – 100 Very strong evidence for H1

10 – 30 Strong evidence for H1

3 – 10 Moderate evidence for H1

1 – 3 Anecdotal evidence for H1

1 No evidence
1/3 – 1 Anecdotal evidence for H0

1/10 – 1/3 Moderate evidence for H0

1/30 – 1/10 Strong evidence for H0

1/100 – 1/30 Very strong evidence for H0

< 1/100 Extreme evidence for H0

given threshold (e.g., BF10 = 9.6) are interpreted very differently from
values just above it (e.g., BF10 = 10.1). This is the well-known ‘cliff-
effect’ that is familiar to those who use a .05 threshold on the p-value
(e.g., Gelman and Stern 2006, Nieuwenhuis et al. 2011, Rosnow and
Rosenthal 1989).14

14 Evett et al. (2000, p. 236) also warn
against the cliff effect in forensics: “Of
course, the divisions [between the
evidence categories – EWDM] (…) cannot
be seen as arbitrary discontinuous steps.
It would be ludicrous to claim that a
likelihood ratio of 999 is materially
different in its impact from one of 1001
[in forensics, a commonly accepted
evidence bound lies at a value of 1000
(Evett 1991) – EWDM]: but that kind
of precision is rarely realistic in forensic
science and the scale is no more than a
guide to the judgement of the scientist.”

The second pitfall concerns the verbal labels themselves. Jeffreys used
‘substantial’ for the category in between weak and strong; the modern-
day equivalent is closer to ‘moderate’. Also, Jeffreys used ‘decisive’ for
Bayes factors outside of the interval from 1/100 to 100; instead it seems
prudent to use the term ‘extreme’ (cf. Wasserman 2000, Table 1; Lee
and Wagenmakers 2013, Table 7.1).
The third and final pitfall is that the verbal labeling distracts from

the fact that evidence ought to be interpreted in context. For instance,
one may argue that ‘strong evidence’ (e.g., BF10 = 14.3) hardly moves
the epistemic needle in the case of spectacularly implausible hypotheses
such as extra-sensory perception – the strength of the evidence from
the data is dwarfed by the strength of the pre-data evidence (i.e., our
knowledge of the world, earlier outcomes of similar experiments, etc.)
Another way of saying this is what ultimately matters is the posterior
probability. This is certainly the case in forensics and law, where the
primary concern of judge and jury ought to be the probability that the
defended is either guilty or innocent (cf. Kass and Raftery 1995, p. 777).
As one may expect, any coarse discretization of a continuous scale

inevitably introduces pitfalls. However, these pitfalls are to some degree
offset by concrete benefits. Specifically, Jeffreys’s grades of evidence
come with the following four advantages:
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Evidence Thresholds in Forensics
There is one evidence classification scheme that deviates dramatically
from the one proposed by Jeffreys, and this is the scheme that is
used in forensic science. For instance, The Forensic Science Service
(FSS) uses the following guidelines for the interpretation of likelihood
ratios: from 1 − 10: ‘limited support’; from 10 − 100: ‘moderate
support’; from 100−1,000: ‘moderately strong support’; from 1,000−
10,000: ‘strong support’; > 10,000: ‘very strong support’ (Evett
et al. 2000; for similar scales see Nordgaard et al. 2012 and Willis
et al. 2015).

For run-of-the-mill empirical research, these thresholds seem ridicu-
lously high. The conservative nature of the thresholds in forensic
science is likely due to a combination of two factors: (1) often, a
low prior probability that a random person is the culprit, and (2) a
utility function that expresses a strong aversion to incarcerating the
innocent. Indeed, Nordgaard et al. (2012) mention explicitly that
the thresholds are partly determined by utility. If we want to convict
beyond reasonable doubt, Nordgaard et al. (2012) suggest that we
should adhere to the rule that ‘it is better that 99 guilty persons
escape, than that one innocent suffer’ – adjusted from a famous
statement by judge Sir William Blackstone (1723–1780), whose origi-
nal statement referred to 10 rather than 99 guilty persons. According
to Nordgaard et al. (2012), this entails that an accused may be con-
victed when the posterior probability of guilt exceeds 0.99.

There are three ingredients that any rational decision requires:
the assessment of prior plausibility, the quantification of evidence,
and the specification of utilities (Lindley 1985). It seems unwise
to muddy the waters by letting the interpretation of evidence be
influenced by considerations of utility.

One may naively expect that when decisions of grave importance
are made (e.g., legal decisions, political decisions, medical decisions),
the people who make them would welcome the opportunity to be
transparent about the prior plausibility, the evidence, and the utilities
that are being applied. Quite the opposite appears to be the case
(see the exercise at the end of this chapter).
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1 The classification scheme highlights that Bayes factors in the interval
from about 1/3 to 3 constitute evidence that is only weak, being “not
worth more than a bare comment”. This hopefully deters researchers
from overinterpreting their findings (i.e., drawing strong conclusions
from shaky evidence).

2 The coarseness of the classification scheme provides the correct
impression that the Bayes factor usually need not be determined
with much precision: “it will seldom matter appreciably to further
procedure if K is wrong by as much as a factor of 3.” (Jeffreys 1961,
p. 433)

3 The threshold values provide guidance and uniformity for sample
size determination in planning an experimental study (e.g., Stefan
et al. 2019). For instance, a Bayes factor target of about 10 is now
relatively standard.

4 For better or for worse, the classification scheme meets a practical
need. Indeed, Evett (1987, p. 103) has suggested that adopting the
verbal classification scheme will help “(…) gain acceptance among
operational scientists of the logic of the Bayesian approach and a
realisation of its advantages”.

Solution 3: Royall’s Urn

Another attempt to make it easier for people to intuit the strength of ev-
idence provided by a Bayes factor is through a comparison with a simple
random process for which an intuition already exists. A prominent ex-
ample of this approach is given by Richard Royall in his book ‘Statistical
evidence: A likelihood paradigm’. The section ‘A canonical experiment’
describes the setup:

“Suppose we have two identical urns, one containing only white balls,
and the other containing equal numbers of white and black balls. One
urn is chosen and we draw a succession of balls from it, after each draw
returning the ball to the urn and thoroughly mixing the contents. We
have two hypotheses about the contents of the chosen urn, ‘all white’ and
‘half white’, and the observations are evidence.

Suppose you draw a ball and it is white. Suppose you draw again, and
again it is white. If the same thing happens on the third draw, many
would characterize these three observations as ‘pretty strong‘ evidence
for the ‘all white‘ urn versus the ‘half white‘ one. The likelihood ratio is
23 = 8.

If we observe b successive white balls, then the likelihood ratio in favor
of ‘all white’ over ‘half white’ equals 1/( 1

2
)b, or 2b. A likelihood ratio of

2 measures the evidence obtained on a single draw when a white ball is
observed. If you would consider that observing white balls on each of
three draws is ‘pretty strong’ evidence in favor of ‘all white’ over ‘half
white’, then a likelihood ratio of 8 is pretty strong evidence.
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For interpreting likelihood ratios in other problems it is useful to
convert them to hypothetical numbers of white balls (…): a likelihood
ratio of k corresponds to b white balls, where k = 2b (…)” (Royall 1997,
pp. 11-12)

For instance, suppose you obtain a Bayes factor (or likelihood ratio)
of 30. We then have 30 = 2b, and hence the corresponding number of
successive white balls b can be computed as log2(30) ≈ 4.9: the evidence
is almost as strong as that for the ‘all white’ urn over the ‘half white’
urn provided by 5 successive white balls (which would yield 25 = 32).
Note that for Royall’s urn scenario, we have moved to a logarithm

with base 2 (see also de Finetti 1974, p. 178). This suggests a new se-
quence of evidence thresholds, which we provide in Table 23.2.

Table 23.2: Discrete evidence categories for the Bayes factor, based on Royall 1997, pp.
11-12 (with added labels).

Bayes factor BF10 Interpretation

> 128 Extreme evidence for H1

64 – 128 Super strong evidence for H1

32 – 64 Very strong evidence for H1

16 – 32 Strong evidence for H1

8 – 16 Substantial evidence for H1

4 – 8 Moderate evidence for H1

2 – 4 Weak evidence for H1

1 – 2 Very weak evidence for H1

1 No evidence
1/2 – 1 Very weak evidence for H0

1/4 – 1/2 Weak evidence for H0

1/8 – 1/4 Moderate evidence for H0

1/16 – 1/8 Substantial evidence for H0

1/32 – 1/16 Strong evidence for H0

1/64 – 1/32 Very strong evidence for H0

1/128 – 1/64 Super strong evidence for H0

< 1/128 Extreme evidence for H0

Solution 4: McFadden’s Dice

If urns can be used to provide an intuition for the strength of evidence
provided by a Bayes factor, then so can dice (cf. McFadden 2023, p.
13).15 Although the statistical structure of Royall’s urn is the same as 15 The McFadden scenario already made

an appearance as an exercise in Chap-
ter 22.

that of McFadden’s dice, we believe the dice are even more intuitive
and compelling, especially for a classroom demonstration. Consider
two fair dice, ‘D6’ and ‘D12’. The D6 is the ubiquitous cube with sides
labeled 1 to 6. The D12 is a special die with twelve sides, labeled 1 to
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12.16 We select either the D6 or the D12 at random, throw it, and report 16 An online search reveals a large as-
sortment of unusual dice, ranging from
the ‘D4’ (four sides) to the ‘D100’ (one
hundred sides!). Some of these unusual
dice are part of role-playing games such
as Dungeons and Dragons.

to you only the resulting number of pips. If the outcome is larger than
‘6’, the die is certain to be the D12. However, suppose the outcome is
‘5’. How does this outcome change your probability that the die thrown
was the D6 rather than the D12? We then throw the same die again,
and now the reported outcome equals ‘4’. With every throw that shows
a number of pips lower than ‘7’, your confidence grows that the die at
hand is D6 and not D12.17 17 This is similar to the test of a universal

generalization such as ‘all zombies are
hungry’: every hungry zombie increases
the credibility of the general law, but a
single satiated zombie will conclusively
and irrevocable falsify the law.

To make the reasoning precise, note that under D6 every possible
number of pips from 1 to 6 has an equal chance of occurring, so that
the chance of the outcome ‘5’ on the first throw is 1/6; the chance of the
outcome ‘4’ on the second throw is also 1/6. Under D12, every possible
number of pips from 1 to 12 has a chance of 1/12. Consequently, any
specific number of pips lower than ‘7’ is twice as likely to occur under
D6 than under D12, and hence the Bayes factor in favor of D6 over
D12 equals (1/6)/(1/12) = 2. More generally, if the die thrown is
actually D6, the Bayes factor in favor of D6 over D12 is 2n, where n is
the number of tosses.18 This is numerically identical to the evidence 18 The Bayes factors multiply because the

chances are the same regardless of the
outcomes of previous throws.

obtained in Royall’s urn scenario described above.

A die with 12 sides (a ‘D12’).

Now imagine we entertain a die with x > 6 sides, the ‘Dx’ die. Un-
der Dx, every possible number of pips from 1 to x has a chance of 1/x

of occurring. If the die thrown is the D6, the Bayes factor for D6 over
Dx for any single throw will be (1/6)/(1/x) = x/6. When D6 is thrown
n times, the total Bayes factor in its favor equals (x/6)n. For example,
suppose we entertain x = 60, that is, D60, a die with 60 different sides.
If the die thrown is actually the D6, the Bayes factor for D6 over D60
equals 10 for each throw. Behold the principle of parsimony at work:
a simple model makes precise predictions, and when those predictions
come true this enhances that model’s credibility.
Now suppose we throw the D6 die, but we wish to quantify the

evidence for D12 versus D60. Under D12, the chance of finding any
particular number of pips lower than ‘7’ equals 1/12, whereas this equals
1/60 under D60. Hence, any single throw of D6 yields the Bayes factor
of (1/12)/(1/60) = 5 in favor of D12 over D60.19

19 This underscores that the Bayes factor
is a relative measure of evidence; as
the outcomes of successive throws
accumulate, it becomes increasingly
obvious that D12 did not generate the
data (because pips higher than ‘6’ do not
occur). Nevertheless, the evidence for
D12 over D60 grows quickly, as 5n.

The McFadden dice scenario can be adjusted to provide an intuition
for any particular Bayes factor. For instance, assume that an experiment
yields a Bayes factor of 16. This strength of evidence matches exactly
the scenario of a thrown D6 versus a hypothesized D12 based on four
throws (i.e., (12/6)4 = 16), or the scenario of a thrown D6 versus a
hypothesized D24 based on two throws (i.e., (24/6)2 = 16). It would
also be approximately equal to the scenario of a thrown D6 versus a
hypothesized D100 based on a single throw (i.e., (100/6) ≈ 16.67).
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Solution 5: Probability Wheel and Pizza Plot

In this section we outline another tool that may help one intuit the
strength of evidence provided by the Bayes factor: the probability wheel
(Tversky 1969). This wheel may be used to visualize the Bayes factor.
For instance, Figure 23.2 shows seven wheels inspired by Jeffreys’s
category thresholds. In each wheel, the red area corresponds to H1 and
the white area corresponds to H0. The middle wheel corresponds to
BF10 = 1, which means that the data provide no evidence whatsoever
for H1 versus H0; consequently the colors red and white are presented
in the ratio 1:1. For the BF10 = 3 wheel, the red-to-white ratio equals
3:1, and for the BF10 = 10 wheel the red-to-white ratio equals 10:1.
Hence, the color ratio in the wheels provides a direct visual analogue of
the numerator and denominator of the Bayes factor.

BF10 = 1
30

BF10 = 1
10

BF10 = 1
3 BF10 = 1 BF10 = 3 BF10 = 10 BF10 = 30

Evidence for H0 Evidence for H1

gWeakggModerategStrong gModerateg Strong

1

Figure 23.2: “A graphical representation of a Bayes factor classification table. As the Bayes factor deviates from 1, which indicates equal
support for H0 and H1, more support is gained for either H0 or H1. Bayes factors between 1 and 3 are considered to be weak, Bayes
factors between 3 and 10 are considered moderate, and Bayes factors greater than 10 are considered strong evidence. The Bayes factors are
also represented as probability wheels, where the ratio of white (i.e., support for H0) to red (i.e., support for H1) surface is a function of the
Bayes factor. The probability wheels further underscore the continuous scale of evidence that Bayes factors represent. These classifications
are heuristic and should not be misused as an absolute rule for all-or-nothing conclusions.” (van Doorn et al. 2021, p. 821).

The strength of the Bayes factor can also be appreciated by calculat-
ing how it changes our opinion given that we start from a position of
indifference. Suppose that we deem H0 and H1 equally likely a priori
(i.e., p(H0) = p(H1) = 1/2). Encountering a Bayes factor of 3 increases
the plausibility of H1 to 3/3+1 = 0.75, leaving 0.25 for H0.20 Under 20 It is clearly reckless to draw strong

scientific conclusions based on such
modest evidence.

equal prior probability for the competing hypotheses, the proportion
of the probability wheel that is colored red corresponds to the posterior
probability for H1, and the proportion that is colored white corresponds
to the posterior probability for H0.21 For instance, in the probability 21Note that with equal prior probabilities,

any given Bayes factor leads to the most
dramatic change on the probability scale
(cf. the left panel of Figure 23.1).

wheel marked “BF10 = 3”, three-quarters of the circle is colored red
and one quarter is colored white.
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In sum, the probability wheel displays the Bayes factor (or the poste-
rior probabilities, when the prior probabilities are equal). This is helpful
but it does not convey the strength of a Bayes factor in a visceral sense.
To really ‘feel’ the strength of a Bayes factor, the probability wheel may
be interpreted as a pizza, with the colors indicating the topping: red
for pepperoni and white for mozzarella. For instance, the ‘pizza plot’
marked BF10 = 3 is covered for 75% in pepperoni and for 25% in moz-
zarella. Now imagine you poke your finger blindly into the pizza, and
it comes back covered in the non-dominant topping. How surprised
are you? The level of your imagined surprise is a visceral indication of
the strength of evidence provided by a Bayes factor (see Figure 23.3 at
the very end of this chapter).22 For our BF10 = 3 pizza, this means 22On BayesianSpectacles.org we

have dubbed this PAW: the “Pizza-poke
Assessment of the Weight of evidence”.

you poke your finger into the pizza and it comes back covered in moz-
zarella. Your lack of imagined surprise means that you should be wary
of interpreting the data as providing strong evidence against H0.23 23 And it would be even more harum-

scarum to “reject” H0 altogether.Finally, note that the slice that corresponds to the non-dominant
topping represents the probability of drawing the incorrect conclusion,
in case both hypotheses are equally likely a priori.

Exercises

1. Are you convinced that the geometric mean is the preferred way to
average Bayes factors? Then consider again our friends Miruna and
Kate. This time they debate the crest color of Anchiornis.24 Miruna 24 Anchiornis was a small dinosaur with

feathered wings and a woodpecker-like
crest.

and Kate have assigned different probabilities to the various colors
the crest may take on. Specifically, Miruna’s probabilities are .60 for
red, .30 for yellow, and .10 for blue; Kate’s probabilities are .699 for
red, .30 for yellow, and .001 for blue. One of Miruna’s scouts comes
running and reports that he just saw an Anchiornis perched in a tree
nearby: “I could not make out the crest too clearly, but it definitely
was not red; it was either yellow or blue – both options seem equally
likely to me”. Let’s take the scout’s word for it and assume that the
crest of Anchiornis is either yellow or blue with equal probability. If
the crest is yellow, the Bayes factor BFMK is .30/.30 = 1; If the crest
is blue, the Bayes factor BFMK is .01/.001 = 100. So the data are
either completely uninformative, or highly informative.

1.1. What is the geometric mean for the above scenario? Do you think
this is a reasonable reflection of the uncertainty?

1.2. Now imagine that Kate’s probabilities are .70 for red, .30 for yel-
low, and 0 for blue. What is the geometric mean? Do you think
this is a reasonable reflection of the uncertainty?

1.3. Can you think of a more reasonable way to average over the Bayes
factors? [hint: consider probabilities]

BayesianSpectacles.org
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2. Consider the exchange paradox: you are confronted with a choice be-
tween two closed envelopes filled with cash, and all you are told is
that one envelope contains twice as much money as the other. You
pick an envelope and find amount x. You are now offered the oppor-
tunity to switch and take the other envelope instead. Should you?
The other envelope has either x/2 or 2x, and its expected value is the
average of these two possibilities, which equals 1.25 · x, suggesting
you should switch. But this analysis applies for any x, so even before
opening any of the two envelopes you know that you would want to
switch to the second. This seems silly. Can you propose a resolution
suggested by the contents from this chapter?

3. The main text quotes Tony O’Hagan as saying: “Geometric averag-
ing of Bayes factors is vastly more natural than arithmetic averag-
ing, and this is the only form that I could be happy with.” O’Hagan
(1995, p. 135). However, consider the following way of express-
ing the Bayes factor hypothesis test between H0 : θ = 1/2 versus
H1 : θ ∼ beta(α, β):

BF10 =
p(data | H1)

p(data | H0)

=

∫
p(data | θ,H1) p(θ | H1) dθ

p(data | H0)

=

∫
p(data | θ,H1)

p(data | H0)
p(θ | H1) dθ

=

∫ [
LRθ

10

]
p(θ | H1) dθ.

The second line uses the law of total probability to compute the pre-
dictive performance of H1 by averaging over the prior distribution;
the third line moves the multiplicative term p(data |H0) inside the
integral sign; and the fourth line shows that the Bayes factor is an
average likelihood ratio, with the average taken with respect to the
prior distribution for θ under H1. Good (1950, p. 68) termed this
the “weighted average” of the partial factors (cf. Zabell 2023, p. 289),
and it follows directly from probability theory; hence, it has to be
correct. However, at first sight such averaging seems at odds with
the statement by O’Hagan. Suppose we have two values of θ under
H1, deemed equally likely a priori, one yielding a likelihood ratio
LR10 = 1/3 and the other yielding LR10 = 3; the resulting Bayes factor
is then BF10 = 5/3, favoring H1 over H0. Explain why this makes
perfect sense. Hint: consider H0 : Colonel Mustard murdered Boden
“Boddy” Black Jr., versus H1 : either Professor Plum or Miss Scarlett
committed the crime.

4. The section Avoiding Averaging Artefacts mentions that “There is a
probability of 1/2 that the color will be purple (…)”. Explain why.
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5. The box ‘Evidence thresholds in forensics’ suggested that judges,
politicians, and doctors would be reluctant to state the elements of a
rational decision, namely the prior plausibility, the evidence provided
by the data, and the considerations of utility. Why do you think this
is?

6. Royall (1997) states that “If you would consider that observing white
balls on each of three draws is ‘pretty strong’ evidence in favor of ‘all
white’ over ‘half white’, then a likelihood ratio of 8 is pretty strong
evidence.” (p. 12). Do you consider this pretty strong evidence?
Suppose you plan an experiment, the results of which you want to
send to the Journal of Urns, Coins, and Dice; how many successive
white balls would you like to see before you are ready to make the
public claim that “the data strongly support the hypothesis that the
urn is filled with 100% white balls instead of 50% white balls”?

Chapter Summary

How to communicate and interpret the strength of evidence from a
Bayes factor? There are good arguments for focusing on the logarithm
of the Bayes factor – the log transform achieves symmetry, avoids av-
eraging artefacts, represents the scale weight on a prolegometer, and can
elegantly handle very large numbers. Nevertheless, the logarithmic
transform may hinder an intuitive interpretation – at least for those
untrained in the use of a log scale. In order to facilitate an intuitive in-
terpretation we may (1) insist that the Bayes factor value itself is already
an intuitive measure; (2) adopt a verbal classification scheme such as
the one proposed by Jeffreys (1961, Appendix B); (3) compare the Bayes
factor for the observed data to the same Bayes factor for hypothetical
data from a random process that is well understood (Royall 1997); (4)
visually represent the Bayes factor (or the associated posterior probabil-
ity) in a probability wheel, and ‘feel’ the evidence through PAW – the
pizza-poke assessment of the weight of evidence (see Figure 23.3).

Want to Know More?

3 Several blog posts on BayesianSpectacles.org provide relevant
background information. First there is the post “Did Alan Turing
invent the Bayes factor?” (to which the answer is a resounding ‘no,
he did not’: Turing computed likelihood ratios25, and even if Tur- 25 That is, Turing used point hypothe-

ses and did not integrate over a prior
distribution.

ing had actually computed Bayes factors, J. B. S. Haldane and Harold
Jeffreys already proposed Bayes factors in the 1930s; for details see
also Etz and Wagenmakers 2017). Second, the following posts discuss
the interpretation of the strength of evidence provided by a Bayes
factor: (1) “Redefine statistical significance part II: Caught in a bad

BayesianSpectacles.org
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romance?”; (2) “Redefine statistical significance part V: A wizard
walks into a sauna and starts pawing at a pizza…”; and (3) “Let’s
poke a pizza: A new cartoon to explain the strength of evidence in
a Bayes factor”. Third, the post “Classroom demonstration of Ock-
ham’s razor with polyhedral dice” provides additional information on
McFadden’s dice.

3 Dudbridge, F. (2022). A scale of interpretation for likelihood ratios and
Bayes factors. ArXiv, https://arxiv.org/abs/2212.06669.

3 Good, I. J. (1950). Probability and the Weighing of Evidence. London:
Charles Griffin. An oldie but a goodie.26 26 Jack Good was a tireless punster and

wouldn’t have wanted it any other way.
3 Good, I. J. (1985). Weight of evidence: A brief survey. In Bernardo,

J. M., DeGroot, M. H., Lindley, D. V., & Smith, A. F. M. (Eds.),
Bayesian Statistics 2 (pp. 249-269). New York: Elsevier.

3 Gold, J. I., & Shadlen, M. N. (2002). Banburismus and the brain: De-
coding the relationship between sensory stimuli, decisions, and reward.
Neuron, 36, 299-308. “This article relates a theoretical framework
developed by British codebreakers in World War II to the neural com-
putations thought to be responsible for forming categorical decisions
about sensory stimuli. In both, a weight of evidence is computed and
accumulated to support or oppose the alternative interpretations. A
decision is reached when the evidence reaches a threshold value. In
the codebreaking scheme, the threshold determined the speed and
accuracy of the decision process. Here we propose that in the brain,
the threshold may be controlled by neural circuits that calculate the
rate of reward.” (p. 299)

3 Zabell, S. (2023). The secret life of I. J. Good. Statistical Science, 38,
285-302.

Appendix: Alan Turing’s Curious Result

As discussed above, it is misleading to compute an arithmetic average on
Bayes factors (e.g., the arithmetic average of BF01 = 3 and BF01 = 1/3

is larger than the neutral value of 1, even though the two Bayes factors
are equally strong, differing only in their direction). Nevertheless, the
arithmetic average does show a surprising and potentially useful result:

“In 1941, or perhaps in 1940, Turing discovered a few simple properties
of Bayes factors and weights of evidence. One curious result, which
was independently noticed by Abraham Wald, was, in Turing’s words
“The expected factor in favour of a wrong hypothesis is 1”. This fact can
be better understood from its very simple proof: Suppose the possible
outcomes of an experiment are E1, E2, E3,…and that the hypothesis H is
true.27 If Ei is an observed outcome the factor against H is 27 EWDM: The rival hypothesis will be

denoted H̄, and the Bayes factor for H̄
over H will be denoted F (H̄:Ei).F (H̄:Ei) =

P (Ei | H̄)

P (Ei |H)
.

https://arxiv.org/abs/2212.06669
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Its expectation given the true hypothesis H is

E[F (H̄:Ei) |H] =
∑
i

P (Ei | H̄)

P (Ei |H)
P (Ei |H)

=
∑
i

P (Ei | H̄) = 1.
(4)

This result seems surprising at first sight, and not just because of its
simplicity. If H̄ is false we expect the Bayes factor in its favour to be less
than 1 in most experiments. The only way to get an expected value of 1 is
if the distribution of the Bayes factor is skewed to the right, that is, when
the factor against the truth exceeds 1 it can be large.

To exemplify (4), let’s consider the example concerning a die that
we considered before and suppose that the die is really a fair one. Then,
on one throw of the die, there is a probability of 1/6 that the factor in
favour of loadedness is 1/3

1/6
= 2 and a probability of 5/6 that the factor of

loadedness will be 4/5. Hence the expected factor in favour of loadedness
when the die is unloaded is 1/6 × 2 + 5/6 × 4/5 = 1/3 + 2/3 = 1. Thus
Turing’s theorem can be used as a check of the calculation of a Bayes
factor.” (Good 1985, p. 255)28 28 See also Good (1950, pp. 72-73), Good

(1984a), and Good (1994).

A few clarifying remarks are in order:

◦ To the best of our knowledge, Turing’s theorem has not yet been
applied as suggested.29 For a different simulation-based method to 29We felt inspired to do so after com-

pleting a first draft of this chapter, see
Sekulovski et al. (2024).

check the computation of the Bayes factor see Schad et al. (in press).

◦ Equation 4 above involves a cancellation that applies only when
the P (Ei |H) term in the numerator of the Bayes factor equals the
P (Ei |H) term that defines the data-generating process (Sanborn and
Hills 2014). When the data are generated by a point hypothesis and
the Bayes factor term involves an integration over a prior distribu-
tion, the H ’s are different and the terms do not cancel.

◦ One interpretation of Turing’s “curious result” is that arithmetically
averaging Bayes factors is generally a bad idea. Under arithmetic
averaging, a single Bayes factor of 10 in favor of the incorrect hypoth-
esis carries as much weight as 10 Bayes factors of 10 in favor of the
correct hypothesis. This greatly biases the outcome in favor of the
incorrect hypothesis.30 30More generally, a single Bayes factor of

k in favor of the incorrect hypothesis is
balanced out by k Bayes factors each of
value k in favor of the correct hypothesis.
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Figure 23.3: An intuitive interpretation for the strength of evidence that a Bayes factor provides. CC-BY: Artwork by Viktor Beekman,
concept by Eric-Jan Wagenmakers.





24 Surprise Lost is Confidence Gained

[with Quentin F. Gronau]

What, then, is the end of an explanatory hypothesis? Its end is, through
subjection to the test of experiment, to lead to the avoidance of all surprise and
to the establishment of a habit of positive expectation that shall not be
disappointed.

C.S. Peirce, 1903

Chapter Goal

Bayes’ rule connects evidence (i.e., change in belief brought about by
the data) to relative unsurprise (i.e., predictive performance). This little-
known aspect of Bayes’ rule allows Bayes factors to be obtained through
a convenient short-cut: instead of evaluating the ratio of the marginal
likelihood for the null-hypothesis H0 versus the marginal likelihood
for the alternative hypothesis H1, one may instead consider the prior
and posterior distribution under H1 and assess the change from prior
to posterior ordinate evaluated at the value specified under H0. This
magical trick is known as the Savage-Dickey density ratio.

The Two Faces of Bayes’ Rule

Throughout this book the predictive interpretation of Bayes’ rule takes
center stage. Specifically, Bayes’ rule implies that our beliefs about ‘θ’
(e.g., the possible values of an unknown population proportion) are
adjusted as a function of predictive performance:

p(θ | data)︸ ︷︷ ︸
Posterior for θ:
new beliefs

= p(θ)︸︷︷︸
Prior for θ:
old beliefs

× p(data | θ)
p(data)︸ ︷︷ ︸

Relative predictive
adequacy for θ

(24.1)

This quantifies the mantra of this book: hypotheses that predicted the
data better than average enjoy a boost in credibility, whereas hypotheses that
predicted the data worse than average suffer a decline.
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As was shown in Figure 8.1, we can divide both sides of the equation
by p(θ), so that the change in belief brought about by the data equals
relative predictive performance (Rouder and Morey 2019; see also Car-
nap 1950, pp. 326-333; Horwich 1982/2016, p. 48; Keynes 1921, p. 170;
and Pólya 1954b, p. 131):

p(θ | data)
p(θ)︸ ︷︷ ︸

Evidence for θ:
change in belief brought about by the data

=
p(data | θ)
p(data)︸ ︷︷ ︸

Relative predictive adequacy for θ:
change in surprise by conditioning on θ

(24.2)

The left-hand side of Equation 24.2 reflects the change from prior to
posterior belief concerning θ. If the data make a specific value of θ more
plausible than it was before, the data can be said to provide evidence
in favor of that value, and the ‘evidence ratio’ will be larger than 1.
Similarly, if the data make a specific value of θ less plausible than it was
before, the data can be said to provide evidence against that value, and
the evidence ratio will be smaller than 1. Finally, it may happen that
the data leave the ratio unaffected – after seeing the data, the specific
value of θ is just as plausible as it was before. In this case the data are
evidentially irrelevant or evidentially neutral.
Now consider the right-hand side of Equation 24.2. The numera-

tor, p(data | θ), indicates the predictive adequacy for the observed data
under a specific value for θ. When p(data | θ) is high, this means the
observed data are unsurprising – the outcomes are as expected under a
specific value for θ. In contrast, when p(data | θ) is low, the observed
data are surprising – the outcomes violate one’s expectations. Thus,
p(data | θ) quantifies the extent to which the data are predictable or
unsurprising under under a specific value for θ. The denominator of
Equation 24.2 also quantifies the degree of predictability or unsurprise,
but now averaged across all possible values for θ.1 The right-hand side 1 As explained in Chapter 3, the marginal

probability of the data, p(data), is ob-
tained by integrating out the nuisance
factor θ using the law of total probability:
p(data) =

∫
p(data | θ) p(θ) dθ.

of Equation 24.2 therefore indicates the extent to which conditioning
on a specific value of θ affects surprise. If the act of conditioning on a
specific value of θ makes the data less surprising (i.e., more predictable),
the ‘predictive updating factor’ will be larger than 1. Similarly, if the act
of conditioning on a specific value of θ makes the data more surprising
(i.e., less predictable), the ‘predictive updating factor’ will be smaller
than 1. Finally, it may happen that the act of conditioning on a specific
value of θ does not affect the extent to which the data are surprising. In
this case the data are predictively irrelevant or predictively neutral.
The foregoing shows that Bayes’ rule establishes a direct connec-

tion between evidence and predictive performance. In fact, Equa-
tion 24.2 can be summarized by the title of this chapter: surprise lost
(i.e., p(data | θ) > p(data)) equals confidence gained (i.e., p(θ | data) >
p(θ)).
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The Savage-Dickey Density Ratio

Consider a matched pairs design to study the effectiveness of chiropractic
treatment against neck pain.2 Specifically, patients are first assigned to 2 The example is fictitious. We wish to

stress that chiropractic treatments are not
evidence-based (e.g., Ernst 2020).

pairs based on self-reported intensity of neck pain; in other words, both
patients in a pair report about the same intensity of pre-treatment neck
pain. Next, one patient from each pair receives a chiropractic treatment,
whereas the other patient receives a sham treatment. Of interest is θ,
the population proportion of pairs for which the patient who received
the chiropractic treatment reported less neck pain than the patient who
underwent the sham-treatment.
In this fictitious setup, we define H0 : θ = 1/2 as the null hypothesis

which holds that chiropractic treatment and sham treatment are equally
effective. For illustrative purposes, the alternative hypothesis is defined
as H1 : θ ∼ beta(1, 1) – a uniform distribution that deems every
value of θ equally plausible a priori. Note that according to this prior
distribution, the chiropractic treatment may also be harmful (i.e., when
θ < 1/2).
Here we discuss the hypothetical scenario in which n = 10 patient

pairs were tested, with k = 5 signaling a chiropractic benefit, and
n−k = 5 signaling a sham benefit. The inference is summarized in
Figure 24.1. The upper part of Figure 24.1 reprints Equation 24.2.
However, in this example there is a specific value for θ that demands
special attention (i.e., θ = 1/2). To bring this out more clearly, we
rewrite Equation 24.2 to refer to θ = 1/2 explicitly. We also condition
the equation on the alternative hypothesis H1, yielding

p(θ = 1/2 | data,H1)

p(θ = 1/2 | H1)︸ ︷︷ ︸
Evidence for θ=1/2:

change in belief brought about by the data

=
p(data | θ = 1/2,H1)

p(data | H1)︸ ︷︷ ︸
Relative predictive adequacy for θ:

change in surprise by conditioning on θ=1/2

(24.3)

Note that p(data | θ = 1/2,H1) equals p(data |H0), so it follows that

p(θ = 1/2 | data,H1)

p(θ = 1/2 | H1)︸ ︷︷ ︸
Evidence for θ=1/2:

change in belief brought about by the data

=
p(data | H0)

p(data | H1)︸ ︷︷ ︸
Relative predictive adequacy for θ:

change in surprise by conditioning on θ=1/2

(24.4)

The right-hand side of Equation 24.4 can now be recognized as the
Bayes factor for H0 : θ = 1/2 versus H1 : θ ∼ beta(1, 1). As explained
in the previous chapters, the Bayes factor contrasts the predictive perfor-
mance of H0 against that of H1. The lower right panel of Figure 24.1
shows the predictions of the competing models. The alternative hy-
pothesis H1 : θ ∼ beta(1, 1) predicts that all 11 possible outcomes
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Figure 24.1: The two faces of Bayes’ rule: the evidence that the data provide for a parameter value θ can be expressed as the change from
prior to posterior probability (or density); alternatively, the evidence can be expressed as the ratio of predictive performance for the ob-
served data. See text for details. Figure available at BayesianSpectacles.org under a CC-BY license.

(i.e., k = 0, ..., 10) are equally likely, and therefore assigns predictive
probability 1/11 to the data that actually occurred (i.e., the purple dot
on the hatched histogram for k = 5). In contrast, the null hypothesis
H0 : θ = 1/2 predicts that middle values of k are more plausible then
values of k that are more extreme; this means that compared to H1,
the predictions from H0 are more specific and less spread out. As can
be seen from the lower right panel of Figure 24.1, the null hypothesis
assigns most of its predictive mass to the center value, k = 5; specif-
ically, the probability assigned to k = 5 equals 63/256 ≈ .25 (i.e., the
green dot on the solid white histogram for k = 5). Consequently, the
Bayes factor in favor of H0 : θ = 1/2 over H1 : θ ∼ beta(1, 1) equals
[63/256]/[1/11] = 693/256 ≈ 2.71.3 In other words, the data are predicted 3 The Bayes factor can also be obtained

directly from Equation 30.14.about 2.71 better by H0 than by H1.
In order to obtain the Bayes factor it was necessary to consider the

predictions under both H0 and H1. This can sometimes be computa-
tionally cumbersome. Fortunately, there exists a different perspective

BayesianSpectacles.org
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on the Bayes factor, and it is provided by the ‘evidence as change in be-
lief’ perspective. Concretely, Equation 24.4 shows that the Bayes factor
(i.e., the right-hand side) equals the ratio of the posterior ordinate to
the prior ordinate under H1 evaluated at θ = 1/2. Let’s break this down
by considering the lower left panel of Figure 24.1. The horizontal dot-
ted line indicates the uniform prior distribution for θ under H1, and the
blue dot signals its height (i.e., the ordinate) at the value of θ = 1/2; that
is, the blue dot equals p(θ = 1/2 |H1), which in this case equals 1. The
solid line indicates the bell-shaped posterior distribution for θ under H1,
and the red dot signals its height at the value of θ = 1/2; that is, the blue
dot equals p(θ = 1/2 | data,H1), which in this case equals approximately
2.71 – exactly the same value as obtained by comparing the predictive
performance of H0 and H1.
The relation between evidence and surprise (i.e., ‘surprise lost is con-

fidence gained’) is elegant and insightful. It can even appear magical:
what we desire is a comparison of predictive performance of two rival
models, that is, the marginal likelihood under H0 and the marginal like-
lihood under H1; instead, we may simply plot the prior and posterior
distribution of θ under H1, and assess the change in mass assigned to
the value specified under H0. This convenient short-cut is known as
the Savage-Dickey density ratio (Dickey and Lientz 1970, Dickey 1971,
Wagenmakers et al. 2010, Wetzels et al. 2010).
The Savage-Dickey density ratio has an intuitive interpretation: if the

posterior density at θ = 1/2 is higher than the prior density at θ = 1/2,
this means that the data have made the value of θ = 1/2 more likely
than it was before, which should be evidence in favor of H0 : θ = 1/2.
Similarly, if the posterior density at θ = 1/2 is lower than the prior
density at θ = 1/2, this means that the data have made the value of
θ = 1/2 less likely than it was before, which should be evidence against
H0 : θ = 1/2.
Another advantage of the Savage-Dickey density ratio is that it allows

one to gauge the evidence for and against a range of different values
simultaneously. For instance, Figure 24.2 shows a beta(2, 2) prior distri-
bution (i.e., the dotted line) which has been updated by the observation
of 8 successes and 2 failures to a beta(10, 4) posterior distribution (i.e.,
the solid line). For any specific value of θ, the ratio between the poste-
rior and prior ordinates equals the Bayes factor for the null hypothesis
that selects this value of θ for testing. For instance, the data have made
the value of θ = 1/4 about 244.4 times less likely than it was before;
the data have made the value of θ = 1/2 about 2.1 times less likely than
it was before; and the data have made the value of θ = 4/5 about 3.2
times more likely than it was before. The values of θ that receive sup-
port from the data are those values where the posterior is higher than
the prior; for the example in Figure 24.2, these values lie in the interval
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Figure 24.2: The plausibility update for a specific value of θ (e.g., θ0) is mathematically
identical to a Bayes factor against a null hypothesis H0 : θ = θ0. In this example, θ
is assigned a beta(2, 2) prior distribution (i.e., the dotted line), the data y consist of 8
successes out of 10 trials, and the resulting posterior for θ is a beta(10, 4) distribution.

θ ∈ [.573, .942]. These are the values for θ that predict the data better
than average. Outside of this interval, the data lower the plausibility of
the θ values.
An obvious disadvantage of the Savage-Dickey density ratio is that it

applies only when the rival models share the same likelihood function;
when the models are structurally different (e.g., Ratcliff’s drift diffusion
model versus Brown and Heathcote’s linear ballistic accumulator model)
other, more complicated computational procedures need to be brought
to bear.4 Another, less obvious disadvantage is that the Savage-Dickey 4 For an overview see for instance Gamer-

man and Lopes (2006), Gronau et al.
(2017).

density ratio needs to be generalized in case both H0 and H1 feature
common, ‘nuisance’ parameters and the prior specification for the pa-
rameters differs between the models. A more detailed exposition is well
beyond the scope of this book, but the interested reader is referred to
the materials referenced at the end of this chapter.

Implementation in JASP

Many Bayesian hypothesis tests implemented in JASP provide the
Savage-Dickey density ratio as a visual aid. To illustrate we will re-
analyze the fictitious experiment on the effectiveness of chiropractic
treatment in JASP. Activate the Summary Statistics module and navigate
to Frequencies→ Bayesian Binomial Test; enter ‘5’ in the fields for successes
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and failures, and tick the box Prior and posterior underneath Plots. The
JASP output panel then shows Figure 24.3.

BF01 = 2.707
BF10 = 0.369

data | H0

data | H1

95% CI: [0.234, 0.766]
Median: 0.500
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Figure 24.3: The prior and posterior distribution for the population proportion θ of pa-
tient pairs for which the chiropractic treatment is more effective than the sham treatment,
under the alternative hypothesis H1 : θ ∼ beta(1, 1). Inference is based on 5 out of 10
patient pairs signaling a chiropractic benefit. In a JASP echo of Figure 24.1, the associated
Bayes factor in favor of the null hypothesis H0 : θ = 1/2 is visualized as the Savage-Dickey
density ratio between the prior and posterior ordinate under H1 evaluated at θ = 1/2.
Figure from the JASP module Summary Statistics.

Similar to the bottom left panel from Figure 24.1, the dotted line in
Figure 24.3 shows the prior distribution for θ under H1, and the solid
line shows the posterior distribution. The Savage-Dickey density ratio at
the null value θ = 1/2 equals 2.707 and is visualized by the two grey dots.
The figure also presents the pizza plot described in Chapter 23 – here
the white ‘mozzarella’ slice is 2.707 times larger than the red ‘pepperoni’
slice.

Exercises

1. In the discussion of Figure 24.2 it was mentioned that the data pro-
vide support for values of θ that fall in the [.573, .942] interval. Ob-
tain this interval using JASP [hint: use the Learn Bayes→ Bayesian
Estimation routine].

2. Let’s revisit the fictitious experiment on the effectiveness of chiro-
practic treatment. With 5 successes out of 10 trials, the Bayes factor
in favor of H0: θ = 1/2 over H1: θ ∼ beta(1, 1) equals about 2.71.
Consider three alternative prior distributions for the proportion of
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successes: (1) H1: θ ∼ beta(1/2, 1/2) (i.e., a U-shaped distribution with
most mass near θ = 0 and θ = 1); (2) H1: θ ∼ beta(1, 1)+ (i.e., a
uniform distribution with mass restricted to positive effects, that is,
to θ ≥ 1/2); (3) H1: θ ∼ beta(5, 5) (i.e., a bell-shaped distribution
centered on θ = 1/2). Use the Savage-Dickey density ratio to intuit
the resulting effect that each of these prior distributions has on the
Bayes factor. Afterwards, check your intuitions with JASP.

Chapter Summary

This chapter emphasized how Bayes’ rule equates two important con-
cepts: change in belief (i.e., a measure of evidence) and relative un-
surprise (i.e., a measure of predictive success). This relation can be
exploited by the Savage-Dickey density ratio, which expresses the rela-
tive predictive success for a null hypothesis H0: θ = θ0 by the associated
change from prior to posterior density under the alternative hypothe-
sis H1. This means that instead of computing the marginal probability
of the observed data under H0 and under H1 (by integrating out the
parameter θ using the law of total probability), one may just as well
plot the prior and posterior distribution for θ under H1 and assess the
heights at the value specified under H0. Magic!

Want to Know More?

3 Consonni, G., & Veronese, P. (2008). Compatibility of prior specifica-
tions across linear models. Statistical Science, 23, 332–353.

3 Heck, D. W. (2019). A caveat on the Savage–Dickey density ratio:
The case of computing Bayes factors for regression parameters. British
Journal of Mathematical and Statistical Psychology, 72, 316–333.

3 O’Hagan, A., & Forster, J. (2004). Kendall’s Advanced Theory of
Statistics Vol. 2B: Bayesian Inference (2nd ed.). London: Arnold. Our
‘derivation’ of the Savage-Dickey density ratio presented earlier was
careless, and does not take into account the presence of additional
parameters that are common to H0 and H1. O’Hagan and Forster
(2004, pp. 175-177) present a more responsible derivation (see also
Appendix A in Wagenmakers et al. 2010).

3 Pawel, S., Ly, A., & Wagenmakers, E.–J. (in press). Evidential cal-
ibration of confidence intervals. The American Statistician. http:
//arxiv.org/abs/2206.12290.

3 Rouder, J. N., & Morey, R. D. (2019). Teaching Bayes’ theorem:
Strength of evidence as predictive accuracy. The American Statistician,
73, 186–190. The authors summarize Equation 24.2 as follows:

http://arxiv.org/abs/2206.12290
http://arxiv.org/abs/2206.12290
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“The updating factor for a value of θ, the strength of evidence from
the data, is how well the data are predicted when conditioned on
this value relative to the marginal prediction. In words, we say
that “strength of evidence for a parameter value is precisely the
relative gain in predictive accuracy when conditioning on it” (see
Morey, Romeijn, & Rouder, 2016). We may even use the short-hand
mnemonic, “strength of evidence is relative predictive accuracy.” We
find that allowing students to make this connection between evidence
and prediction provides them with a deeper insight into Bayes’ theo-
rem (…)” (Rouder and Morey 2019)

3 Verdinelli, I., & Wasserman, L. (1995). Computing Bayes factors using
a generalization of the Savage–Dickey density ratio. Journal of the
American Statistical Association, 90, 614–618. This article generalizes
the Savage-Dickey density ratio by including a correction term; this
term is needed whenever H1 and H0 feature common ‘nuisance’
parameters and the prior distribution on these parameters is not of a
particular form.5 5 For nuisance parameters ξ, the required

form is that the prior for ξ under H0 :
θ = θ0 equals the prior for ξ under H1 at
θ0, that is, p(ξ |H0) = p(ξ | θ → θ0,H1).
This form is intuitive but may invoke the
‘Borel-Kolmogorov paradox’ (see Wetzels
et al. 2010).

3 Wagenmakers, E.–J., Lodewyckx, T., Kuriyal, H., & Grasman, R.
(2010). Bayesian hypothesis testing for psychologists: A tutorial on
the Savage–Dickey method. Cognitive Psychology, 60, 158–189.

3 Wagenmakers, E.–J., Gronau, Q. F., Dablander, F., & Etz, A. (2022).
The support interval. Erkenntnis, 87, 589–601.

3 Wetzels, R., Grasman, R. P. P. P., & Wagenmakers, E.–J. (2010). An
encompassing prior generalization of the Savage–Dickey density ratio
test. Computational Statistics & Data Analysis, 54, 2094–2102. This
article also discusses the Borel-Kolmogorov paradox with a concrete
example taken from Lindley (1997).





25 Diaconis’s Wobbly Coin

We analyze the natural process of flipping a coin which is caught in the hand.
We show that vigorously flipped coins tend to come up the same way they
started. (…) Measurements of this parameter based on high-speed photography
are reported. For natural flips, the chance of coming up as started is about .51.

Diaconis, Holmes, & Montgomery

Chapter Goal

This chapter features a series of Bayes factor tests for the hypothesis
that a coin, when flipped in the air and caught by hand, tends to come
up on the same side that it started (Diaconis et al. 2007). Similar to the
analyses presented in Chapter 17, we explore several prior distributions
for the ‘same side’ probability θ. Aggressive prior distributions incor-
porate strong background knowledge and allow for more meaningful
conclusions.

Persi Warren Diaconis (1945–). Photo
taken by Søren Fuglede Jørgensen during
the 2010 NZMRI Summer Workshop on
Groups, Representations and Number
Theory in Hanmer Springs, New Zealand.
Available at https://en.wikipedia.
org/wiki/Persi_Diaconis under a CC
BY-SA 3.0 license.

A Startling Hypothesis

Statisticians and magicians share an unusual obsession for cards and
coins. It cannot come as a surprise, therefore, that Persi Diaconis –
prominent Bayesian statistician and former professional magician– co-
authored an article that provided a detailed account of the physical
process of coin flipping. In joint work together with Susan Holmes and
Richard Montgomery, Persi Diaconis specified exactly how a fair coin,
flipped and caught by hand, rotates through the air and lands either
heads or tails (Diaconis et al. 2007).
Previous work on the physics of coin flipping had considered initial

upward velocity and rate of spin as key determinants of whether the
coin lands heads or tails (Keller 1986). In this ‘standard’ account of the
flipping process, randomness in the initial conditions cause the coin to
come up as it started with probability θ = 1/2; in other words, the out-
come of the toss cannot be influenced by starting with the coin heads-
up or tails-up. This accords with most people’s intuitions. However,

https://en.wikipedia.org/wiki/Persi_Diaconis
https://en.wikipedia.org/wiki/Persi_Diaconis
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Diaconis et al. (2007) argued that the standard account is incomplete,
because naturally flipped coins show precession – that is, they wobble
around their axis of rotation. It is this wobble that causes coins to spend
a larger proportion of their total time in flight heads-up (when the start-
ing position was heads-up) or tails-up (when the starting position was
tails-up).
In addition to providing a mathematical description of the coin flip-

ping process, Diaconis et al. (2007) also used slow motion photography
to analyze a series of 27 flips. The dynamics inferred from these flips
were entered into the mathematical model and resulted in predictions
for the probability θ that the coin comes up on the same side that it
started. Specifically,

“The estimated probabilities range from 0.500 to 0.545. (…) The me-
dian and standard deviation are 0.5027 and 0.0125. The mean of these
probabilities is 0.508, and we have rounded this up to the 0.51 quoted.”
(Diaconis et al. 2007, pp. 230-231)

In other words, “vigorously tossed coins (…) are biased to come up as
they started” (Diaconis et al. 2007, p. 213) and “naturally flipped coins
precess sufficiently to force a bias of at least .01” (Diaconis et al. 2007, p.
213).
In the following, the Diaconis-Holmes-Montgomery hypothesis

that “naturally flipped coins tend to come up on the same side that
they started” will be denoted by HDHM . This hypothesis is relatively
concrete and testable; after reading the Diaconis-Holmes-Montgomery
article, any young researcher worth their salt would immediately feel
a strong urge to start flipping coins and put HDHM to the test. More
experienced researchers, however, would immediately feel a strong
urge to have other people do the flipping.1 And of course this is what 1 Alternatively, the coin could be flipped

by a machine such as the one built by
Andrew Consroe (see https://www.
youtube.com/watch?v=R4jDcv085Hw).
It would be important that the machine
flips the coins in a human-like way, that
is, with a wobble.

transpired. Starting in 2019, we had the Research Master students in
our Bayesian course each flip a coin many times, and record how often
the coin landed on its starting side.2 As the data accumulated, we were

2 From now on we term these events
‘sames’.

blissfully unaware of an important practical problem…

The Practical Problem

When we started our data collection effort, we initially overlooked a
crucial remark from the Diaconis-Holmes-Montgomery article:

“Our estimate of the bias for flipped coins is p = .51. To estimate p near
1/2 with standard error 1/1000 requires 1

2
√
n

= 1/1000 or n = 250,000

trials.3 While not beyond practical reach, especially if a national coin toss 3 The standard error is a measure of the
sampling uncertainty associated with a
point estimate θ̂. For the binomial model,
the standard error equals

√
θ(1− θ)/n,

which for θ = 1/2 evaluates to 1/(2
√
n) –

EWDM.

was arranged, this makes it less surprising that the present research has
not been empirically tested.” (Diaconis et al. 2007, p. 219)

So, the recommended number is 250,000 flips! That might discour-
age most sane people from attempting to test the Diaconis-Holmes-

https://www.youtube.com/watch?v=R4jDcv085Hw
https://www.youtube.com/watch?v=R4jDcv085Hw
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Montgomery hypothesis HDHM empirically. However, we were unbur-
dened by this recommendation and therefore proceeded with the data
collection as planned. After obtaining promising results from the stu-
dents in our 2019 course, we learned about the recommended number
of 250,000 flips; nevertheless we decided to repeat the assignment in the
following years. The results are given in Table 25.1.

Table 25.1: Coin flip data from students in our Research Master class on Bayesian infer-
ence, 2019-2022. Collapsed across students, each table row shows the number of times
a coin came up on the same side as it started (i.e., #Sames), the number of times a coin
came up on the other side (i.e., #Diffs), the number of flips, and the percentage of flips
that were sames. The 2022 result excludes the data of a single student who reported an
unusually high number of 83 sames out of 100 flips.

Class #Sames #Diffs #Flips %Sames

2019 2214 2087 4301 51.5%
2020 704 662 1366 51.5%
2021 423 352 775 54.6%
2022 252 233 485 52.0%
All 3593 3334 6927 51.9%

Over the years, the percentage of sames is remarkably consistent and
higher than 1/2. However, the extent to which the data support HDHM

is difficult to gauge without the help of a statistical analysis. On the
one hand, the overall percentage of sames in our data (i.e., 51.9%) is
further away from 50% than the 51% anticipated by Diaconis, Holmes,
and Montgomery – almost twice as far away, in fact. The presence of
a relatively large effect should bolster the evidence for HDHM . On
the other hand, we ‘only’ have a total of 6927 flips, a far cry from the
recommended number of 250,000 flips. So even though our sample
shows an effect that is more pronounced than anticipated, the number
of flips is still relatively modest.4 4 Later in 2022, we finally decided to bite

the bullet. We collected 350,757 flips
across several coin-tossing marathons
involving different coins and different
tossers (Bartoš et al. 2023).

In order to quantify the evidence that the data provide for the
Diaconis-Holmes-Montgomery hypothesis HDHM versus H0 : θ = 1/2

we need to be specific and assign the sames-proportion θ a prior distri-
bution under HDHM . As demonstrated in Chapter 17, this prior distri-
bution partly determines a model’s predictive adequacy, and the relative
predictive adequacy equals the evidence. A meaningful assessment of
the evidence therefore demands that we assign θ a prior distribution
that accurately reflects the available background information: in order to
obtain a relevant answer, we need to ask a reasonable question.

A Party of Prior Distributions

In this section we instantiate HDHM through different priors on θ and
obtain the associated Bayes factors. Each comparison is against the point
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null hypothesis H0 : θ = 1/2, which states that the starting position does
not allow one to guess the landing position with above-chance accuracy.
Also, each comparison is based on all available data from our Research
Master students, so 3593 sames out of 6927 flips (i.e., 51.9%).5 5Disclaimer: the data from our Research

Master students were not collected under
controlled circumstances, and they serve
only to showcase different Bayesian
analyses and to guide one’s thoughts
about an empirical test that is more
rigorous and credible.

1. Model ‘Uniform’: Hu
DHM : θ ∼ beta(1, 1)

A blind application of Jeffreys’s standard setup leads us to contrast
H0 : θ = 1/2 against Hu

DHM : θ ∼ beta(1, 1), the uniform distribution.
Clearly Hu

DHM is not an appropriate reflection of the Diaconis-Holmes-
Montgomery hypothesis.
Nevertheless, executing the analysis in JASP6 yields BFu0 = 1.91 6 Either in Learn Bayes → Binomial

Testing, or in Summary Statistics →
Bayesian Binomial Test, or in Frequencies
→ Bayesian → Binomial Test.

(cf. Table 25.2); the data are about twice as likely under Hu
DHM than

under H0. This level of evidence is considered “not worth more than a
bare mention” (Jeffreys 1961, p. 432) – if Hu

DHM and H0 were equally
likely a priori, a Bayes factor of 1.91 would cause the probability for
Hu

DHM to increase from 1/2 to 1.91/2.91 ≈ 0.66, leaving the sizeable
complement probability of 0.34 to H0. This result implies that the
data are relatively uninformative, and suggests that in order to attain
compelling evidence we may need to flip coins many more times. This
conclusion does not appear unreasonable given that we collected 6927

flips rather than 250,000.

Table 25.2: Five different instantiations of the Diaconis-Holmes-Montgomery hypothesis
HDHM are associated with different Bayes factors against the null hypothesis H0 :
θ = 1/2. The third column shows the Bayes factor when the prior distribution for θ is
truncated to remove the anomalous mass on values of θ lower than 1/2.

Instantiation Label BF10 BF+0

Hu
DHM : θ ∼ beta(1, 1) Uniform 1.91 3.81

Hp
DHM : θ = .51 Point 44.48 44.48

Hw
DHM : θ ∼ beta(51, 49) Wide 14.88 25.65

Hm
DHM : θ ∼ beta(510, 490) Medium 39.49 53.56

Hn
DHM : θ ∼ beta(5100, 4900) Narrow 52.50 53.71

However, the uniform distribution is much more vague than it needs
to be; it implies that any value of θ is as likely as any other, and this
means that the predictions of Hu

DHM are thinly spread out across all
possible outcomes, many of which are deeply implausible in light of
the proposed mathematical model for coin tossing. The uniform dis-
tribution is therefore not representative of the hypothesis put forward
by Diaconis et al. (2007). Indeed, we are in possession of strong prior
knowledge that can be used to sharpen the predictions from HDHM ,
thereby producing a more relevant test.



diaconis’s wobbly coin 445

2. Model ‘Point’: Hp
DHM : θ = .51

The previous section featured Hu
DHM , a hypothesis that was extremely

vague. We now visit the other end of the continuum and discuss a
model that is extremely precise: the point prior Hp

DHM : θ = .51.
Such unshakable confidence in a particular value of θ does not reflect
the conclusion that, based on an analysis of 27 flips in flight, “The
estimated probabilities range from 0.500 to 0.545.” (Diaconis et al. 2007,
pp. 230-231). This variability suggests that people who are relatively
‘wobbly flippers’ may show an effect that is considerably larger than
∆θ = .01, whereas people who are relatively ‘steady flippers’ may show
an effect that is smaller than ∆θ = .01.
More generally, the drawback of specifying Hp

DHM as by means of
a point prior at .51 is model myopia: the inability to learn about values
of θ other than 1/2 and .51. For instance, if a large sample would show
an in-between proportion of .505 sames, the Bayes factor equals 1 and
the data are deemed inconclusive, even though Diaconis, Holmes, and
Montgomery would consider their hypothesis to be strongly supported.
Thus, values of θ slightly different from .51 are consistent with HDHM ,
and this is what the point prior ignores.
We nevertheless proceed to execute the analysis. This can be done

in multiple ways. When the comparison features two point priors, the
Bayes factor reduces to a likelihood ratio (see Chapter 7), whose evalua-
tion is straightforward:

BFp0 =

[
θp
θ0

]s
×

[
(1− θp)
(1− θ0)

]f
=

[
.51

.50

]3593
×

[
.49

.50

]3334
≈ 44.48.

In words, this means that the data are 44.48 times more likely under
Hp

DHM than under H0. This is considered strong evidence, and it would
increase the prior probability for Hp

DHM from 1/2 to 44.48/45.48 ≈ 0.98.
So far we have seen two conflicting results: the evidence for the

vague hypothesis Hu
DHM vs. H0 is only 1.91, whereas the evidence for

the precise hypothesis Hp
DHM vs. H0 is a compelling 44.48. Which

result should we believe? In our opinion, both results present perfectly
valid answers, but they are answers to rather different questions. The
most relevant question seems the one posed by Hp

DHM : θ = .51,
because the predictions from this model are more representative of the
hypothesis as formulated by Diaconis et al. (2007).
Another perspective on the problem of prior choice is to let the

data decide and compare the predictive performance of Hp
DHM versus

that of Hu
DHM . Specifically, we wish to obtain the Bayes factor for

Hp
DHM versus Hu

DHM . This can be obtained from the available results
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by exploiting that Bayes factors are transitive:

BFpu =
p(data | Hp

DHM )

p(data | Hu
DHM )

=
p(data | Hp

DHM )

p(data | H0)
× p(data | H0)

p(data | Hu
DHM )

= 44.48 × 1

1.91
≈ 23.29.

Thus, the precise form of HDHM outpredicts the vague form of HDHM

by a factor of about 23.
The Bayes factor for Hp

DHM : θ = .51 versus H0 : θ = 1/2 can also be
obtained in JASP. The Learn Bayes→ Binomial Testing submodule allows
users to specify two models defined as spikes – here, H0 is defined by
a spike at θ = 1/2 and Hp

DHM is defined by a spike at θ = .51. This is
straightforward.
However, let’s pretend that you are unaware of the Learn Bayes mod-

ule. You do know the standard JASP implementation of the Bayesian
binomial test7, but this allows only the comparison between a single 7 To be found in Summary Statistics →

Bayesian Binomial Test, or in Frequencies
→ Bayesian → Binomial Test.

spike versus a beta distribution. For instance, we can specify a spike at
θ = 1/2 as our null hypothesis and a θ ∼ beta(1, 1) uniform distribution
as our alternative hypothesis, but we cannot directly compare two spikes.
Nevertheless we can obtain the desired Bayes factor – by again exploit-
ing the fact that Bayes factors are transitive. The standard JASP imple-
mentation can be used to obtain both BFpu (i.e., by specifying θ = .51 as
the spike; this yields BFpu ≈ 23.30)8 and BF0u (i.e., by specifying θ = 1/2 8 The difference with the value of 23.29

reported above is due to rounding.as the spike; this yields BF0u ≈ 0.5239, such that BFu0 ≈ 1/0.5239 ≈ 1.91).
These two Bayes factors both involve Hu

DHM . This common model di-
vides out when we multiply the Bayes factors, and what results is the
Bayes factor between the two spikes, as required9: 9 The difference with the value of 44.48

reported above is again due to rounding.

BFp0 =
p(data | Hp

DHM )

p(data | H0)

=
p(data | Hp

DHM )

p(data | Hu
DHM )

× p(data | Hu
DHM )

p(data | H0)

= 23.30 × 1.91 ≈ 44.50.

In words, transitivity means that when Hp
DHM outpredicts Hu

DHM by a
factor of 23.30, and Hu

DHM in turn outpredicts H0 by a factor of 1.91,
this implies that Hp

DHM outpredicts H0 by a factor of 23.30 × 1.91 ≈
44.50.
As argued earlier, the point prior at θ = .51 has several drawbacks,

the most serious one being that it does not represent the true uncer-
tainty about θ under the assumption that HDHM holds and the coin is
biased to land the way it started. In the following sections we therefore
relax the assumption of a point prior and consider three beta distribu-
tions that are mean-centered on θ = .51 but differ in their width.
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3. Model ‘Wide’: Hw
DHM : θ ∼ beta(51, 49)

The first beta distribution under consideration –shown in Figure 25.1–
is Hw

DHM : θ ∼ beta(51, 49). This distribution has a mean of θ = .51

(i.e., 51/(51 + 49); see the beta prediction rule from Chapter 9), and
a central 95% credible interval for θ that ranges from .413 to .607.10 10 The properties of any beta distribution

can be examined in JASP using the
Distributions module, or in Learn Bayes →
Binomial Estimation → Prior and Posterior
Distributions.

Model Hw
DHM is considerably more informed than the vague beta(1, 1)

prior of Hu
DHM (to the tune of 98 extra hypothetical prior observations),

but it is still relatively wide and assigns substantial prior mass to values
of θ that do not represent the Diaconis-Holmes-Montgomery hypothe-
sis. Specifically, p(θ < 1/2 |Hw

DHM ) = .42 and p(θ > .55 |Hw
DHM ) = .21,

leaving only a modest prior mass of 0.37 for the region θ ∈ (.50, .55)

which is where Diaconis, Holmes, and Montgomery expect the action to
be. Thus, Hw

DHM improves on Hu
DHM but it may still be too timid of a

prior commitment, and a more aggressive prior attitude is called for.

mean =  0.510;  95% CI :  [0.413, 0.607] 
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Figure 25.1: The prior distribution for the proportion of times θ that a flipped coin lands
on the side it started from, under the wide model Hw

DHM : θ ∼ beta(51, 49). Figure from
the JASP module Learn Bayes.

Executing the analysis in JASP yields BFw0 = 14.88, meaning that
the data are about 15 times more likely under Hw

DHM than under H0.
The inference is visually presented in Figure 25.2. The figure displays
the prior and posterior distribution for θ under Hw

DHM . The posterior
median is θ = .519, and the central 95% credible interval ranges from
.507 to .530. The figure also displays the Bayes factor for Hw

DHM versus
H0, in three different ways. Firstly, the left-most text above the figure
indicates ‘BF10 = 14.8806’ and ‘BF01 = 0.0672’. The first subscript is
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the model in the numerator and the second subscript is the model in
the denominator.11 The subscript ‘0’ represents H0 : θ = 1/2, and the 11 Recall that BF01 = 1/BF10.

subscript ‘1’ represents Hw
DHM .

BF01 = 0.0672
BF10 = 14.8806

data | H0

data | H1

95% CI: [0.507, 0.530]
Median: 0.519
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Figure 25.2: The prior and posterior distribution for the proportion of times θ that a
flipped coin lands on the side it started from, under the wide model Hw

DHM : θ ∼
beta(51, 49), together with the associated Bayes factor against the null hypothesis H0.
Inference is based on the Research Master data showing 3593 flips that landed on the side
that they started from, and 3334 flips that landed on the opposite side. Figure from the
JASP module Summary Statistics.

Secondly, next to the Bayes factor numbers is a pizza plot. As ex-
plained in Chapter 23, the red ‘pepperoni’ slice is 14.8806 times larger
than the white ‘mozzarella’ slice. For a better appreciation of the
strength of evidence that the data provide in favor of Hw

DHM versus
H0, you may execute PAW – the ‘Pizza-poke Assessment of the Weight
of evidence’. Imagine that you blindly poke your finger onto the pizza,
and it comes back covered in the non-dominant topping – in this case,
mozzarella. How surprised are you? In this case, you would be pretty
surprised but not shocked, bowled over, or flabbergasted; the extent of
your imagined surprise provides a visceral appreciation for the strength
of evidence associated with a Bayes factor of 14.8806.
The third and final way in which Figure 25.2 displays the Bayes fac-

tor is by the grey circles that mark the prior and posterior ordinates at
θ = 1/2. As explained in Chapter 24, the ratio of these ordinates equals
the Bayes factor for Hw

DHM versus H0 (i.e., the Savage-Dickey density
ratio; Dickey and Lientz 1970, Wetzels et al. 2010, Wagenmakers et al.
2010, Verdinelli and Wasserman 1995). Intuitively, the prior ordinate
at θ = 1/2 indicates the relative prior plausibility of that value; the data
have decreased this plausibility (i.e., the posterior ordinate at θ = 1/2
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is lower than the prior ordinate) and this constitutes evidence against
θ = 1/2.
The next section applies a more aggressive prior distribution.

4. Model ‘Medium’: Hm
DHM : θ ∼ beta(510, 490)

The second beta distribution under consideration –shown in Fig-
ure 25.3– is Hm

DHM : θ ∼ beta(510, 490). Still mean-centered at
.51, the (510, 490) beta distribution is relatively peaked, with a 95%
central credible interval for θ that extends from .479 to .541. Com-
pared to Hw

DHM , less prior mass is assigned to values of θ that do not
represent the Diaconis-Holmes-Montgomery hypothesis. Specifically,
p(θ < 1/2 |Hm

DHM ) = .26 and p(θ > .55 |Hw
DHM ) = .01, such that most

prior mass (i.e., 0.73) is reserved for the interval θ ∈ (.50, .55) which is
the region of interest. In our opinion, Hm

DHM is not an unreasonable
prior distribution for θ.12 12Or is it? You may be bothered by the

fact that this prior assigns over a quarter
of its mass to values of θ lower than 1/2.
We will return to this important issue
later in this chapter.mean =  0.510;  95% CI :  [0.479, 0.541] 
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Figure 25.3: The prior distribution for the proportion of times θ that a flipped coin lands
on the side it started from, under the medium model Hm

DHM : θ ∼ beta(510, 490).
Figure from the JASP module Learn Bayes.

Executing the analysis in JASP yields BFm0 = 39.49, meaning that
the data are almost 40 times more likely under Hm

DHM than under
H0. The inference is visually presented in Figure 25.4. The posterior
median is θ = .519 (under Hw

DHM , this was .519), and the central 95%
credible interval ranges from .507 to .529 (under Hw

DHM , this interval
was [.507, .529]).
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BF01 = 0.0253
BF10 = 39.4854

data | H0

data | H1

95% CI: [0.507, 0.529]
Median: 0.518
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Figure 25.4: The prior and posterior distribution for the proportion of times θ that a
flipped coin lands on the side it started from, under the medium model Hm

DHM : θ ∼
beta(510, 490), together with the associated Bayes factor against the null hypothesis H0.
Inference is based on the Research Master data showing 3593 flips that landed on the side
that they started from, and 3334 flips that landed on the opposite side. Figure from the
JASP module Summary Statistics.

Note that the posterior distribution is virtually identical under
Hw

DHM and Hm
DHM ; the evidence, however, is different. Concretely,

the wide model Hw
DHM yields a Bayes factor against H0 of about 15,

whereas this is almost 40 for the medium model Hm
DHM . This shows

that the medium model outperforms the wide model – specifically, by
exploiting transitivity we have

BFmw =
BFm0

BFw0
=

39.49

14.88
≈ 2.65,

indicating that the data are predicted almost three times better by
Hm

DHM than by Hw
DHM .

In the next section we kick things up a notch.

5. Model ‘Narrow’: Hn
DHM : θ ∼ beta(5100, 4900)

The third beta distribution under consideration –shown in Figure 25.5–
is Hn

DHM : θ ∼ beta(5100, 4900). This distribution is highly peaked
around its mean of .51, with a 95% central credible interval for θ rang-
ing from .500 to .520. Under Hn

DHM , little prior mass is assigned to
values of θ that do not represent the Diaconis-Holmes-Montgomery
hypothesis, that is, p(θ < 1/2 |Hn

DHM ) = .02 and p(θ > .55 |Hn
DHM )

is close to zero, such that Hn
DHM dedicates almost all its prior mass (i.e.,

0.98) to the interval θ ∈ (.50, .55) which is the region of interest. From
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one perspective, Hn
DHM is ultra-aggressive: it embodies a highly risky

commitment to a small range of values for θ. If Hn
DHM gets it wrong, it

will take very many observations overcome the strong initial opinion.13 13 Still, in contrast to the point-prior
Hp

DHM : θ = .51, the ultra-aggressive
Hn

DHM does allow learning; it is just
that this learning will be relatively slow.

This issue is taken up further in Chapter 27.
From another perspective, Hn

DHM is simply an adequate reflection of
the hypothesis postulated by Diaconis et al. (2007), which happened to
be highly precise.

mean =  0.510;  95% CI :  [0.500, 0.520] 
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Figure 25.5: The prior distribution for the proportion of times θ that a flipped coin lands
on the side it started from, under the narrow model Hn

DHM : θ ∼ beta(5100, 4900).
Figure from the JASP module Learn Bayes.

Executing the analysis in JASP yields BFn0 = 52.50, meaning that the
data are over 50 times more likely under Hn

DHM than under H0. The
inference is visually presented in Figure 25.6. The posterior median
is θ = .514 (under Hm

DHM , this was .518), and the central 95% credi-
ble interval ranges from .506 to .521 (under Hm

DHM , this interval was
[.507, .529]).
The posterior distribution for θ is more peaked under Hn

DHM than
it was under Hw

DHM and Hm
DHM , but the change is only slight. The

effect of the prior on the Bayes factor, however, is more pronounced.
Using transitivity, we can infer that Hn

DHM slightly outpredicts Hm
DHM ,

by a factor of BFnm = BFn0/BFm0 = 52.50/39.49 ≈ 1.33; similarly,
we can infer that Hn

DHM outpredicts Hw
DHM by a factor of BFnw =

BFn0/BFw0 = 52.50/14.88 ≈ 3.53.
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BF01 = 0.019
BF10 = 52.502

data | H0

data | H1

95% CI: [0.506, 0.521]
Median: 0.514
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Figure 25.6: The prior and posterior distribution for the proportion of times θ that a
flipped coin lands on the side it started from, under the narrow model Hn

DHM : θ ∼
beta(5100, 4900), together with the associated Bayes factor against the null hypothesis H0.
Inference is based on the Research Master data showing 3593 flips that landed on the side
that they started from, and 3334 flips that landed on the opposite side. Figure from the
JASP module Summary Statistics.

Interim Summary

We have instantiated the hypothesis of Diaconis et al. (2007) in five
different ways. The vague ‘anything goes’ hypothesis Hu

DHM : θ ∼
beta(1, 1) ignores the fact that the Diaconis-Holmes-Montgomery hy-
pothesis is relatively precise in the sense that it embodies a great deal
of knowledge about θ. We have included it here mostly as a bookend
analysis that occupies an extreme position on a continuum of informa-
tiveness. But even though Hu

DHM is overly vague and complex, it still
outpredicts H0 by a modest factor of about 2. The other bookend model
is the point prior Hp

DHM : θ = .51. This model does not allow learning
and ignores the real uncertainty that is explicitly acknowledged in Dia-
conis et al. (2007); nevertheless this model outpredicts H0 by a factor of
about 45.
This leaves us with three prior distributions, all mean-centered at

θ = .51 and each with their own width. Figures 25.1, 25.3, and 25.5
confirm that Hw

DHM is still relatively wide, Hm
DHM is more narrow, and

Hn
DHM is highly peaked. All three versions outpredict H0, but Hn

DHM

and Hm
DHM do so in more compelling fashion.

The results show that although HDHM may be instantiated in dif-
ferent ways, (1) the evidence clearly speaks against H0; (2) the relative
predictive success of the different instantiations can be assessed quan-
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titatively, simply by computing a Bayes factor between any pair of hy-
potheses.
The party of priors does not end here, however; as argued in the next

section, the beta priors for θ can still be improved an a key aspect.

Incorporating the Restriction that θ > 1/2

In the earlier sections we saw that all three beta priors assigned mass
to values of θ < 1/2 (i.e., .42 for Hw

DHM , .26 for Hm
DHM , and .02 for

Hn
DHM ). This is anomalous. Values of θ lower than 1/2 represent the

claim that naturally flipped coins tend to land on the side opposite from
how they started. Although this could presumably be true, it directly
contradicts the key claim from Diaconis et al. (2007) that we wish to test.
From the perspective of Diaconis’s hypothesis, values of θ lower than
1/2 do not deserve any prior mass.
In order to remove the anomalies and bring the beta prior distribu-

tions in line with the hypothesis that they seek to represent, the most
straightforward solution is to truncate the beta priors at θ = 1/2, such
that no prior mass is assigned to values of θ < 1/2; consequently, these
anomalous values cannot accrue any posterior mass either, and all of the
epistemic action takes place on the interval from θ = 1/2 to θ = 1.
This restriction is easy to enforce in JASP. In the submodule Summary

Statistics→ Bayesian Binomial Test, a single tick mark next to the option
‘> Test value’ suffices. The right-most column of Table 25.2 (i.e., BF+0)
shows the Bayes factors for each of the five instantiations of HDHM

after having removed the anomalous part of the beta distribution.14 14 The subscripts ‘+’ and ‘−’ replace the
subscript ‘1’ whenever the alternative hy-
pothesis has been restricted to parameter
values that are higher or lower, respec-
tively, than the value stipulated under
H0.

The table reveals that by imposing the restriction, all instantiations of
HDHM predict the data better than they did before; the only exception
is Hp

DHM : θ = .51, which did not assign prior mass to anomalous values
of θ to begin with, and hence the restriction is entirely ineffective.
For Hu

DHM , the predictive gain that results from imposing the
restriction equals 3.81/1.91 ≈ 1.99; for Hw

DHM , the gain factor is
25.65/14.88 ≈ 1.72; for Hm

DHM , it is 53.56/39.49 ≈ 1.36; and for Hn
DHM ,

it is 53.71/52.50 ≈ 1.02. This shows that when priors assign a high pro-
portion of their mass to the anomalous region (e.g., the beta(1, 1) prior,
with 50% prior mass on values of θ smaller than 1/2) the gain factor
is almost 2. When priors assign a low proportion of their mass to the
anomalous region (e.g., the beta(5100, 4900) prior, with 2% prior mass
on values of θ smaller than 1/2), the gain factor is negligible and the re-
sult is virtually unchanged. This is a general pattern, the understanding
of which is the topic of the next section.
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Understanding Directional Restrictions

By imposing the restriction that θ has to be larger than 1/2, the underly-
ing model becomes more parsimonious and its predictions become more
daring. Depending on the data, this can lead to one of three qualitatively
distinct effects (Jeffreys 1961, pp. 277-278, p. 283; Wetzels et al. 2009,
Wagenmakers et al. 2010; 2016b).15 15 See also the blog post “Ratio-

nale and origin of the one-sided
Bayes factor hypothesis test” on
BayesianSpectacles.org.

For concreteness, we illustrate the three patterns using a fictitious
experiment that aims to assess consumer preference for different brands
of peanut butter. Specifically, a group of 100 consumers are presented
with two spoons of peanut butter: unbeknownst to the consumers, one
spoon carries the expensive name brand, and the other carries the cheap
house brand. Each consumer tastes both versions and then indicates
which one they enjoy more. In our example, parameter θ represents the
unknown proportion of consumers who prefer the name brand over the
house brand.
The null hypothesis H0 : θ = 1/2 holds that under blind tasting condi-

tions, the name brand and the house brand are exactly equally popular.
This is the case, for instance, when the two brands are produced in
the same way, and the only difference between them is the label that
goes on the jar just before the product leaves the factory. The default
alternative hypothesis H1 : θ ∼ beta(1, 1) holds that every preference
proportion is equally likely a priori. Depending on the data, replacing
the vague alternative hypothesis H1 by the more precise, restricted form
H+ : θ ∼ beta(1, 1)I(1/2, 1) results in three potential consequences
described in detail below.

Pattern I: Evidence For H0 Unchanged

Consider the scenario where 50 consumers prefer the name brand and
50 consumers prefer the house brand. These data are perfectly in line
with H0. Figure 25.7 shows the prior and posterior distribution for θ
under H1. The data have increased the plausibility of θ values in the
range from about .4 to about .6 (this is where the posterior ordinate tops
the prior ordinate) and they have decreased the plausibility of θ values
that are more extreme (this is where the posterior ordinate falls below
the prior ordinate).
The increase in plausibility is most pronounced for the value of

θ = 1/2, whose prior and posterior ordinates equal 1 and 8.039, respec-
tively. As discussed above (and in Chapter 24), the ratio between these
ordinates is known as the Savage-Dickey density ratio and it equals the
Bayes factor. Hence, BF01 = 8.039, which means that the data are about
8 times more likely under H0 than under H1.

BayesianSpectacles.org
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BF01 = 8.039
BF10 = 0.124

data | H0

data | H1

95% CI: [0.404, 0.596]
Median: 0.500
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Figure 25.7: The prior and posterior distribution for the proportion of consumers θ who
prefer the peanut butter name brand over the peanut butter house brand, under the
vague alternative hypothesis H1 : θ ∼ beta(1, 1), together with the associated Bayes factor
against the null hypothesis H0. Inference is based on fictitious data where 50 consumers
prefer the name brand and 50 consumers prefer the house brand. Figure from the JASP
module Summary Statistics.

We now replace H1 : θ ∼ beta(1, 1) by the restricted form H+ :

θ ∼ beta(1, 1)I(1/2, 1). For instance, H+ may represent the hypothesis
that the name brand uses superior ingredients and a better recipe, so
that consumers should prefer it over the house brand in a blind tasting.
Figure 25.8 shows the result of the analysis with the restricted model.
It is immediately apparent that the restriction has greatly altered

the shape of the prior and posterior distributions for θ: (1) there is
no longer any prior mass assigned to values of θ lower than 1/2; (2)
consequently, there is no posterior mass assigned to values of θ lower
than 1/2 either; (3) the remaining prior and posterior mass has been
renormalized so that the area under each distribution equals 1.
Despite the metamorphosis of the prior and posterior distribu-

tion, the evidence for H0 has not changed; the unrestricted H1 : θ ∼
beta(1, 1) predicts the observed data just as well as the restricted form
H+ : θ ∼ beta(1, 1)I(1/2, 1). This result can be understood by recourse
to the Savage-Dickey density ratio. Both the prior and the posterior
distribution are symmetric around θ = 1/2, the value under test. Elimi-
nating half of the prior and posterior mass (i.e., the mass below θ = 1/2)
necessitates a renormalization of the prior and posterior mass above
θ = 1/2 by a factor of 2. In other words, for the truncated prior and
posterior distribution to have area 1 (as all probability distributions
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BF0+ = 8.039
BF+0 = 0.124

data | H0

data | H+

95% CI: [0.502, 0.610]
Median: 0.533
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Figure 25.8: The prior and posterior distribution for the proportion of consumers θ who
prefer the peanut butter name brand over the peanut butter house brand, under the
restricted alternative hypothesis H+ : θ ∼ beta(1, 1)I(1/2, 1), together with the associated
Bayes factor against the null hypothesis H0. Inference is based on fictitious data where 50
consumers prefer the name brand and 50 consumers prefer the house brand. Figure from
the JASP module Summary Statistics.

must) the unnormalized ordinates need to be twice as high as their
non-truncated counterparts.
A close look at Figure 25.8 confirms that the prior ordinate is now

at 2 (instead of 1) and the posterior ordinate at θ = 1/2 is now at about
16 (instead of about 8): the truncation-induced renormalization fac-
tor is the same for the prior and posterior distribution, and hence the
ratio between the ordinates at θ = 1/2 (i.e., the Bayes factor) remains
unchanged.
In sum, the first qualitative pattern for a directional restriction is

this: when the prior and posterior distribution are symmetric around the value
under test, imposing a directional restriction does not change the Bayes factor.

Pattern II: Evidence Against H0 Almost Doubled

Consider the scenario where 65 consumers prefer the name brand and
35 consumers prefer the house brand. These data are not in line with
H0. Figure 25.9 shows the prior and posterior distribution for θ under
H1. The data have increased the plausibility of θ values in the range
from about .55 to about .74 (this is where the posterior ordinate tops
the prior ordinate) and they have decreased the plausibility of θ values
everywhere else (this is where the posterior ordinate falls below the
prior ordinate).
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BF01 = 0.0872
BF10 = 11.4614

data | H0

data | H1

95% CI: [0.552, 0.736]
Median: 0.648
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Figure 25.9: The prior and posterior distribution for the proportion of consumers θ who
prefer the peanut butter name brand over the peanut butter house brand, under the
vague alternative hypothesis H1 : θ ∼ beta(1, 1), together with the associated Bayes factor
against the null hypothesis H0. Inference is based on fictitious data where 65 consumers
prefer the name brand and 35 consumers prefer the house brand. Figure from the JASP
module Summary Statistics.

The prior ordinate at θ = 1/2 equals 1; the posterior ordinate is lower,
and this means that the data provide evidence against H0 : θ = 1/2

versus H1. It is impossible to assess the posterior ordinate at θ = 1/2

visually with much accuracy. However, we know from the information
on top of the figure that BF10 = 11.4614; hence, the posterior ordinate
at θ = 1/2 must be 1/11.4614 ≈ 0.0872. Thus, the Bayes factor indicates
that the data (i.e., 65 out of 100 consumers preferring the name brand
over the house brand) are about 11.5 times more likely under H1 than
under H0.
As before, we now replace H1 : θ ∼ beta(1, 1) by the restricted

form H+ : θ ∼ beta(1, 1)I(1/2, 1). The results of the analysis with the
restricted model are shown in Figure 25.10.
When we consider first the prior distribution, we see that the effect

of imposing the restriction is identical to what it was for Pattern I:
the prior mass on values of θ lower than 1/2 has been eliminated, and
this necessitated a renormalization by a factor of 2. Thus, the prior
ordinate at θ = 1/2 is now 2 (instead of 1). The effect on the posterior
distribution, however, is very different than it was for Pattern I. Because
almost all of the posterior mass was already on values of θ larger than
1/2, the renormalization increases the posterior ordinates only very
little. Basically, the restriction hardly changes the posterior distribution.
However, the Savage-Dickey density ratio tells us that the Bayes factor
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BF0+ = 0.0437
BF+0 = 22.8924
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Figure 25.10: The prior and posterior distribution for the proportion of consumers θ
who prefer the peanut butter name brand over the peanut butter house brand, under the
restricted alternative hypothesis H+ : θ ∼ beta(1, 1)I(1/2, 1), together with the associated
Bayes factor against the null hypothesis H0. Inference is based on fictitious data where 65
consumers prefer the name brand and 35 consumers prefer the house brand. Figure from
the JASP module Summary Statistics.

equals the ratio between prior and posterior ordinate at θ = 1/2. Because
the restriction has heightened the prior ordinate by a factor of 2, but
left the posterior ordinate relatively unaffected, the Bayes factor BF+0 is
almost twice as high as BF10. Thus, the Bayes factor indicates that the
data (i.e., 65 out of 100 consumers preferring the name brand over the
house brand) are about 22.9 times more likely under H+ than under H0.
If all of the posterior mass were consistent with the restriction that θ
must be larger than 1/2 –a situation that can never be reached but only
approximated– then the predictive gain from imposing the restriction
would equal 2 exactly. Here we have that BF10 = 11.4614, and twice
that number (i.e., 22.9228) therefore provides an upper bound on BF+0.
When the data are consistent with the hypothesized direction, impos-

ing the restriction increases the evidence for the alternative hypothesis.
Intuitively, the alternative hypothesis is relieved of half of its parame-
ter values that predicted the observed data poorly. Consequently, the
predictions from the restricted model are more concentrated on the
observed data.
In sum, the second qualitative pattern for a directional restriction is

this: when the data are consistent with the hypothesized direction, the effect of
a directional restriction is to increase the evidence against H0 by a factor of at
most 2.
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Pattern III: Evidence For H0 Greatly Increased

Consider the final scenario, where 35 consumers prefer the name brand
and 65 consumers prefer the house brand – a result that is the exact
opposite from the one discussed immediately above. As before, these
data are not in line with H0. Figure 25.11 shows the prior and posterior
distribution for θ under H1. Compared to Figure 25.9, the results are
mirrored around the value of θ = 1/2 but are otherwise identical. In
particular, this means that the Bayes factor in favor of H1 versus H0

is still 11.4614: the data (i.e., 35 out of 100 consumers preferring the
name brand over the house brand) are about 11.5 times more likely
under H1 than under H0.

BF01 = 0.0872
BF10 = 11.4614

data | H0

data | H1

95% CI: [0.264, 0.448]
Median: 0.352
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Figure 25.11: The prior and posterior distribution for the proportion of consumers θ
who prefer the peanut butter name brand over the peanut butter house brand, under the
vague alternative hypothesis H1 : θ ∼ beta(1, 1), together with the associated Bayes factor
against the null hypothesis H0. Inference is based on fictitious data where 35 consumers
prefer the name brand and 65 consumers prefer the house brand. Figure from the JASP
module Summary Statistics.

We now replace H1 : θ ∼ beta(1, 1) by the restricted form H+ :

θ ∼ beta(1, 1)I(1/2, 1). It should be clear that imposing this restriction
–which is contraindicated by the data– greatly harms the predictive
adequacy of the alternative hypothesis. The results of the analysis with
the restricted model are shown in Figure 25.12.
Consider first the prior distribution. The effect of imposing the re-

striction is identical to what it was for Patterns I and II: the prior mass
on values of θ lower than 1/2 has been eliminated, and this necessitated
a renormalization by a factor of 2. Thus, the prior ordinate at θ = 1/2

is now 2 (instead of 1). The effect on the posterior distribution, how-
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ever, is very different than it was for Pattern I and for Pattern 2. In the
unrestricted model H1, there was only a tiny sliver of posterior mass
on values of θ larger than 1/2. However, the restriction dictates that
these are the only values of θ that are admissible. In order for the trun-
cated posterior distribution to have area 1, the renormalization needs
to magnify the sliver a great deal. This explains the unusual shape of
the restricted posterior distribution. Also, the required renormalization
inflates all of the posterior ordinates, including the one at θ = 1/2. The
renormalized posterior ordinate at θ = 1/2 is much higher than the
renormalized prior ordinate at θ = 1/2, and hence the Savage-Dickey
density ratio indicates that the Bayes factor greatly favors H0 over H+.
Specifically, the observed data are about 33 times more likely under H0

than under H+.

BF0+ = 32.8773
BF+0 = 0.0304

data | H0

data | H+

95% CI: [0.500, 0.549]
Median: 0.510
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Figure 25.12: The prior and posterior distribution for the proportion of consumers θ
who prefer the peanut butter name brand over the peanut butter house brand, under the
restricted alternative hypothesis H+ : θ ∼ beta(1, 1)I(1/2, 1), together with the associated
Bayes factor against the null hypothesis H0. Inference is based on fictitious data where 35
consumers prefer the name brand and 65 consumers prefer the house brand. Figure from
the JASP module Summary Statistics.

When the data contradict the hypothesized direction, imposing the
restriction increases the evidence for the null hypothesis. Intuitively,
the alternative hypothesis is robbed of half of its parameter values
that predicted the observed data relatively well, and it is left with the
parameter values that predicted the data relatively poorly. This is not a
good deal.
It should be stressed that Pattern III arises because the Bayes factor

is a relative measure of predictive adequacy. The data (i.e., 35 successes
out of 100 attempts) are predicted poorly by H0 : θ = 1/2, but they are
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predicted even worse by H+ : θ ∼ beta(1, 1)I(1/2, 1). If one model is
bad, but its only rival is horrendous, the evidence will strongly favor
the model that is ‘only’ bad. Of course, should Pattern III occur in full
force, as it does here, this could prompt the search for a new model or
it could motivate another look at the data – for instance, you may have
made a coding error that switched the brand labels.
In sum, the third qualitative pattern for a directional restriction is

this: when the data contradict the hypothesized direction, the the effect of a
directional restriction is to increase the evidence in favor of H0.

Exercises

1. On https://www.stat.berkeley.edu/~aldous/Real-World/coin_
tosses.html we find the data of two students who each tossed a
coin 20,000 times. Janet reported 10,231 sames (51.2%), whereas
Priscilla reported 10,014 sames (50.1%). What evidence do these data
provide for HDHM ?

2. Consider that you wish to engage in a coin flipping experiment to
test the hypothesis by Diaconis et al. (2007). From a Bayesian per-
spective, can you confirm that you need about 250,000 flips to have
compelling evidence against the null, or is this assessment overly
pessimistic?

3. We can compute Bayes factors between any two sets of prior distribu-
tions. It is important, however, that these prior distributions are not
inspired by the data. Explain why.

4. Follow-up question: for the test of the Diaconis-Holmes-Montgomery
hypothesis using the Research Master data, what instantiation of
HDHM will show the highest possible Bayes factor against H0, and
how high is that Bayes factor?

5. A dedicated researcher flips a coin 10 million times, and finds a that
the sample proportion of coins landing as they started equals .51
exactly. What is the evidence for the ‘narrow’ model Hn

DHM versus
the ‘wide’ model Hw

DHM ? How is this visually apparent from the
prior distributions for θ?

Chapter Summary

This chapter used a data set of 6927 coin flips to test the hypothesis that
naturally flipped coins tend to land on the same side as they started.
We know that if the effect exists it is relatively small. We studied the
predictive performance of a range of priors, ranging from very vague

https://www.stat.berkeley.edu/~aldous/Real-World/coin_tosses.html
https://www.stat.berkeley.edu/~aldous/Real-World/coin_tosses.html
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to highly precise. In general, most realistic priors showed strong evi-
dence for the hypothesis that natural coin flips are biased. A number of
general results are worth recalling:

◦ Aggressive priors are appropriate in the presence of strong back-
ground knowledge.

◦ The shape of a posterior distribution (useful for estimating a param-
eter) need not be informative about the size of a Bayes factor (useful
for testing a hypothesis). In this chapter several examples highlighted
how almost identical posterior distributions are associated with very
different Bayes factors, and how very different posterior distributions
are associated with the exact same Bayes factor (see also Wagenmak-
ers et al. 2020).

◦ When in doubt about the prior distribution that should be used,
one may think more deeply about the problem (is there important
background knowledge that has been overlooked?), one may explore
the robustness of the conclusions to specification of different –but
plausible– prior distributions (does it actually matter what prior
is used?), and one may test the degree to which a particular prior
distribution outpredicts another (cf. Chapter 12).

◦ Imposing a directional restriction results in three qualitatively differ-
ent patterns of evidence: (1) when the prior and posterior are sym-
metric around the point under test, the directional restriction does
not change the Bayes factor; (2) when the data are in line with the hy-
pothesized direction, imposing the restriction increases the evidence
against the null hypothesis by a factor of 2 at most; (3) when the data
contradict the hypothesized direction, imposing the restriction can
greatly increase the evidence for the null hypothesis.

◦ The Bayes factor is a relative measure of predictive success. If a
particular model has a high Bayes factor against a rival model, this
does not mean that the particular model predicted the data well; it
only means that the particular model predicted the data better than
the rival model.

◦ Bayes factors are transitive. In case of models A, B, and C, we have
that BFAC = BFAB/BFCB .

◦ If you desire a relevant answer, you should endeavor to ask a reason-
able question.
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Want to Know More?

3 Bartoš, F. et al. (2023). Fair coins tend to land on the same side
they started: Evidence from 350,757 flips. Manuscript submitted for
publication, https://arxiv.org/abs/2310.04153. The abstract:

“Many people have flipped coins but few have stopped to ponder the
statistical and physical intricacies of the process. In a preregistered
study we collected 350,757 coin flips to test the counterintuitive pre-
diction from a physics model of human coin tossing developed by
Diaconis, Holmes, and Montgomery (DHM; 2007). The model as-
serts that when people flip an ordinary coin, it tends to land on the
same side it started – DHM estimated the probability of a same-side
outcome to be about 51%. Our data lend strong support to this pre-
cise prediction: the coins landed on the same side more often than
not, Pr(same side) = 0.508, 95% credible interval (CI) [0.506, 0.509],
BFsame-side bias = 2364. Furthermore, the data revealed considerable
between-people variation in the degree of this same-side bias. Our
data also confirmed the generic prediction that when people flip an
ordinary coin – with the initial side-up randomly determined – it
is equally likely to land heads or tails: Pr(heads) = 0.500, 95% CI
[0.498, 0.502], BFheads-tails bias = 0.183. Furthermore, this lack of
heads-tails bias does not appear to vary across coins. Our data there-
fore provide strong evidence that when some (but not all) people flip
a fair coin, it tends to land on the same side it started. Our data pro-
vide compelling statistical support for the DHM physics model of coin
tossing.”

3 Persi Diaconis talks about his coin tossing work on the YouTube
channel ‘Numberphile’: “How random is a coin toss?” and “Coin
Flipping (extra footage)”.

3 An accessible account of the coin tossing model is provided in the
article “The fifty-one percent solution” in the magazine What’s Hap-
pening in the Mathematical Sciences (volume 7, pp. 34-45, available
online at https://www.ams.org/publicoutreach/math-history/
hap7-fifty-one-percent.pdf).

3 Diaconis, P., Holmes, S., & Montgomery, R. (2007). Dynamical bias
in the coin toss. SIAM Review, 49, 211–235. The inspiration for this
chapter. A summary is presented in Diaconis and Skyrms (2018, pp.
16-20).

3 Keller, J. B. (1986). The probability of heads. The American Mathe-
matical Monthly, 93, 191–197. A pioneering study on the physics of
coin tossing.

3 van Doorn, J., Matzke, D., & Wagenmakers, E.–J. (2020). An in-
class demonstration of Bayesian inference. Psychology Learning and
Teaching, 19, 36–45.

https://arxiv.org/abs/2310.04153
https://www.ams.org/publicoutreach/math-history/hap7-fifty-one-percent.pdf
https://www.ams.org/publicoutreach/math-history/hap7-fifty-one-percent.pdf
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“On a Friday afternoon, May 12th 2017, an informal beer tasting
experiment took place at the Psychology Department of the University
of Amsterdam. (…) Participants tasted two small cups filled with
Weihenstephaner Hefeweissbier, one with alcohol and one without,
and indicated which one contained alcohol. (…) Of the 57 participants,
42 (73.7%) correctly identified the beer that contained alcohol; in other
words, there were s = 42 successes and f = 15 failures.” (van Doorn
et al. 2020, pp. 37-38)

The online repository containing analyses, data, and three video
recordings of the procedure can be accessed at http://tinyurl.
com/yyyc928g.

3 Wagenmakers, E.-J., Verhagen, A. J., & Ly, A. (2016). How to quan-
tify the evidence for the absence of a correlation. Behavior Research
Methods, 48, 413–426. A Bayesian reanalysis of nine replication
studies with a prominent place for directional restrictions and the
different patterns that can ensue.

http://tinyurl.com/yyyc928g
http://tinyurl.com/yyyc928g
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Thus it does not matter in what order we introduce our data; as long as we start
with the same data and finish with the same additional data, the final results
will be the same. The principle of inverse probability cannot lead to
inconsistencies.

Jeffreys, 1938

This chapter is based on a series of blog
posts for BayesianSpectacles.org:
“Bayes factors for those who hate Bayes
factors”, parts II and III.Chapter Goal

The goal of this chapter is twofold. First, we wish to stress that Bayes
factors cohere, in the sense of this chapter’s epigraph: the final Bayes
factor is exactly the same no matter if the data were analyzed all at once,
batch-by-batch, or one observation at a time.1 Second, the reason why 1 See also the section ‘Combining the

evidence’ in Chapter 13 and the sec-
tion ‘Two sequential analyses’ from
Chapter 15. For coherence in parameter
estimation, see the section ‘Knowledge
updating with the beta prior’ in Chap-
ter 8.

Bayes factors cohere is because they measure relative predictive ade-
quacy, and the quality of the predictions is determined by the prior
distribution on the model parameters, which is updated coherently by
incoming data. The fact that Bayes factors depend on this prior param-
eter distribution is often bemoaned, and it is widely regarded as the
method’s Achilles heel. This chapter demonstrates that such lamenta-
tions are misplaced, and that the dependence on the prior distribution
ought instead to be regarded as one of the Bayes factor’s main selling
points: if the Bayes factor would not depend on the prior parameter dis-
tribution in exactly the way it does, the inference would be incoherent
(i.e., internally inconsistent, demonstrably silly, ludicrous, farcical). The
conclusion can be put plainly: Bayes factors are right, and everything else is
wrong.2 2 Some statisticians will find this sweep-

ing claim dogmatic, exaggerated, or even
upsetting and misleading. In response,
we issue a simple challenge: propose
an alternative methodology for mea-
suring the strength of evidence that is
sequentially coherent as described in this
chapter (cf. Gronau and Wagenmakers
2019, p. 41).

A Demonstration of Bayes Factor Coherence

For concreteness we revisit the scenario outlined in Chapter 24: in or-
der to assess the effect of a chiropractic treatment, a matched pairs design
was entertained where each pair consists of one patient who receives a
chiropractic treatment and another patient who receives the sham treat-
ment. We wish to draw conclusions about θ, the proportion of pairs for

BayesianSpectacles.org
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which the patient who received the chiropractic treatment reported less
neck pain than the patient who underwent the sham treatment. The
fictitious results showed that out of the n = 10 patient pairs that were
tested, s = 5 signaled a chiropractic benefit, and n − s = 5 signaled a
sham benefit.
As in Chapter 24, we test the null hypothesis H0 : θ = 1/2 of no

treatment effect versus the alternative hypothesis H1 : θ ∼ beta(1, 1).3 3 The conclusions from this chapter
are entirely general, and apply to any
continuous prior distribution on θ and
any division of the data into batches.
We chose the specific numbers for this
demonstration merely for convenience
and to highlight the key message.

The evidence supports H0 over H1; specifically, the Bayes factor equals
BF01 = 693/256 ≈ 2.71 (cf. Equation 30.14), meaning that the observed
data are about 2.71 times more likely under H0 than under H1. Fig-
ure 24.3 showed the inference obtained using the Summary Statistics
module in JASP.
Now we divide the data set in two consecutive batches, A and B.

We first update our beliefs with the data from batch A, and then we
update our beliefs with the data from batch B. Because Bayes factors
are coherent, the end result should be exactly the same: BF01 ≈ 2.71.
For example, assume that batch A consists of all 5 patient pairs that
showed a chiropractic benefit, whereas batch B consists of all 5 patient
pairs that showed a sham benefit. First we analyze the data from batch
A. With sA = 5 chiropractic successes and nA − sA = 0 sham successes,
this is the most extreme result possible and one would therefore expect
this to yield evidence against H0. A minimum effort in JASP yields
Figure 26.1 and confirms this intuition. Specifically, an application of
Equation 30.14 yields BFA01 = 3/16, so BFA10 ≈ 5.33.
The analysis of batch A reveals some evidence against H0; in ad-

dition, the data from batch A caused the beta(1, 1) prior distribution
for θ under H1 to be updated to a beta(6, 1) posterior distribution –
represented by the solid line in Figure 26.1. Note that the posterior dis-
tribution after batch A has most mass allocated to values of θ that are
relatively large. With this posterior distribution, H1 now predicts that
the next 5 patient pairs (i.e., batch B) are likely to show a chiropractic
benefit as well. This predictive distribution can be obtained from the
Learn Bayes module and is shown in Figure 26.2.
We are now ready to analyze the data from batch B. Interest centers

on the Bayes factor for batch B, given that knowledge of batch A is
taken into account. But we already know that the Bayes factor for the
complete data (i.e., batch A and B together) equals BFA,B01 = 693/256 ≈
2.71, and we know that the Bayes factor for batch A alone equals BFA01 =
3/16 ≈ 0.19. By the rule of conditional probability, these two Bayes



the coherence of evidence accumulation 467

BF01 = 0.187
BF10 = 5.333

data | H0

data | H1

95% CI: [0.541, 0.996]
Median: 0.891

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Population proportion q

D
en

si
ty

Posterior

Prior

Figure 26.1: The prior and posterior distribution for the proportion of patient pairs θ
for which the chiropractic treatment works better than the sham treatment, under the
alternative hypothesis H1 : θ ∼ beta(1, 1), together with the associated Bayes factor.
Inference is based on fictitious data where the chiropractic treatment worked better than
the sham treatment for 5 out of 5 patient pairs (i.e., batch A). Figure from the JASP
module Summary Statistics.

factors determine the third, as follows:

BFA,B01 =
p(dataA, dataB | H0)

p(dataA, dataB | H1)

=
p(dataA | H0) p(dataB | dataA,H0)

p(dataA | H1) p(dataB | dataA,H1)

= BFA01 × BFB|A01 .

(26.1)

In words, the evidence from both batches combined equals the evidence
from batch A multiplied by the evidence from batch B with the knowl-
edge gained from batch A taken into account. For the case at hand,
BFB|A01 is therefore given by (693/256)/(3/16) = 231/16 ≈ 14.44.
The Bayes factor for batch B may also be obtained directly, by con-

trasting the batch B predictive performance of H0 : θ = 1/2 versus that
of H1 : θ ∼ beta(6, 1) (cf. Equation 30.13). Under H0, the probability of
finding 0/5 chiropractic successes equals 1/2 · 1/2 · 1/2 · 1/2 · 1/2 = 1/32 =

0.03125. The predictive distribution under H0 is shown in Figure 26.3.
The batch B data are relatively unlikely under H0; in fact, the extreme
outcomes 0/5 and 5/5 successes are the most unlikely to occur under
H0. However, this low predictive probability needs to be pitted against
that of H1 : θ ∼ beta(6, 1). As shown in Figure 26.2, the probability for
0/5 successes to occur under H1 is very small – in fact, this probability
equals 1/462 ≈ 0.002. Consequently, the Bayes factor for the batch B data
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Figure 26.2: Predictive distribution for the number of batch B patient pairs that will show
a chiropractic benefit, under the alternative hypothesis H1 : θ ∼ beta(6, 1) as obtained
from batch A. Figure from the JASP module Learn Bayes.

is BFB|A01 = (1/32)/(1/462) = 462/32 = 231/16 ≈ 14.44, the exact same
result as obtained indirectly by exploiting coherence.
Note that if the predictive performance of H1 for the batch B data

had erroneously been assessed using the initial beta(1, 1) prior distribu-
tion, the Bayes factor BF10 would have been 16/3 ≈ 5.33 again, as it was
for batch A. Consequently, both batch A and batch B would then have
indicated support against H0, whereas the complete data (i.e., 5 chiro-
practic successes and 5 sham successes) ought to provide support in favor
of H0.
The inference for the batch B data is confirmed by conducting the

analysis in JASP, as shown in Figure 26.4. The dotted line represents the
beta(6, 1) distribution that was the posterior after batch A but acts as a
prior for the analysis of batch B. The solid line is the beta(6, 6) posterior
distribution, which is of course identical to the posterior distribution
that obtains when the data are analyses all at once (cf. Figure 24.3).4

4We write ‘of course’ because s successes
and f failures update a beta(α, β) prior
distribution to a beta(α + s, β + f)
posterior distribution, from which it
is clear that the counts matter but the
order of observation is irrelevant (cf.
Chapter 8).

The figures from JASP suggest that sequential coherence can also be
viewed through the lens of the Savage-Dickey density ratio (cf. Chap-
ter 24). Specifically, we have:

BFA,B01︷ ︸︸ ︷
p(θ = 1/2 | dataA, dataB,H1)

p(θ = 1/2 | H1)
=

BFA01︷ ︸︸ ︷
p(θ = 1/2 | dataA,H1)

p(θ = 1/2 | H1)
×

BFB|A01︷ ︸︸ ︷
p(θ = 1/2 | dataA, dataB,H1)

p(θ = 1/2 | dataA,H1)

The left-hand side shows the Bayes factor for the complete data set, that
is, the ratio of the prior and posterior ordinate under H1 evaluated at



the coherence of evidence accumulation 469

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5

Predicted number of successes

P
ro

ba
bi

lit
y

Figure 26.3: Predictive distribution for the number of batch B patient pairs that will show
a chiropractic benefit, under the null hypothesis H0 : θ = 1/2. Figure from the JASP
module Learn Bayes.

H0 : θ = 1/2 (i.e., the ratio of the grey dots in Figure 24.3). This equals
the right-hand side: the Savage-Dickey density ratio based on the batch
A data (i.e., BFA01; the ratio of the grey dots in Figure 26.1) times the
ratio based on the batch B data (i.e., BFB|A01 ; the ratio of the grey dots
in Figure 26.4). Note again that the prior distribution for the analysis
of the batch B data needs to equal the posterior distribution that was
obtained from the batch A data.
The analyses above allow the following conclusions and observations:

◦ Bayes factors are coherent in the sense that they yield the exact same
result regardless of whether the data are analyzed all at once, batch-
by-batch, or one observation at a time.

◦ As illustrated by Figures 26.1 and 26.4, the posterior distribution af-
ter batch t becomes the prior distribution for batch t+1. This accords
with the adage, “today’s posterior is tomorrow’s prior” (Lindley 1972,
p. 2).

◦ Any coherent analysis must be able to quantify evidence in favor of
H0, and this evidence cannot have a bound.5 For instance, suppose 5 This holds only when the evidence

in favor of H1 does not have a bound
either.

that s = n/2 (i.e., half of the attempts are successful) and that batch
A contains only the successes and batch B only the failures. As n
grows, the Bayes factor for batch A indicates ever stronger evidence
against H0, an evidential move in the wrong direction that the Bayes
factor for batch B needs to overcome.
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Figure 26.4: The prior and posterior distribution for the proportion of patient pairs θ
for which the chiropractic treatment works better than the sham treatment, under the
alternative hypothesis H1 : θ ∼ beta(6, 1), together with the associated Bayes factor.
Inference is based on fictitious data where the sham treatment worked better than the
chiropractic treatment for 5 out of 5 patient pairs (i.e., batch B). Figure from the JASP
module Summary Statistics.

◦ The reason why the Bayes factor for batch B supports H0 is because
of the poor predictive performance of H1 – and this predictive
performance is dictated by the prior distribution. Specifically, the
beta(6, 1) prior encodes the strong expectation that batch B will
contain mostly successes (cf. Figure 26.2) The data from batch B,
however, show the exact opposite. In other words, under a beta(6, 1)
prior distribution the occurrence of 0 successes and 5 failures is
highly surprising, much more so than they are under H0.

◦ It follows from the above that coherence is achieved because the
Bayes factor is sensitive to the prior distribution (cf. Chapter 17).
This sensitivity should be feared nor deplored; it is neither too much
nor too little – it is exactly what is needed to achieve coherence.

The Bayes Factor Coherence Plot

As suggested in Chapter 23, it can be insightful to take the logarithm of
the Bayes factor. This changes the evidential relation between batches A
and B from multiplicative (cf. Equation 26.1) to additive:

log
(
BFA,B01

)
= log

(
BFA01

)
+ log

(
BFB|A01

)
. (26.2)

As a reminder, the log transformation serves another purposes as well:
it makes the strength of the evidence symmetric around 0. For regular
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Bayes factors, BF01 = 20, say, is of the same evidential strength as
BF01 = 1/20 = 0.05, differing only in direction. This is brought out more
clearly when the logarithm is used6, as loge(20) ≈ 3 and loge(1/20) ≈ −3. 6 Throughout this chapter, we arbitrarily

use the natural logarithm, such that
loge(x) = u when x = eu.

Thus, evidence in favor of H0 (i.e., BF01 > 1) yields a positive number
(i.e., log(BF01) > 0) whereas evidence in favor of H1 (i.e., BF01 < 1)
yields a negative number (i.e., log(BF01) < 0), with log(BF01) = 0

indicating evidential irrelevance or evidential neutrality.
Applying the log transform to our example data with two consec-

utive batches A and B yields the Bayes factor coherence plot shown in
Figure 26.5.

0 Evidence for H0Evidence for H1

logBFA,B01 = 1

logBFA01 = −1.67

logBFB|A01 = 2.67

Coherence: 1 = −1.67 + 2.67
Figure 26.5: Bayes factors cohere. The model comparison pits H0: θ = 1/2 against
H1: θ ∼ beta(1, 1). Batch A consists of 5 successes, batch B consists of 5 failures.

The Bayes factor coherence plot is just a visual representation of
Equation 26.2. The purple line on top indicates the logarithm of the
Bayes factor for the complete data set, that is, loge(BF

A,B
01 ) ≈ 2.71 ≈ 1.

The orange line in the middle indicates the logarithm of the Bayes
factor for the batch A data, that is, loge(BF

A
01) ≈ 1/5.33 ≈ −1.67. Note

that the Bayes factor BFA01 is smaller than 1 (because the batch A data are
more likely under H1 than under H0), which means that the logarithm
is negative – the orange line therefore extends to the left rather than the
right. The blue line on the bottom indicates the logarithm of the Bayes
factor for the batch B data, that is, loge(BF

B|A
01 ) ≈ 14.44 ≈ 2.67.

Expressed in the usual way, coherence takes a multiplicative form:
2.71 = 1

5.33 × 14.44. After the log transform, coherence is expressed
through addition: 1 = −1.67 + 2.67. In our example, the complete
data set yielded evidence in favor of H0, whereas the data from batch A
yielded evidence against H0. The Bayes factor coherence plot clarifies
that whenever this pattern arises, the batch B data have to provide a log
Bayes factor (in favor of H0) that equals the sum of the log Bayes factor
for the complete data (in favor of H0) and the log Bayes factor for the
batch A data (in favor of H1): the evidence from the batch B data needs
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to undo the impact of the batch A data, and add positive evidence for
H0 on top. From Equation 26.2 we have that

log
(
BFB|A01

)
= log

(
BFA,B01

)
− log

(
BFA01

)
= log

(
BFA,B01

)
+ log

(
BFA10

)
.

Whenever log(BFA,B01 ) > 0 (i.e., the complete data favor H0) and
log(BFA10) > 0 (i.e., the batch A data favor H1 –- mind the Bayes factor
subscripts here) we have a “Bayesian evidentiary boomerang”: the batch
A data may favor H1, but the posterior distribution after batch A yields
poor predictions for the data from batch B; the batch A data are not
representative of the whole and they have wrong-footed H1. The more
H1 outpredicts H0 for the batch A data, the worse it will do for the
batch B data (given that the complete data set favors H0): inevitably, the
evidence trajectory reverses its course and ends up at exactly the same
location that is occupied by the “all-data-at-once” Bayes factor.
We may entertain a different division of the data into batches A and

B, or we may specify more than two batches – we may even specify each
batch to contain a single observation. However the data are subdivided,
the end result is always coherent in the sense displayed in the coherence
plot: the log Bayes factors for the individual batches are simply added
and always yield a result that is identical to the log Bayes factor for the
complete data set. The next sections provide concrete examples of this
important point.

Example 2: A Different Split

Consider that the data from our fictitious chiropractic study were split
into batches A and B differently. Concretely, assume that batch A has
2/5 chiropractic successes, and batch B has 3/5 chiropractic successes.
The results are shown in the Figure 26.6 Bayes factor coherence plot.
As can easily be verified with JASP, BFA01 ≈ 1.88 and BFB|A01 ≈ 1.44;

this means that loge(BF
A
01) ≈ 0.63 and loge(BF

B|A
01 ) ≈ 0.37. The sum

of these two logarithms again equals 1, as demanded by coherence.
For this split, there is no Bayesian boomerang: both batches A and B
provide evidence in favor of H0.

Example 3: The Impact of a Single Failure

First consider the case where batch A consists of 5 successes, and batch
B consists of a single failure. For batch A we have, as before, BFA01 =
3/16 ≈ 1/5.33. The single failure from batch B yields BFB|A01 = 7/2 = 3.5.
The results are shown in the Figure 26.7 Bayes factor coherence plot.
As the figure shows, loge(BF

A
01) ≈ −1.67 and loge(BF

B|A
01 ) ≈ 1.25.

The sum of these logarithms equals approximately −0.42, which is the
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0 Evidence for H0Evidence for H1

logBFA,B01 = 1

logBFA01 = 0.63

logBFB|A01 = 0.37

Coherence: 1 = 0.63 + 0.37
Figure 26.6: Example of Bayes factor coherence. The model comparison pits H0: θ = 1/2

against H1: θ ∼ beta(1, 1). Batch A consists of 2/5 successes, batch B consists of 3/5
successes.

0 Evidence for H0Evidence for H1

logBFA,B01 = −0.42

logBFA01 = −1.67

logBFB|A01 = 1.25

Coherence: −0.42 = −1.67 + 1.25
Figure 26.7: Example of Bayes factor coherence. The model comparison pits H0: θ = 1/2
against H1: θ ∼ beta(1, 1). Batch A consists of 5 successes, batch B consists of a single
failure.

exact same result that obtains when the complete data set is analyzed in
one go. So the overall data provide some evidence for H1 (i.e., BF10 ≈
1.52) but the single failure from batch B has greatly reduced the initial
support gathered from batch A.
We now swap the batches, such that batch A consists of a single

failure, and batch B consists of five successes. The overall result is of
course the same as before, although the sequential pattern is different.
Specifically, we have that BFA01 = 1 (more about this later) and BFB|A01 ≈
1/1.52. The results are shown in the Figure 26.8 Bayes factor coherence
plot.
As the figure shows, loge(BF

A
01) = 0 and loge(BF

B|A
01 ) = log(BFA,B01 ) ≈

−0.42. The first batch is evidentially neutral, and coherence demands
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0 Evidence for H0Evidence for H1

logBFA,B01 = −0.42

logBFA01 = 0

logBFB|A01 = −0.42

Coherence: −0.42 = 0−0.42
Figure 26.8: Example of Bayes factor coherence. The model comparison pits H0: θ = 1/2

against H1: θ ∼ beta(1, 1). Batch A consists of a single failure, batch B consists of five
successes.

that the Bayes factor for the complete data set is then determined en-
tirely by the result for the second batch.
What this example is meant to demonstrate is that the evidential

impact of the single failure depends entirely on when it occurs. If the
failure occurs immediately, it is evidentially neutral (cf. the yellow point
in Figure 26.8); if the failure occurs at the end, it greatly favors the
null and undoes much of the evidential advantage that H1 had gained
from the first five observations (cf. the blue line in Figure 26.7). The
evidential impact of the very same observation therefore depends on
context, and this context is quantified by the prior distribution.
Let’s elaborate on this important point. Under H0 : θ = 1/2, the

probability of encountering a failure is always just 1/2. The context-
dependence is therefore due entirely to the nature of H1. Before observ-
ing any data, H1 was specified through a beta(1, 1) distribution on θ;
this uniform distribution is symmetric around θ = 1/2, and therefore
a success and a failure are equally likely to occur. Consequently, both
H0 and H1 : θ ∼ beta(1, 1) assign probability 1/2 to the first observa-
tion being a failure, and the datum is therefore entirely non-diagnostic
or predictively irrelevant (cf. Jeffreys 1961, p. 257; Wagenmakers et al.
2020). After observing the 5 successes from batch A, however, the situ-
ation has changed dramatically: H1 is no longer defined by a symmetric
prior distribution, but by a beta(6, 1) prior distribution. Under this
new prior distribution, the occurrence of a single failure comes as a
surprise. Specifically, using the beta prediction rule from Chapter 9 the
probability of a failure can be obtained as 1 − 6/7 = 1/7. Under H0 the
probability of a failure is always 1/2, and consequently the Bayes factor
equals BFB|A01 = (1/2)/(1/7) = 7/2 = 3.5.
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This simple example demonstrates that ‘evidence’ is not just a
context-free property of the data. Instead, evidence is a measure of
relative surprise – the degree to which the observed data violated ex-
pectations. These expectations are formalized through predictions that
stem from the models (including prior distributions), which in turn
reflect background knowledge. It is therefore perfectly rational for people
with different background knowledge to interpret the exact same data
differently in terms of evidence (cf. Chapter 17). In sum, evidence is
inherently context-dependent.

Example 4: Predicting One Observation at a Time

For our final example we revisit the original scenario where the first
5 observations were successes and the next 5 observations were fail-
ures. The most fine-grained Bayes factor coherence plot consists of a se-
quence of 10 batches, each of which contains only a single observation.
The relevant Bayes factors can be obtained using the beta prediction
rule discussed in Chapter 9. Suppose that at time t we have already seen
st successes and ft failures. Under H1, this yields a beta(α + st, β + ft)

posterior distribution for θ; the associated probability that the next ob-
servation (at time t+1) is a success equals (α+st)/(α+st+β+ft). Under
H0 : θ = 1/2, the probability that the next observation is a success equals
1/2 regardless of how many successes and failures were observed previ-
ously.7 Application to the data from our example yields the following 7 Consequently, when the next observa-

tion is a success the Bayes factor equals

BFt+1|t01 = (α + st + β + ft)/2(α + st);
when the observation is a failure,
the Bayes factor equals BFt+1|t01 =

(α+ st + β + ft)/2(β + ft).

series of Bayes factors: BFt+1|t01 = {1, 3/4, 2/3, 5/8, 6/10, 7/2, 2, 3/2, 5/4, 10/11}.
The corresponding logarithms are shown in the Figure 26.9 Bayes factor
coherence plot.
As we have now come to expect, the all-at-once log Bayes factor (i.e.,

loge(BF
Total
01 ) ≈ 1) equals the sum of the log Bayes factors for the indi-

vidual observations. Note that the log Bayes factor for each individual
observation at time t + 1 quantifies the models’ relative predictive per-
formance for that specific observation, given that the models took the
previous t observations into account. Figure 26.9 affords two insights.
First, it confirms the main message from the previous example, namely
that evidence is context-dependent and not solely a property of the data.
Note that the first five observations are all successes, and the second
five are all failures; nevertheless, every new success has more evidential
impact than the last (i.e., the yellow lines lengthen as the successes ac-
cumulate), and every new failure has less evidential impact than the last
(i.e., the blue lines shorten as the failures accumulate). The order does
not matter for the overall assessment of the evidence, but the contribu-
tion of a specific datum does depend on background knowledge, and
hence on the composition of the data that came before it.
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0 Evidence for H0Evidence for H1

logBFTotal01 = 1

logBF101 = 0

logBF2|101 = −0.29

logBF3|1,201 = −0.41

logBF4|1...301 = −0.47

logBF5|1...401 = −0.51

logBF6|1...501 = 1.25

logBF7|1...601 = 0.69

logBF8|1...701 = 0.41

logBF9|1...801 = 0.22

logBF10|1...901 = 0.10

Coherence: 1 = 0−0.29−0.41−0.47−0.51
+1.25 + 0.69 + 0.41 + 0.22 + 0.10

Figure 26.9: Example of Bayes factor coherence. The model comparison pits H0: θ = 1/2
against H1: θ ∼ beta(1, 1). The data consist of 5 successes (indicated in orange) followed
by 5 failures (indicated in blue), and are analyzed one observation at a time.

The second insight that Figure 26.9 affords is that Bayes factors
can be recast as as the result of an accumulation of one-step-ahead
prediction errors (APE; Wagenmakers et al. 2006). This is how one
might evaluate, say, the relative predictive performance of two rival
meteorologists as time unfolds.8 On day 0, both forecasters issue a 8 A concrete example is given in the

Exercises section below. This example
was also featured in Chapter 20.

probabilistic prediction for tomorrow’s weather (i.e., the weather of
day 1); as soon as we observe the actual weather of day 1 we record
the relative predictive performance of the forecasters. Armed with the
knowledge of the weather from day 1, both forecasters then issue a
probabilistic prediction for the weather on day 2; as soon as we observe
the actual weather of day 2 we again record the forecaster’s relative
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predictive performance, etc. This ‘predict-record-update’ cycle can be
repeated for as long as we desire (Edwards et al. 1963). The overall past
performance of the forecasters is obtained by summing their relative
predictive success across all of the individual days. Note the following:

◦ The one-step ahead forecasting competition is fair in the sense that
when the forecasters issue their predictions, they can see the past but
not the future. In other words, both forecasters have access to the
information from previous days, and they can use that information
to update their beliefs and make more specific predictions about
the weather in the future; however, when the predictions are issued
that future is still completely hidden, and hence the forecasters are
evaluated on true predictive performance.

◦ There is considerable face validity to model comparison by means
of summing one-step-ahead prediction errors. First, overly complex
models do not generalize well, and this will be borne out by a se-
quence of relatively poor one-step-ahead prediction errors. Second,
the accumulation of one-step-ahead prediction errors clearly does not
depend on either of the rival models being ‘true’ (Kass and Raftery
1995, p. 777). Finally, we need only imagine that data become avail-
able slowly over time (e.g., data on climate change, year-by-year
fluctuations in a country’s GDP) to appreciate how the comparison of
accumulative one-step-ahead prediction error constitutes an natural
way to quantify model performance (Dawid 1984; 1991). We specu-
late that those statisticians who find the rationale for Bayes factors
difficult to swallow may simultaneously applaud the idea of compar-
ing models through one-step-ahead predictive performance – even
though coherence shows these two procedures to be identical.

◦ The one-step-ahead scheme can be employed more generally. For
instance, a non-Bayesian may be unwilling to specify prior distribu-
tions, and instead prefer to make predictions using the maximum
likelihood estimator (i.e., the single value of θ that yielded the best
predictions for the observed data). Furthermore, the prediction er-
ror can be quantified in different ways; for the Bayes factor, we used
‘log loss’, that is, loge(p(datumt+1 | θt, datat)), but other options are
possible. Importantly, researchers may engage in model comparisons
using accumulative one-step-ahead prediction error even without
specifying prior distributions and without using ‘log loss’ to quantify
prediction success.9

9 There is a price to pay whenever one
attempts to bake a Bayesian omelette
without breaking the Bayesian eggs. In
this case, the use of the plug-in max-
imum likelihood estimator destroys
coherence: the order of the data now
matters for the end result. This complica-
tion may be addressed by averaging the
outcome across many different orders,
but this does make the methodology less
elegant.
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Exercises

1. Consider four rival models for a binomial chance θ: M1 : θ =
1/2,M2 : θ ∼ beta(1, 1);M3 : θ ∼ beta(5, 5); andM4 : θ ∼
beta(100, 100).

1.1. What will be the Bayes factor between any pair of models after the
first observation?

1.2. Assume the first observation is a success. Use JASP to inspect the
Savage-Dickey density ratio for all model comparisons involving
M1.

1.3. Assume the first observation is a success. What is the effect on
the various distributions for θ? What do you conclude about the
relation between the Bayes factor and the posterior distribution?

1.4. We observe k = n/2 successes and the Bayes factor between any
two models is x. What will be the Bayes factor after observation
n+ 1?

2. Consider two rival meteorologists involved in a prediction contest.
The day-by-day probabilistic predictions of the first three days are
shown in Table 26.1. The weather that actually occurred on the
consecutive days is as follows: it rained on Day I (�), it was overcast
on Day II (�), and it was partly overcast on Day III (�).

2.1. What information is used by the meteorologists to issue predic-
tions for the weather on Day III?

2.2. What is the Bayes factor?

� � � �

Weather on Day I:�

Predictions of meteorologist A 50% 30% 15% 5%
Predictions of meteorologist B 25% 25% 25% 25%

Weather on Day II:�

Predictions of meteorologist A 20% 35% 35% 10%
Predictions of meteorologist B 40% 35% 15% 10%

Weather on Day III:�

Predictions of meteorologist A 10% 30% 50% 10%
Predictions of meteorologist B 20% 40% 25% 15%

Table 26.1: Two rival meteorologists issue one-day ahead probabilistic forecasts, taking
into account the knowledge of the weather on the preceding days.
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3. Aitkin (1991) has proposed the ‘posterior Bayes factor’, where the
data are used twice: once to update the prior distribution to a pos-
terior distribution, and then again to evaluate the model’s relative
‘postdictive’ performance. For instance, suppose that we seek to con-
trast H0 : θ = 1 (e.g., the universal generalization ‘all zombies are
hungry’) against H1 : θ ∼ beta(1, 1). Miruna encounters two hungry
zombies. The standard Bayes factor analysis yields BF01 = n + 1 = 3.
In contrast, the posterior Bayes factor first updates the beta(1, 1)
prior distribution to a beta(3, 1) posterior distribution, and then as-
sesses the postdictive performance, that is, the probability of encoun-
tering two zombies that are both hungry. Recall from Chapter 17
that a beta(α, 1) prior distribution on θ under H1 yields a Bayes fac-
tor BF01 = (n/α) + 1. Hence, the posterior Bayes factor for the
scenario of two hungry zombies equals BFpost01 = (2/3) + 1 = 5/3.
Now consider Kate; Just as Miruna, Kate also starts with a beta(1, 1)
prior distribution, and also sees two hungry zombies. The only dif-
ference is that Kate does not see them at the same time but one after
the other. So Kate conducts a sequential analysis. Show that, when
Kate uses the posterior Bayes factor sequentially, she will draw a con-
clusion that differs from that of Miruna – that is, the posterior Bayes
factor is incoherent.10 10 This is a concrete version of Exercise 2

from Chapter 6.

Chapter Summary

Bayes factors are coherent in the sense that the same result obtains irre-
spective of whether the data arrive all at once, batch-by-batch, or one
observation at a time. This is a general property of Bayesian inference
that also holds for Bayesian parameter estimation, and it is dictated
by the law of conditional probability – therefore it lies at the heart of
Bayesian inference.
The engine that drives the coherence is the continual adjustment of

the prior distribution as the data accumulate. The prior distribution en-
codes knowledge from the past and allows predictions about the future.
In the first example from this chapter, the complete data set supported
H0, but the first half (i.e., batch A) supported H1. By coherence, the
second half (i.e., batch B) must provide strong evidence in favor of H0,
as it has to correct the epistemic move in the opposite direction due to
the data from the first half. This strong evidence for H0 was produced
because H1 predicted the data from the second half relatively poorly, as
the data from the first half had led H1 astray. Specifically, for H1 the
data from the first half had produced a parameter distribution that en-
coded a strong expectation that the second half would contain mostly
successes. Instead, the second half contained only failures, and this
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meant that the predictions from H1 for the second half were dramati-
cally wrong.
This chapter also introduces the Bayes factor coherence plot, a visual

representation of log Bayes factors and their summation. The coherence
plots highlighted that evidence is context-dependent; the extent to
which an observation changes one’s beliefs (i.e., the evidence) depends
on how (un)surprising that observation is, and surprise is a function
not just of the data but also of background knowledge. In other words,
coherence makes it inevitable that the same batch of data can have
dramatically different epistemic impact depending on when it occurs
in the overall data stream. Finally, we showed how Bayes factors are
equivalent to the accumulation of one-step-ahead prediction errors,
an intuitive and generic method for model comparison with high face
validity.
The main message of this chapter is that the sensitivity of the Bayes

factor to the prior distribution is something to be cherished rather than
maligned, for it is this sensitivity that makes the methodology coherent,
that is, not demonstrably ‘silly’ or internally inconsistent.
There is no accounting for taste, but when we see Bayes factor coher-

ence in action we remain impressed that everything fits together so per-
fectly. An astronomer may look at the night sky in awe, a biologist may
marvel at the process of evolution, a geologist may be enthralled by a
mountain range; a chess player may be amazed by a particular endgame
study, and a music lover may be touched by their favorite song. It is
in this fundamentally emotional way that we, as Bayesian statisticians,
consider coherence: it is simply beautiful.

Want to Know More?

3 Chapter 6, ‘Coherence’ introduced the role of coherence in Bayesian
inference more generally; Chapter 17, ‘Jeffreys’s Platitude’ also pre-
sented the dependence of the Bayes factor on the prior parameter
distribution in a positive light, but from a complementary perspec-
tive.

3 Fong, E., & Holmes, C. C. (2020). On the marginal likelihood and
cross–validation. Biometrika, 107, 489–496. “The marginal likelihood
arises naturally as the unique prequential scoring rule under coher-
ent belief updating in the Bayesian framework.” (p. 491). Cross-
validation is a popular and generic technique to assess predictive
performance fairly; one part of the observed data (i.e., the training
set) is used to fit the model, and the other part (i.e., the validation
set) is used to assess the model’s predictive performance. A key deci-
sion in cross-validation is how to divide the data into the two parts
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– popular methods are ‘leave-one-out’ (i.e., the training set consists
of all but a single observation), ‘split-half’, and ‘K-fold’. Fong and
Holmes show that there exists only a single method of dividing the
data into parts such that cross-validation is coherent, and this method
results in...the marginal probability for the data, the comparison of
which yields the Bayes factor. Note that cross-validation clearly does
not entail any commitment to the true data-generating model being
in the set of candidate models. For an earlier connection between
marginal likelihood and cross-validation see Gneiting and Raftery
(2007).

3 Jeffreys, H. (1938). Significance tests when several degrees of freedom
arise simultaneously. Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 165, 161–198. The
section The combination of tests (pp. 190-192) covers the central idea
from this chapter.

3 Jeffreys, H. (1939, 1948, 1961). Theory of Probability (1st, 2nd, 3rd
ed.). Oxford: Oxford University Press. In section 6.0 of his magnum
opus, Jeffreys reiterates the message from his 1938 article mentioned
above. The relevant fragment was already cited in Chapter 13 (i.e.,
Jeffreys 1939, p. 270; Jeffreys 1948, p. 307; Jeffreys 1961, p. 334).

3 Ly, A., Etz, A., Marsman, M., & Wagenmakers, E.–J. (2019). Replica-
tion Bayes factors from evidence updating. Behavior Research Methods,
51, 2498–2508. Exploits the sequential coherence outlined in this
chapter to quantify replication success; the original study takes the
role of batch A, the replication study takes the role of batch B, and
replication success is quantified by BFB|A. The posterior distribu-
tion from the original study represents the idealized position of a
proponent and acts as the prior distribution for the analysis of the
replication study (see also Verhagen and Wagenmakers 2014).

3 Wagenmakers, E.–J., Grünwald, P., & Steyvers, M. (2006). Accumula-
tive prediction error and the selection of time series models. Journal of
Mathematical Psychology, 50, 149–166.

3 Wagenmakers, E.–J., Lee, M. D., Rouder, J. N., & Morey, R. D.
(2020). The principle of predictive irrelevance or why intervals should
not be used for model comparison featuring a point null hypothesis. In
Gruber, C. W. (Ed.), The Theory of Statistics in Psychology – Applica-
tions, Use and Misunderstandings (pp. 111–129). Cham: Springer.
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Incoherence: The Putrid Smell of Rotten Meat
Governed by the iron laws of probability theory, Bayes factors exhibit
a perfect, Goldilocks kind of sensitivity to the prior distribution:
not too little, not too much, but exactly the right degree in order
to ensure that the method is coherent, that is, free from internal
contradictions. Alternative ‘Bayesian’ methods of model comparison
can be less sensitive to the prior distribution; no matter how well-
intentioned and technically sophisticated these alternatives may be,
they will all be incoherent.

This is an inconvenient truth that leaves statisticians who spurn
the Bayes factor scrambling for counterarguments. For instance, it
has been suggested to us that incoherence in statistics is accept-
able, because in daily life people fumble about incoherently as well.
We violently disagree. Issuing incoherent statements reveals that
something has gone badly off the epistemic rails. People ought to
experience great discomfort when their statements are shown to be
incoherent; for statistical inference procedures, which are prescriptive
in nature, the discomfort ought to be nigh intolerable.

For a statistical method, incoherence is like the putrid scent of rot-
ten meat; it is not the scent itself that is the main problem; instead,
the scent signals that the meat is off, and it is best avoided.



27 Senn’s Stubborn Mule

[with Frederik Aust and Quentin F. Gronau]

In a nutshell, a Bayesian will perform poorly if he/she is both misguided (with
prior mean far from the true value of the parameter) and stubborn (placing a
good deal of weight near the prior mean).

Samaniego, 2013

Chapter Goal

As demonstrated in the previous chapters, one attractive feature of
Bayesian inference is the ability to take into account background knowl-
edge by encoding it in the prior distribution. Such informed prior dis-
tributions can greatly accelerate the learning process; however, it may
occasionally happen that the background knowledge points strongly in
the wrong direction. This unfortunate scenario is known as prior-data
conflict, and it arises when the Bayesian is both stubborn (i.e., the in-
formed prior distribution is relatively peaked) and wrong (i.e., most of
the prior mass is assigned to parameter values that are undercut by the
data). The goal of this chapter is to outline how a Bayesian may protect
themselves against this eventuality by adopting a mixture prior consist-
ing of an informed prior distribution and a relatively vague ‘insurance’
prior distribution. The insurance prior protects the Bayesian against the
worst consequences of an eventual prior-data conflict, but –as is the case
with every insurance– it does come with a cost.

When Expectation and Experience Collide

Recall Exercise 10 in Chapter 8, which presented an adapted version of
Stephen Senn’s tongue-in-cheek definition of a Bayesian:

Bayesian: One who, strongly expecting a horse and clearly viewing a
donkey, confidently asserts having seen a mule (adapted from Senn 2007,
p. 46).
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This definition suggests that Bayesians ought to be mindful of what
can happen when the prior distribution conflicts with the data. For con-
creteness, consider a binomial version of Senn’s scenario: a researcher
assigns a highly informed beta(5, 50) prior distribution to an unknown
proportion θ, expecting mostly failures. The prior mean for θ equals
5/55 ≈ 0.09. As shown in Figure 27.1, this highly informed prior distri-
bution reflects, in Senn’s definition, the strong expectation of a horse.
The data, however, show s = 50 successes and f = 5 failures, for a
success proportion of 50/55 ≈ 0.91. This high success proportion re-
flects the clear viewing of a donkey. Crucially, the strong expectation
of mostly failures (the horse) contrasts with the experience of mostly
successes (the donkey). The Bayesian updating process is blind to this
contrast, however, and simply applies conjugate updating to arrive at a
posterior beta(55, 55) distribution. This posterior distribution conveys
the relatively certain knowledge that θ is near 1/2; in Senn’s definition,
the posterior distribution reflects the confident assertion of having seen
a mule (cf. Figure 27.1).
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Figure 27.1: Bayesian: One who, strongly expecting a horse and clearly viewing a donkey,
confidently asserts having seen a mule (adapted from Senn 2007, p. 46). A beta(5, 50)
prior distribution on θ is updated using s = 50 successes and f = 5 failures to yield
a beta(5, 50) posterior distribution. See text for details. Figure adapted from the JASP
module Learn Bayes. The drawings are taken from the work of Buffon, see Chapter 11.

Several remarks are in order:

◦ From the perspective of a militant ‘subjective’ Bayesian, the posterior
mule is the uniquely coherent answer to the inference problem. The
posterior distribution is a rational compromise between the prior dis-
tribution and the data, and this is exactly what we see in Figure 27.1.
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In other words, if You strongly expect a horse and clearly view a don-
key, You have no choice but to assert having seen a mule; any other
conclusion would lead to internal contradictions and therefore be
ludicrous.

◦ The same beta(55, 55) posterior distribution would have resulted if
expectation and experience were perfectly aligned; for instance, a
beta(28, 27) prior distribution combined with s=27 successes and
f=28 failures would also have resulted in a beta(55, 55) posterior
distribution. Hence, the posterior distribution provides no clue about
the fact that the prior distribution conflicted with the data.

◦ A pragmatic Bayesian would consider Senn’s scenario problematic
for at least two reasons. First, the conclusion (i.e., we confidently
assert having seen a mule) violates both expectation and experience.
When confronted with Senn’s scenario, most statisticians would stop
and reconsider, rather than thoughtlessly apply the model and base
one’s conclusions solely on the posterior distribution. In other words,
when the prior distribution is seriously off, the model is misspecified
in the sense that its predictions are poor, and this suggests that it
may not provide the best vehicle to learn from the data. The second
problem that would worry a pragmatic Bayesian is that, when the
prior distribution is off, it will take relatively many observations to
arrive at a posterior distribution that is concentrated on the ‘true’
parameter values. In other words, the learning process becomes
relatively inefficient.

◦ An earlier version of Senn’s scenario was featured in Chapter 25, in
the context of hypothesis testing. The section ‘Directional Restric-
tions’ demonstrated that the data can offer compelling evidence in
favor of H0 : θ = 1/2 vs. H+ : θ ∼ beta(1, 1)I(1/2, 1) when the
observed proportion of successes is (much) smaller than 1/2 (cf. Fig-
ure 25.12). In that case both H0 and H+ are subject to considerable
data-prior conflict, but that conflict is largest for H+, because the ob-
served data go in the direction opposite to that specified by H+. This
inspires another tongue-in-cheek definition of a Bayesian:

Bayesian: One who, expecting salt to quench thirst or to have no
effect on thirst whatsoever, and experiencing that salt makes one
very thirsty, confidently asserts that salt has no effect on thirst what-
soever.1 1 It may be argued that the inference is

absurd because the hypotheses violate the
Carneades-Cromwell’s rule (i.e., ‘never
assert absolutely’); that is, the Bayesian
was religiously convinced that salt could
never arouse thirst.

It seems clear, therefore, that incorporating valuable background
knowledge helps inference, whereas incorporating faulty background
knowledge hurts inference, exemplifying once more the adage ‘garbage
in, garbage out’.2 Unfortunately, the fact that the prior distribution was 2 See the discussion in Chapter 6.
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suboptimal often comes to light only after that distribution has shown
itself to conflict with the observed data. This conflict may then tempt
the Bayesian into adjusting the prior after the fact. Such a practice is
generally frowned upon, and for good reason:

“I would be remiss if I didn’t mention a suggestion that appears in certain
corners of the Bayesian literature on Bayesian robustness. I have seen,
more than once, the suggestion that, to be sure that one’s prior isn’t way
off the mark, one should take a peek at the data and decide on one’s
prior distribution on the unknown parameter after that. Nothing could
be more incoherent than such a practice! It’s the moral equivalent of
choosing what hypothesis to test after taking a look at what’s “provable”
from the observed data. (…) The practice of data peeking is in direct
conflict with the Bayesian paradigm.” (Samaniego 2010, p. 8)

Another solution to the prior-data conflict is to avoid it altogether,
and never use informed prior distributions. In other words, regardless
of what prior information is at one’s disposal, the wary Bayesian may
reject priors such as the beta(5, 50) distribution from Figure 27.1 alto-
gether, and instead prefer a relatively non-committal beta(1, 1) distribu-
tion.3 With vague prior distributions, prior-data conflict is impossible – 3 This has been termed the principle of

stable estimation (Edwards et al. 1963).or so it is generally argued.4 We believe this approach is overly cautious,
4 After considerable reflection we have
come to disagree with the received
wisdom. The issue is taken up in the
section ‘Broader Perspectives on Prior-
Data Conflict’, later in this chapter.

effectively throwing out the Bayesian baby with the bathwater.
In sum, Bayesians who use informed prior distributions open them-

selves up to the risk of prior-data conflict. When expertise and expe-
rience collide, the coherent posterior compromise can represent an
inference that is misleading and inefficient. This is the result of being
both stubborn and wrong (Samaniego 2010; 2013). The risk of prior-
data conflict can be entirely avoided by rejecting the use of any and all
informed prior distributions, but this cowardly retreat reeks of panic.
Instead, we believe a more level-headed and productive approach is to
mitigate the risk rather than eliminate it completely. This mitigation
approach represents a compromise between the extreme options of fully
embracing and completely rejecting informed prior distributions.5 In 5 A different approach is to specify

‘weakly informative priors’ (Gelman
et al. 2008), whose primary purpose is to
improve (i.e., regularize and stabilize) the
resulting parameter estimates without
having to insert strong background
knowledge.

general, when faced with a choice between two incompatible statistical
procedures (here: full adoption or complete rejection of an informed
prior distribution), each with complementary merits and demerits, the
most reasonable course of action is often to apply both procedures si-
multaneously, and have the data determine the extent to which the
conclusion rests on one or the other. The next section shows how this
can be accomplished.

Mitigating Risk With Robust Mixture Priors

As outlined above, we may assign parameter θ either an informed prior
distribution, or a vague prior distribution. The use of an informed prior
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distribution represents an aggressive approach to statistical modeling,
where all available background information is brought to bear on a
problem of interest. The upside of statistical aggression is accelerated
learning; its downside is the risk of prior-data conflict. An attractive
solution is to assign θ both an informed prior distribution and a vague
prior distribution. In other words, the prior distribution for θ is a two-
component mixture of an informed prior distribution and a vague prior
distribution (Berger and Berliner 1986; see also Bolstad 2007, Chap-
ter 16, as well as Bose 1994, Egidi et al. 2021, Mutsvari et al. 2016,
Schmidli et al. 2014, Yang et al. 2023). Each component is assigned
a prior weight, reflecting the confidence associated with the relevant
background information as well as the willingness to tolerate a risk of
prior-data conflict.6 In the mixture prior setup, the vague distribution 6 This bears similarity to the way in-

vestors mitigate financial risk by diversi-
fying their portfolio of assets.

can be considered as a kind of epistemic insurance: if the background
knowledge proves to be faulty and the informed prior fails, the vague
‘insurance prior’ kicks in and prevents the posterior inference from be-
ing misleading and inefficient. In other words, by reserving some prior
mass for the vague insurance prior, posterior inference becomes robust
to misspecification of the informed prior distribution (e.g., Best et al.
2021, Schmidli et al. 2014). The insurance prior acts as a safety net that
allows aggressive statistical modeling while mitigating the more serious
consequences of a potential prior-data conflict. The insurance is paid in
terms of the amount of prior probability that is relocated away from the
informed prior and assigned to the insurance prior.
Two qualitatively different scenarios may be distinguished. First, if

the informed prior is roughly on point, then one can take advantage of
having used it – even though some efficiency gains are lost due to the
insurance premium, that is, the prior mass that had to be assigned to
the insurance prior distribution. With the power of hindsight, the in-
surance was not needed. Second, if the informed prior is wildly wrong,
the inference will be determined mostly by the insurance prior and
therefore does not suffer so intensely from the data-prior conflict. With
the power of hindsight, the informed prior should not have been used
at all. Of course hindsight cannot be used to adjust prior distributions –
this would be akin to buying insurance for an accident that has already
happened (cf. the earlier quotation by Samaniego).
The above approach goes under the name of ‘robust mixture priors’

and will be discussed below separately for parameter estimation and
hypothesis testing. “When it is known that actual departures

from the assumptions underlying the
standard form could cause inferences
based on the latter to be badly mislead-
ing, there is a need for model robustifi-
cation, which, according to Box (1980),
consists of “judicious and grudging elabo-
ration of the [currently proposed] model
to ensure against particular hazards”.”
(Smith 1983, p. 14)

Robust Mixture Priors for Parameter Estimation

The scenario shown in Figure 27.1 (henceforth the ‘Senn scenario’)
features a relatively informed prior distribution, that is, θ ∼ beta(5, 50).
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To provide protection against being stubborn and wrong we enlarge the
model specification and add a relatively uninformed ‘insurance prior’,
that is, θ ∼ beta(2, 2) which we assign a prior probability of 0.20. At
the outset, most weight is assigned to the informed prior distribution,
but some is set aside to cover the eventuality that the informed prior
is far away from the data; the weight that is assigned to the insurance
prior may be considered the insurance premium. Thus, the complete
model specification consists of a two-component mixture: B5,50 denotes
the informed beta distribution, and B2,2 denotes the insurance beta
distribution. The overall (‘marginal’) prior probability distribution for θ
is given by the law of total probability:

p(θ) = p(θ | B5,50) p(B5,50) + p(θ | B2,2) p(B2,2)
= p(θ | B5,50) · 0.80 + p(θ | B2,2) · 0.20.

(27.1)

The resulting prior mixture distribution is shown in Figure 27.2; the
distribution is dominated by the informed beta(5, 50) component, but
the impact of the dome-shaped insurance beta(2, 2) prior is nonetheless
visible from the pronounced right tail and a subtle bimodality.
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Figure 27.2: Robust two-component mixture prior distribution for the Senn scenario.
Probability 0.80 is assigned to an informed beta(5, 50) prior distribution on θ, and the
remaining probability of 0.20 is assigned to a beta(2, 2) ‘insurance prior’ whose impact is
apparent from the pronounced right tail and the subtle bimodality. Figure from the JASP
module Learn Bayes.

After observing 55 successes and 5 failures, the posterior distribution
for θ is a mixture of the two posterior beta distributions, as dictated
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again by the law of total probability:

p(θ | data) = p(θ | data,B5,50) p(B5,50 | data)+ p(θ | data,B2,2) p(B2,2 | data).
(27.2)

Note that the mixture weights p(B5,50 | data) and p(B2,2 | data) represent
the posterior probabilities for each of the two mixture components.7 7 Equation 27.2 may be obtained from

Equation 27.1 by simply adding the
conditioning on ‘data’ to every term.

This means that when the data strongly contraindicate B5,50, the corre-
sponding mixture weight will be near 0, and the posterior distribution
for θ will be determined almost exclusively by the ‘insurance’ mixture
component B2,2. Indeed, this is exactly what happens in the Senn sce-
nario. The observed data consist of 50 successes and 5 failures, and
this outcome is much more likely under the insurance B2,2 component
than under the informed B5,50 component. In other words, the pre-
dictive performance for the B5,50 component is abysmal; consequently,
p(B2,2 | data) is near 1, and the posterior distribution for θ closely resem-
bles the beta(52, 7) distribution that obtains under the insurance prior.
By setting aside some prior mass to eventuality that the informed prior
is misguided, the arguably undesirable consequences of the prior-data
conflict are entirely avoided.8 8 In other words, little is lost by specify-

ing an informed prior that turns out to
be strongly contradicted by the data, as
long as there exists an insurance prior to
pick up the slack.
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Figure 27.3: Robust two-component mixture posterior distribution for the Senn scenario.
The posterior inference is determined almost exclusively by the insurance prior. The cross
indicates the sample proportion (i.e., 50/55 ≈ .91). See text for details. Figure adapted
from the JASP module Learn Bayes.

Note that the posterior mixture from Equation 27.2 is a form of
Bayesian model averaging that we encountered several times before. For
instance, in Chapter 12 we predicted whether or not the ninth pancake
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would have bacon, and this required that we average across the four
pancake forecasters Tabea, Sandra, Elise, and Vukasin (cf. Figure 12.8).
Similarly, in Appendix B of Chapter 12 we presented the marginal
prior and posterior distributions for bacon proclivity θEJ , averaged
across the same four forecasters – these distributions were therefore
four-component beta mixture distributions.

Robust Mixture Priors for Hypothesis Testing

Robust mixture priors also find application in hypothesis testing, where
a single value such as θ = 1/2 stands out for special attention. For
concreteness, consider the conjecture by Jeffreys (1936c) that people
associate even numbers (e.g., 2, 4, 6, 8) with femininity and odd numbers
(e.g., 1, 3, 5, 7, 9) with masculinity.9 In other words, Jeffreys suggested

9 Jeffreys derived this prediction from
rather speculative psychoanalytic con-
siderations; we will leave these to the
imagination of the reader. Throughout
his career, Jeffreys was a vocal supporter
of Freud’s psychoanalysis. Jeffreys
himself sought psychoanalysis in the
1920s, perhaps because he was unhappy
after Dorothy Wrinch broke up with
him (Strachey and Strachey 1986, pp.
223–224; Howie 2002, p. 102; see also
Cameron and Forrester 2000).

that numbers are gendered. Jeffreys never appears to have tested his
own conjecture empirically10 but such a test was ultimately conducted

10 Jeffreys was one of the most prominent,
thorough, and hard-working scientists of
the 20th century. Foregoing an empirical
test of such a speculative hypothesis
seems unusually careless. Maybe he
had more important theories to test,
or maybe he regarded the truth of the
theory as self-evident.

by Wilkie and Bodenhausen (2012, 2015) who were presumably un-
aware that Jeffreys had put forward the key hypothesis more than 75
years earlier. The data from Wilkie and Bodenhausen provided strong
empirical support in favor of Jeffreys’ hypothesis:

“Across several experiments, we show that the number 1 and other odd
numbers are associated with masculinity, whereas the number 2 and
other even numbers are associated with femininity” (Wilkie and Boden-
hausen 2012, p. 206)

and

“We confirmed that odd numbers seemed masculine while even numbers
seemed feminine.” (Wilkie and Bodenhausen 2015)

Throughout the remainder of this chapter, we will focus on the
probability θ of deeming the number 5 more masculine than feminine.
Reanalyzing the data from Wilkie and Bodenhausen (2015) we conclude
that 64 of their participants deemed the number 5 more masculine than
feminine, whereas 18 participants felt the opposite11; thus, the sample 11We are grateful to Wilkie and Bo-

denhausen (2015) for sending us their
data.

proportion of people who associated the number 5 with masculinity was
64/82 ≈ 0.78.
We now entertain a hypothetical replication study in which another

group of people are asked whether they deem the number 5 more mas-
culine or more feminine. In order to quantify the evidence that such
a replication experiment provides for and against Jeffreys’ gendered
number hypothesis, we first define the sceptics’ null-hypothesis as
H0 : θ = 1/2 (i.e., people associate the number 5 neither with masculin-
ity nor with femininity) and contrast this with the proponents’ alter-
native hypothesis H1, which requires that θ –the proportion of people
who find the number 5 more masculine than feminine– is assigned a
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prior distribution. A straightforward choice would be to use the Wilkie
and Bodenhausen data and hence define H1 : θ ∼ beta(65, 19), which
we shorten to B65,19. The proponents’ prior distribution for the replica-
tion experiment would therefore be defined as the posterior distribution
from the original experiment (under a uniform prior for the original
study; cf. Verhagen and Wagenmakers 2014, Ly et al. 2019).
However, the informed Wilkie-Bodenhausen B65,19 prior is rela-

tively peaked and hence comes with the risk of prior-data conflict,
which would complicate the interpretation of the results.12 To mit- 12 In this particular case, such a conflict

may arise from sampling a different
population (e.g., Dutch women) or from
sociocultural changes (e.g., the popularity
of the movie ‘Five for Life’ that describes
the deep emotional ties between a group
of five girls as each struggles to overcome
their own personal challenges).

igate this risk we add the vague beta(2, 2) insurance prior (denoted
B2,2) as a mixture component to the prior specification, and assign it a
prior probability of p(B2,2), with the complementary prior probability
p(B65,19) = 1 − p(B2,2) reserved for the informed Wilkie-Bodenhausen
component.
The Bayes factor for H0 versus the mixture prior model H1 can then

be decomposed as follows:

BF10 =
p(data | H1)

p(data | H0)

=
p(data | B65,19) p(B65,19) + p(data | B2,2) p(B2,2)

p(data | H0)

= p(B65,19) ·
p(data | B65,19)
p(data | H0)

+ p(B2,2) ·
p(data | B2,2)
p(data | H0)

= p(B65,19) · BFinformed10 + p(B2,2) · BFinsurance10 .

(27.3)

In words, the Bayes factor for the robust mixture H1 is a weighted av-
erage of the informed Bayes factor (contrasting B65,19 against H0) and
the insurance Bayes factor (contrasting B2,2 against H0), with the averag-
ing weights equal to the prior probabilities assigned to the two mixture
components.13 When the prior weights are set to 1 or 0 we recover the 13 In Chapter 23, this was called the

“weighted average” of the partial factors
(Good 1950, p. 68; Zabell 2023, p. 289).

‘pure’ Bayes factors for the individual components versus the null hy-
pothesis. Another way to interpret Equation 27.3 is that the Bayes factor
for the robust mixture prior model H1 versus the null hypothesis H0

is itself a mixture of Bayes factors for each of the separate components.
This way of factorizing the Bayes factor allows for a better understand-
ing of the impact of including the insurance prior.
Consider the possibility that the informed prior is dreadful (compared

to the insurance prior). In this case BFinformed10 will be near zero, and
hence the Bayes factor will approximately equal p(B2,2) · BFinsurance10 . The
prior probability p(B2,2) can be seen to act as a correction for initially
entertaining both B2,2 and B65,19. But if p(B2,2) is not too low, one may
still conclude that the data undercut H0 even when the data support H0

over the informed prior. This warrants a concrete example.

Example: When the informed prior is dreadful
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Consider the scenario outlined above: a null hypothesis H0 : θ = 1/2

(i.e., the probability equals 1/2 that any given person will deem the num-
ber 5 more masculine than feminine) is compared to a two-component
robust mixture hypothesis H1, with weight p(B65,19) = 0.80 assigned to
the informed beta(65, 19) prior distribution, and weight p(B2,2) = 0.20

assigned to the insurance beta(2, 2) prior distribution. Assume that new
data show that out of 70 people, 20 judged the number 5 to be more
masculine, and 50 judged it to be more feminine.
The data and the models can be specified in the Binomial Testing rou-

tine of the Learn Bayes JASP module, as shown in Figure 27.4. In order
to show all relevant models simultaneously, we assign probability 1/2 to
H0, and distribute the remaining 1/2 over the two mixture components
of H1 in the ratio of .80 to .20.

Figure 27.4: JASP screenshot of two input panels from the Binomial Testing routine of the
Learn Bayes module. The input panels control the inference for three different models.
Top panel: specification of the data; bottom panel: specification of the three models. See
text for details.

Figure 27.5 displays the corresponding marginal prior distribution
for θ. The two-component mixture alternative hypothesis H1 shows a
subtle bimodality.
The data yield 20 out of 70 ‘successes’ for a sample proportion of

≈ .29. Predictive performance for the null hypothesis H0 may be poor,
but for the informed prior B65,19 it is truly abysmal. If the insurance
prior were left out of the specification of H1, one could conclude that
the data offer evidence in favor of H0, as the data are about 425,713
times more likely under H0 than under B65,19. Such a conclusion would
be strictly correct, but it is the unenviable result of engaging in testing
with a highly informed prior in the absence of an epistemic safety net.
The data undercut both H0 and B65,19, but they undercut B65,19 much
more.14 14 A similar result was discussed in the

section ‘Directional Restrictions’ from
Chapter 25.

Including the insurance prior B2,2 in the specification of H1 changes
the conclusions in dramatic fashion. First, Figure 27.6 shows the
marginal posterior distribution across the models in play. The height
of the spike at θ = 1/2 is slightly lower than 0.04 (second y-axis), indicat-
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Figure 27.5: Marginal prior distribution for θ across the null hypothesis and a robust
mixture alternative hypothesis as specified in Figure 27.4. The arrow at θ = 1/2 reflects
the posterior mass of 1/2 for H0 (second y-axis). Figure from the JASP module Learn
Bayes.

ing that the data have greatly reduced the plausibility of H0. Moreover,
the posterior mixture is centered on the sample proportion.15 15Without the insurance prior, the poste-

rior would be a beta(85, 69) distribution,
which is far removed from the sample
proportion.

A more detailed examination of the results is provided in Table 27.1.
A comparison of the prior model probabilities p(H) to the posterior
model probabilities p(H | data) reveals that the insurance prior B2,2
enjoys a substantial gain in plausibility (from 0.100 to 0.962), whereas
both the null hypothesis H0 and the informed prior B65,19 suffer a
considerable decline. The BF10 column reveals that the insurance prior
B2,2 predicts the observed data about 126 times better than the null
hypothesis, whereas the null hypothesis outpredicts the informed prior
by a factor of 1/2.348× 10−6 ≈ 425,713. Applying Equation 27.3 yields

BF10 = p(B65,19) · BFinformed10 + p(B2,2) · BFinsurance10

= 0.80 · 2.349× 10−6 + 0.20 · 125.580
≈ 25.12.

The evidence against the null hypothesis is 25.12, which is about one-
fifth of what it would have been if only the insurance prior had been
entertained. In other words, there is an epistemic cost associated with
assigning 0.80 prior mass to a hypothesis that turns out to be dreadful.
From comparing the null hypothesis against the robust mixture prior
model we may conclude that the data do provide evidence against the
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Figure 27.6: Marginal posterior distribution for θ across the null hypothesis and a robust
mixture alternative hypothesis as specified in Figure 27.4. The arrow at θ = 1/2 reflects
the posterior mass of ≈ .038 for H0 (second y-axis). The cross indicates the sample
proportion (i.e., 20/70 ≈ .29). Figure from the JASP module Learn Bayes.

null hypothesis, despite the fact that the background knowledge for the
informed prior was incorrect.

Table 27.1: Hypothesis testing results for the robust mixture alternative hypothesis when
the informed prior is dreadful. Hypothetical data: 20 people judged the number 5 to be
more masculine; 50 judged it to be more feminine.

Hypothesis p(H) p(H | data) BF10

Informed Prior 0.400 7.196× 10−8 2.349× 10−6

Insurance Prior 0.100 0.962 125.580

Null Hypothesis 0.500 0.038

Now consider Equation 27.3 in light of the possibility that the in-
formed prior is wonderful (compared to the insurance prior). In that
case BFinsurance10 will be near zero, and hence the Bayes factor will ap-
proximately equal p(B65,19) · BFinformed10 . The prior probability p(B65,19)
dampens the evidence against H0 to the degree that the insurance prior
was also entertained. In other words, this is the impact of the insurance
premium. Again, a concrete example is warranted.

Example: When the informed prior is wonderful

Consider the same scenario as before, but now assume that the new
data are consistent with the informed prior; specifically, imagine that
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the new data show that out of 70 people, 50 judged the number 5 to
be more masculine, and 20 judged it to be more feminine – a perfect
reversal of the hypothetical data discussed in the previous section.
Because only the labels are flipped, predictive performance of the

null hypothesis H0 is just as poor as it was before. Similarly, predictive
performance of the insurance beta prior B2,2 also remains the same –
the insurance prior is symmetric around θ = 1/2 and does not encode a
directional preference; hence, under the B2,2 prior a result of 20/70 is
just as likely as a result of 50/70. The only difference therefore is in the
predictive performance for the informed beta prior B65,19, previously
the worst but now the best.

Table 27.2: Hypothesis testing results for the robust mixture alternative hypothesis when
the informed prior is wonderful. Hypothetical data: 50 people judged the number 5 to be
more masculine; 20 judged it to be more feminine.

Hypothesis p(H) p(H | data) BF10

Informed Prior 0.400 0.921 380.192

Insurance Prior 0.100 0.076 125.580

Null hypothesis 0.500 0.003

A detailed examination of the results is provided in Table 27.2. A
comparison of the prior model probabilities p(H) to the posterior model
probabilities p(H | data) reveals that the informed prior B65,19 enjoys a
substantial gain in plausibility (from 0.400 to 0.921), whereas the null
hypothesis H0 suffers a considerable decline (from 0.500 to 0.003) and
the insurance prior B2,2 decreases in plausibility only a little (from 0.100

to 0.076). The BF10 column reveals that the null hypothesis is outpre-
dicted both by the informed prior B65,19 (i.e., BF10 = 380.192) and by
the insurance prior B2,2 (i.e., BF10 = 125.580). Applying Equation 27.3
yields

BF10 = p(B65,19) · BFinformed10 + p(B2,2) · BFinsurance10

= 0.80 · 380.192 + 0.20 · 125.580
≈ 329.

The evidence for the robust mixture alternative hypothesis against the
null hypothesis is 329, which is a little less than what it would have
been if only the informed prior had been entertained – this is the result
of paying the insurance premium.
For completeness, Figure 27.7 shows the marginal posterior distri-

bution across the models in play. Note that the height of the spike at
θ = 1/2 (second y-axis) is an order of magnitude lower than it was in
Figure 27.6, indicative of the fact that the support against H0 is much
stronger now that the informed component of H1 is predictively ade-
quate.
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Figure 27.7: Marginal posterior distribution for θ across the null hypothesis and a robust
mixture alternative hypothesis as specified in Figure 27.4. The arrow at θ = 1/2 reflects
the posterior mass of ≈ .003 for H0 (second y-axis). The cross indicates the sample
proportion (i.e., 50/70 ≈ .71). Figure from the JASP module Learn Bayes.

In the above examples we have deliberately glossed over the problem
of assigning the prior weights to the mixture components in H1. As
with any insurance, there is a dilemma to be negotiated. On the one
hand, if the probability for the insurance prior is set close to 1 then
there is almost no use in specifying an informed prior distribution. On
the other hand, if the probability for the insurance prior is close to 0,
then the epistemic safety net is almost nonexistent. Ideally the mix-
ture weights are determined by the peakedness of the informed prior
distribution (i.e., the more peaked, the more severe the potential con-
sequences of prior-data conflict) as well as the perceived relevance of
the background information that motivated the informed prior distribu-
tion (i.e., the more relevant, the lower the probability that a prior-data
conflict will occur).
It is noteworthy that a potential problem with ‘subjective’, informed

priors can be alleviated by enlarging the statistical model and adding
an insurance prior distribution, effectively introducing new parameters
that also need to be assigned prior distributions.

Broader Perspectives on Prior-Data Conflict

So far we have presented the perspective of Samaniego and others, ac-
cording to whom prior-data conflict occurs whenever a Bayesian is ‘both
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stubborn and wrong’. We now switch gears and entertain a more gen-
eral perspective: prior-data conflict occurs whenever substantial prior
mass is wasted on parameter values that are strongly undercut by the data.
Contrary to received wisdom, this perspective implies that a vague,
uninformative prior can also cause substantial prior-data conflict. For
instance, in the analysis of results from extra-sensory perception (cf.
Chapter 22), coin tossing (cf. Chapter 25), and dice throwing (cf. Chap-
ter ??), Bayesians who assign θ a uniform prior distribution from 0 to 1

effectively allocate considerable prior mass to values that the data will
reveal to be deeply implausible; the prior mass assigned to these values
has simply been wasted. When it comes to quantifying a model’s pre-
dictive performance (i.e., when the interest is in hypothesis testing), it
does not matter whether the wasted prior mass was evenly spread out
across the implausible parameter values (i.e., by means of a vague prior
distribution) or whether the wasted mass was assigned to a narrow in-
terval of implausible values (i.e., by means of an informed ‘stubborn’
prior distribution): what matters for predictive performance is solely
how much prior mass was in fact wasted.16 16 This will be clarified below with a

concrete example.According to the more general perspective then, no single prior is safe
from the possibility of data-prior conflict, except for the ‘oracle prior’ that
assigns all mass to the single parameter value that provides the best
prediction for the observed data (i.e., the maximum likelihood estimate
or MLE). Several loose and intuitive measures of prior-data conflict now
suggest themselves:

1. Prior-data conflict can be gauged by the extent to which the Bayesian
feels tempted to adjust their prior distribution post-hoc, after having
seen the data.

2. Prior-data conflict can be measured by the price that the Bayesian
would be willing to pay to replace the prior distribution at hand
with a distribution that is tightly centered around the maximum
likelihood estimate (MLE).

3. Prior-data conflict is a measure of regret or disappointment about the
prior distribution that was used.

Any attempt to formalize these intuitive measures of prior-data con-
flict has to confront the complication that a prior distribution and the
observed data do not inhabit the same space – the prior distribution
for parameter θ is a continuous quantity that reflects epistemic uncer-
tainty, and the observed data are discrete and represent a known fact
about the world. How to compare these statistical apples and oranges?
One solution is to consider not the prior parameter distribution, but the
prior predictive. The predictive is on the space of data, and this allows a
direct comparison of what is expected and what is observed.
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To clarify these ideas, consider a binomial data set that features 100
observations, half of them successes and half failures. We wish to assess
prior-data conflict for two models: the first model (i.e., B1,1) is the
uniform prior with θ ∼ beta(1, 1), and the second model (i.e., B75,45) is
an informed prior with θ ∼ beta(75, 45). As a benchmark model we also
consider the oracle MLE prior that assigns all prior mass to θ = θ̂ = 0.50.
Figure 27.8 shows the prior predictive distributions for all three models,
with the cross denoting the sample proportion.
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Figure 27.8: Prior predictive distributions for the number of successes out of 100 bino-
mial outcomes under three models: (1) HMLE, the oracle MLE prior with θ = θ̂ = 50/100;
(2) B1,1, the uniform prior with θ ∼ beta(1, 1); (3) B75,45, an informed prior with
θ ∼ beta(75, 45). Prior-data conflict for B1,1 and B75,45 can be measured by the extent
to which these models are outpredicted by the oracle MLE. The cross denotes the sample
proportion of 50/100 = 0.50. Figure from the JASP module Learn Bayes.

As indicated by the brown line in Figure 27.8, the prior predictive
distribution from the oracle MLE prior is relatively peaked and cen-
tered around the observed number of successes. This account for the
observed data cannot be improved upon by altering the prior distribu-
tion; it is true that the oracle MLE prior does not perfectly predict the
observed data, but this residual predictive uncertainty reflects only the
inevitable binomial sampling variability. Under the oracle MLE prior,
the observed data have a probability of approximately 0.08.17 17 The value suggested by Figure 27.8 is

about three times smaller; in JASP, the
predictions are shown across all three
models, each of which is deemed equally
a priori, and this scales the probabilities
by a factor of three.

The grey line in Figure 27.8 shows the prior predictive from the
B1,1 model. As discussed in Chapters 14 and 15, the uniform prior
on θ induces a uniform prior predictive on the number of successes.
The predictive loss of using the B1,1 prior rather than the oracle MLE
prior is quantified by the fact that the observed data have a probability
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of 1/101 ≈ 0.01 under the B1,1 prior predictive. This is yet another
example of ‘the price of vagueness’: the B1,1 model spreads out its
predictive mass evenly across all possibilities, which means there is less
mass available for the possibility that actually materialized. The regret
or disappointment associated with using the B1,1 prior rather than the
oracle MLE prior is therefore quantified by a factor of 0.08/0.01 = 8 (i.e.,
the ratio of the heights of the predictive distributions evaluated at the
observed number of successes).
The green line in Figure 27.8 shows the prior predictive from the in-

formed B75,45 model. The observed number of successes fall in the tail
of the predictive distribution, suggesting a modest prior-data conflict.
The probability of the observed data under the B75,45 model equals ap-
proximately 0.01, a value that is eight times less than the probability
under the oracle MLE prior and that is virtually identical to the proba-
bility under the uniform B1,1 model.18 Thus, despite the models’ rather 18 The approximate equality is visible

from the fact that the two prior pre-
dictive distributions intersect at the
observed number of successes.

different levels of statistical boldness, the predictive adequacy of the
informed B75,45 model (problem: ‘stubborn and wrong’) happens to be
almost identical to that of the uniform B1,1 model (problem: ‘vagueness
leads nowhere’).
It will not have escaped the attentive reader that in this section we

measured prior-data conflict by means of a Bayes factor, that is, by com-
paring predictive adequacy for the observed data across rival models that
differ only in the prior distribution that they assign to the (common)
parameters. One possible comparison is that between a prior distribu-
tion of interest and the oracle MLE. However, the gap in predictive
adequacy will increase with sample size and it is not immediately clear
how this Bayes factor should be scaled and interpreted.
In sum, we have argued in this section that prior-data conflict man-

ifests itself not only when the Bayesian is ‘both stubborn and wrong’;
rather, it is present whenever a prior distribution allocates substantial
mass on values that are undercut by the data. The relative amount of
prior-data conflict for two rival models may be quantified by the Bayes
factor, that is, the relative predictive probability that the models assign
to the observed data.
This discussion suggests that for the purpose of hypothesis testing,

no single prior is safe from potential prior-data conflict. In particular,
even the insurance prior needs to be carefully chosen; an insurance
prior that is overly wide yields poor predictions and in fact also yields a
data-prior conflict.

Exercises

1. Suppose we test H0 : θ = 1/2 against an informed prior that assigns
most mass to values of θ larger than 1/2, for example H1 : θ ∼
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beta(10, 2). Now suppose that the observed sample proportion is
actually lower than 1/2, say 0.20. Would the data support H0 or H1?
[beware: this is a difficult question]

2. Suppose we wish to test H0 : θ = 1/2 against an informed prior
H1 : θ ∼ uniform(.40, .60). What distribution would you recommend
as an insurance prior?

3. Compare Equation 27.2 to Equation 27.3; what can you say about the
impact of the prior?

4. The closing paragraph of this chapter states that “…for the purpose
of hypothesis testing, no single prior is safe from potential prior-
data conflict”. But what if the purpose is parameter estimation?
Specifically, can a uniform beta(1, 1) yield prior-data conflict when
used for estimation?

Chapter Summary

One of the main strengths of Bayesian inference is the ability to in-
corporate prior information into the learning process. Specifically, the
inclusion of extensive background knowledge yields informed prior
distributions that are concentrated on a small subset of the parameter
space. When the background knowledge is valid, including it improves
the inference, making it more efficient and informative. However,
Bayesians who use highly informed prior distributions open themselves
up to the risk of prior-data conflict: the possibility that the background
knowledge was faulty and therefore leads the analyst astray. When the
data are wildly inconsistent with the knowledge encoded in the prior
distributions, an unthinking application of Bayes’ rule can lead to con-
clusions that are both misleading and inefficient, as demonstrated by
Senn’s mule (cf. Figure 27.1). In other words, Bayesians are in trouble
when they are both stubborn and wrong (Samaniego 2010; 2013).
The risk of prior-data conflict can be mitigated by the use of ‘robust

mixture priors’, where the specification of an informed prior distribu-
tion is complemented with a relatively vague ‘insurance prior’. When
the data conflict strongly with the informed prior distribution, the infer-
ence falls back on the insurance prior, protecting the analyst from draw-
ing dubious conclusions. The inclusion of an insurance prior enhances
robustness but does come with a price tag – you buy insurance against
the informed prior distribution being wildly off, and the currency of
your payment is in terms of prior probability. The more insurance you
buy (because you are risk-averse, or because you are unsure about the
quality or relevance of the existing background knowledge) the less
harmful the consequences of being wrong, and the less beneficial the
consequences of being right.
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In sum, robust mixture priors allow Bayesians to model the data
aggressively, while protecting themselves against the repercussions in
case the aggressive approach backfires.
At the end of the chapter we switched gears and argued for a more

general definition of prior-data conflict. According to this definition,
prior-data conflict occurs whenever the prior distribution was ill-chosen
in the sense that it yields relatively poor predictions for the observed
data. This means that (when the goal is hypothesis testing and not
parameter estimation) vague prior distributions can generate prior-data
conflict as well, which in turn implies that no prior is safe from prior-
data conflict, except for the oracle MLE prior. For two models, we argue
that the relative degree of prior-data conflict is measured by the Bayes
factor.

Want to Know More?

3 Another statistical conflict –one that we will not discuss in this
book– is that between data and likelihood. This conflict is com-
monly known as model misspecification. For instance, in Chapter 12 we
assumed that a binomial process governed the production of bacon
vs. vanilla pancakes. However, it may be that the data are clustered
– perhaps the baker first produced an unbroken string of vanilla
pancakes, then opened a container with bacon strips to produce an
unbroken string of bacon pancakes, and returned to baking a string
of vanilla pancakes once the bacon was finished. In the binomial
model, such clustering can arise only by chance. Another example
of binomial misspecification is that, unbeknownst to the analyst, the
pancakes are actually produced by two bakers, each with their own
unique bacon proclivity.

The similarities between prior-data conflict and likelihood-data
conflict are striking. Confronted with the pancake sequence
y = {v, v, v, v, v, b, b, b, b, b, v, v, v} few statisticians would feel com-
fortable blindly applying the binomial model that they may initially
have entertained. This suggests a more general version of Senn’s
mule:

Statistician: One who, intent on predicting future world record times
for the men’s 100-meter dash, applies a linear regression model to
the historical data and asserts that in the year 3500, the world record
might well be a negative number of seconds.

For concreteness, Table 27.3 shows the historical world record data,
and Figure 27.9 shows the predictions of the corresponding linear
model.19 It is evident that these predictions are wildly implausible 19 A similar point is made by the xkcd

cartoon ‘extrapolating’ (https://xkcd.
com/605/).

and at some point become physically impossible.20

20 For data such as these, an appropriate
likelihood would predict world records
that slowly improve and always respect
the inherent limits of human physiology.

https://xkcd.com/605/
https://xkcd.com/605/
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Table 27.3: Progression of world records on the men’s 100-meter dash, including only
ratified and electronically recorded times, and removing ties. Source: Wikipedia page on
‘Men’s 100 metres world record progression’, consulted March 22, 2024.

Time (s.) Athlete Year

9.95 Jim Hines 1968

9.93 Calvin Smith 1968

9.92 Carl Lewis 1988

9.90 Leroy Burrell 1991

9.86 Carl Lewis 1991

9.85 Leroy Burrell 1994

9.84 Donovan Bailey 1996

9.79 Maurice Green 1999

9.77 Asafa Powell 2005

9.74 Asafa Powell 2007

9.72 Usain Bolt 2008

9.69 Usain Bolt 2008

9.58 Usain Bolt 2009

Furthermore, likelihood-data conflict is identical to prior-data con-
flict in its diagnosis (i.e., the model yields relatively poor predictions,
even under the oracle MLE model), in measurement (i.e., through
Bayes factors or posterior probabilities), and in the cure (i.e., making
the inference more robust by including additional models with dif-
ferent likelihoods, and averaging across them). For recent examples
of model-averaging across different likelihoods see Gronau et al.
(2021a), Maier et al. (2023; 2024) and van den Bergh et al. (2021) (for
older examples see Ratcliff and Tuerlinckx 2002; Rae et al. 2014).

3 Bolstad, W. M. (2007). Introduction to Bayesian statistics (2nd ed.).
Hoboken, NJ: Wiley. This is one of the best introductory books on
Bayesian inference. Chapter 16, ‘Robust Bayesian methods’ (pp. 317–
332) is devoted entirely to the topic of robust mixture priors.

3 Young, K. D. S., & Pettit, L. I. (1996). Measuring discordancy be-
tween prior and data. Journal of the Royal Statistical Society: Series B
(Methodological), 58, 679–689. This underappreciated article outlines
a principled approach towards quantifying prior-data conflict.

3 van Doorn, J., Matzke, D., & Wagenmakers, E.–J. (2020). An in–
class demonstration of Bayesian inference. Psychology Learning and
Teaching, 19, 36–45. The abstract:

“Sir Ronald Fisher’s venerable experiment “The Lady Tasting Tea” is
revisited from a Bayesian perspective. We demonstrate how a similar
tasting experiment, conducted in a classroom setting, can familiarize
students with several key concepts of Bayesian inference, such as the
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Figure 27.9: Projections of a linear regression model applied to the world record times on
the men’s 100-meter dash. Impossible predictions suggest that the model is inappropriate
for the data.

prior distribution, the posterior distribution, the Bayes factor, and
sequential analysis.”

The relevance for the present chapter is demonstrated in Appendix
A.

3 Schmidli, H., Gsteiger, S., Roychoudhury, S., O’Hagan, A., Spiegelhal-
ter, D., & Neuenschwander, B. (2014). Robust meta-analytic-predictive
priors in clinical trials with historical control information. Biometrics,
70, 1023–1032.

“Historical information is always relevant for clinical trial design. Ad-
ditionally, if incorporated in the analysis of a new trial, historical data
allow to reduce the number of subjects. This decreases costs and trial
duration, facilitates recruitment, and may be more ethical. Yet, un-
der prior-data conflict, a too optimistic use of historical data may be
inappropriate. (…) We propose two- or three-component mixtures of
standard priors (…) since one of the mixture components is usually
vague, mixture priors will often be heavy-tailed and therefore robust.
Further robustness and a more rapid reaction to prior-data conflicts
can be achieved by adding an extra weakly-informative mixture com-
ponent.” (p. 1023)

3 Pawel, S., Aust, F., Held, L., & Wagenmakers, E.–J. (2023). Normal-
ized power priors always discount historical data. Stat, 12:e591. When
the informed prior distribution is based on historical information,
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another popular way to protect the inference from prior-data conflict
is to downweigh the impact of the earlier information, an approach
known as ‘power priors’ that is particularly prominent in the analysis
of pharmacological data.

Appendix A: The Lady Algologist Tasting Tea

In a highly recommended paper, Lindley (1993) describes one of the
most famous experiments in all of statistics, generally known as ‘the
lady tasting tea’, designed and conducted by Ronald Fisher, with Dr.
Muriel Bristol the sole participant: A vivid account is provided by Senn

(2012). The first sentence: “Three
scientists were taking tea in the common
room at an agricultural research station
one afternoon in the early 1920s. The
male statistician poured milk into a cup,
added tea, and, since this was the 1920s
and he was a gentleman, offered it to the
female algologist.”

“One afternoon in the 1920’s at Rothamsted Experimental Station, the
statistician, R. A. Fisher, made Muriel Bristol a cup of tea. She protested
when he put the tea infusion into the cup before adding the milk, claim-
ing that she could discriminate whether the milk had been added first
or second, preferring the former. Fisher then devised a classic experi-
ment that is beautifully discussed in chapter 2 of his book, Fisher (1935).
The principles developed there are today widely used in the design and
analysis of many types of experiment.” (Lindley 1993, p. 22)

In the experiment, Dr. Bristol was presented with eight cups of
tea and the knowledge that four of these had the milk poured in first.
Dr. Bristol was then asked to identify these four cups. Apparently Dr.
Bristol was able to achieve this task without making a single error.21 21 “Fisher does not describe the out-

come of the experiment that sunny
summer afternoon in Cambridge. But
Professor Smith [H. Fairfield Smith, who
was present during the experiment –
EWDM] told me that the lady identified
every single one of the cups correctly.”
(Salsburg 2001, p. 8).

Fisher proposed to analyze results from such experiments using
frequentist statistical methods, but Lindley asks the reader to consider a
Bayesian account instead. To underscore the importance of background
knowledge (and the ability of the Bayesian analysis to accommodate
such background knowledge), Lindley asks us to consider a second lady:

“This lady is a wine expert, testified by her being a Master (sic) of Wine,
MW. Instead of tasting tea, she tasted wine. She was given 6 pairs of
glasses (not cups). One member of each pair contained some French
claret. The other had a Californian Cabernet Sauvignon, Merlot blend. In
other words, both wines were made from the same blend of grapes, one
in France, the other in California. She was asked to say which glass had
which. That is, she did the same experiment as Dr. Bristol but with the
two wines instead of the two preparations of tea. (…)

At this point I can only speak for myself though I hope that many will
agree with me. You may freely disagree and still be sensible. I believe
that Masters of Wine can distinguish the Californian imitation from
the French original. Mathematically I think that P > 1/2. Yet I think
it doubtful that ladies can distinguish the two methods of teamaking.
P = 1/2 seems quite reasonable to me there though I admit that P > 1/2

is possible. So what I want to do is to put something into the analysis that
incorporates my belief that tea is different from wine.” (Lindley 1993, p.
24; a more in-depth treatment is provided in Lindley (1984), but this book
chapter is not easily available.)
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Lindley then proceeds to assign prior distributions to the binomial
chances θ (termed ‘P’ by Lindley) of making the correct discrimination.
For the lady tasting wine, Lindley adopts a prior distribution that does
not assign any mass to values of θ lower than 1/2; Lindley’s prior distri-
bution resembles the dome-shaped beta(2, 2) distribution but shrunk
and shifted to the interval from 1/2 to 1, with most mass near θ = .75

and least mass near the edges (i.e., near θ = 1/2 and θ = 1). “This
expresses the fact that I think that she can discriminate but can make
mistakes” (Lindley 1993).

A side remark about Dr. Bristol’s tea
preference is in order. Lindley (1993)
has her prefer her tea ‘milk in first’,
whereas Senn (2012) has her prefer
‘milk in second’. A scientific analysis
has apparently suggested that tea tastes
better ‘milk in first’. We were unable
to locate the primary reference, but
the following fragment captures the
essence of it: “Dr Andrew Stapley, of
Loughborough University, is a chemical
engineer who has undertaken important
research to find the perfect cup of tea.
In news that may disgust the nation,
Dr Stapley says you should make your
tea with the milk poured in first. Dr
Stapley found that if you pour milk into
a hot tea, the milk will heat unevenly
which will cause the proteins in your
milk to alter their natural quality.”
(https://metro.co.uk/2022/04/17)

For the lady tasting tea, Lindley assigns a probability of 0.80 to the
point hypothesis θ = 1/2 that the lady has no discriminatory powers
whatsoever. “This expresses my personal probability of 0.8 that she can-
not discriminate. (Fisher may have had such a value since he expressed
surprise at Dr. Bristol’s claim, reportedly saying “Nonsense, surely it
makes no difference”, Box (1978).)” The remaining probability of 0.20
Lindley assigned to a prior distribution that again does not have any
mass on values of θ lower than 1/2, as was the case for the lady tasting
wine. However, the tea-tasting prior distribution resembles a beta(2, 1)
distribution (shrunk and shifted to the interval from 1/2 to 1): the prior
mass linearly decreases from θ = .50 to θ = 1. “This allows a probability
of 0.2 that she can [discriminate], thinking that having good discrimina-
tory power (P near 1) is less likely than modest ones (P near 1/2). These
formulae reflect my own views. You may freely insert your own.”
Lindley’s challenge was taken up by Stephen Senn, who focused on

the lady tasting wine, and proposed an alternative prior setup:

“I think, that either the lady is justified in her belief in her discriminatory
powers or she is misguided. If the former is the case, then I believe that
she will repeat the trick of identifying the correct member of a pair with
high probability; if not, she is guessing and will have a probability near
one half. Her qualifications merely make the former more likely than it
would be otherwise. (…) I would also allow a small probability for her
having a fine palate but a poor knowledge, so that she consistently labels
the wrong member of the pair as Californian. Thus I require a prior with
a considerable lump around 0.5, a considerable smear in the vicinity of
0.95 (say) and a smaller smear near 0.05.” (Senn 2001, p. 199)

In sum, Senn (2001) proposes a mixture prior for θ with three compo-
nents: ‘Fine palate’ (the smear near θ = 0.95), ‘Poor knowledge’ (the
smaller smear near θ = 0.05), and ‘Guessing’ (the lump on θ = 1/2).
Figure 27.10 shows how this mixture prior may be specified in the JASP
Learn Bayes module, and Figure 27.11 visualizes the result.
This example highlights several points of interest. First, it is clear

that mixture priors are a flexible vehicle for carrying relatively compli-
cated beliefs. Second, the inclusion of the ‘Poor knowledge’ component
acts somewhat as an insurance prior; without it, below-chance perfor-
mance would tempt a ‘blind Bayesian’ into concluding that the data

https://metro.co.uk/2022/04/17
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Figure 27.10: JASP screenshot of an input panel from the Binomial Testing routine of the
Learn Bayes module. The input panel specifies the three-component prior distribution
proposed by Senn (2001) for the analysis of a wine master who has to tell apart two wines
(as proposed originally by Lindley 1984 and Lindley 1993). See text for details.
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Figure 27.11: The three-component prior distribution proposed by Senn (2001) for the
analysis of a wine master who has to tell apart two wines (as proposed originally by
Lindley 1984 and Lindley 1993). Figure from the JASP module Learn Bayes.

support the hypothesis that the wine master was just guessing. Third,
the Bayesian approach can respect not only the difference between a
lady tasting tea and a lady tasting wine, but it can also accommodate
differences in background knowledge between Bayesian analysts.22 22 Stephen Senn may not be a Bayesian,

but he was certainly wearing his Bayesian
hat when he described his prior distribu-
tion.

For completeness, Figure 27.12 shows Senn’s posterior distribution
after his three-component prior distribution is updated by fictitious data
yielding eight correct classifications. In light of these data, the ‘Poor
knowledge’ hypothesis and the ‘Guessing’ hypothesis have lost a lot of
ground23, whereas the ‘Fine palate’ hypothesis reigns supreme. With 23 The probability for the Guessing

hypothesis can be read from the second
y-axis, from which it is apparent that the
probability decreased from 0.5 to about
0.008.

the power of hindsight, it would have been better to leave out the ‘Poor
knowledge’ hypothesis and the ‘Guessing’ hypothesis altogether, or
assign them less weight. Such is the nature of insurance: when you do
not suffer any accidents, in hindsight it would have been better not to
have taken out the insurance.



senn’s stubborn mule 507

0

2

4

6

8

10

12

0

0.002

0.004

0.006

0.008

0.01

0.0 0.2 0.4 0.6 0.8 1.0

Identification ability q

D
en

si
ty

P
robability

Poor knowledge

Guessing 

Fine palate

Figure 27.12: Senn’s posterior distribution after updating the three-component prior
distribution shown in Figure 27.11 by fictitious data yielding eight correct classifications by
a wine master. Figure from the JASP module Learn Bayes.

We are thus confronted with two analysts who have each specified
very different prior distributions for θ: Lindley (1993) specified a dome-
shaped prior distribution from θ = 1/2 to θ = 1 with a peak at θ =

0.75, whereas Senn (2001) specified the three-component mixture prior
shown in Figure 27.11. What do we do now? One option is to resign
ourselves to the fact that we have two very different prior assessments,
and that each analyst ought to answer their own questions and draw
their own inferences, and never the twain shall meet.
However, one might also combine the two prior assessments, and

thereby create a four-component prior mixture. This would mean that
Figure 27.11 would be enriched with Lindley’s dome-shaped distribu-
tion. One may even add a smaller-sized Lindley dome on the interval
from θ = 0 to θ = 1/2, to account for the possibility that the wine master
performs according to Lindley’s expectations but mixes up the labels.
Finally, it is of course also possible to collect empirical data and demon-
strate what prior structure is to be preferred, namely the prior structure
that provides the best predictive performance (as is quantified by the
Bayes factor).24 24We have already demonstrated this

in Chapter 12 where we computed the
relative predictive performance of rival
pancake forecasters, who differed only in
terms of the beta distribution that they
had assigned to a binomial chance θ.

Appendix B: Spinning Coins

One of the aims of Appendix A was to demonstrate that mixture priors
are a convenient tool to represent a complex set of beliefs. The tool is
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convenient because it is sufficiently flexible to capture a wide range of
shapes, but also because it still allows conjugate updating (see Dalal and
Hall 1983 and Diaconis and Ylvisaker 1985, as mentioned in Lee 2012,
pp. 69-71; for a concrete application example see Gronau and Wagen-
makers 2018). In the modern era of Bayesian computing, the benefits
of conjugate updating are no longer of great practical importance, but
conjugate updating retains the eternal advantages of elegance and infi-
nite precision. Consider as an example the inference on the probability
θ that a coin lands heads after spinning on its edge:

“To begin with, there is a big difference between spinning a coin on a
table and tossing it in the air. While tossing often leads to about an even
proportion of heads and tails (indeed one can sort of prove this from
the physics involved) spinning often leads to proportions like 1/3 or
2/3. Some basis for this opinion can be reported: I remember reading a
story in the New York Times about a high-school teacher who had his
class spin a penny 5000 times. The result was 80 % tails. When I was a
graduate student, Arthur Dempster spun a coin on edge 50 times with a
similar, skew result. It is a well known proposition around certain pool
rooms that some coins have very strong regular biases when spun on
edge (1964D pennies favor tails). The reasons for the bias are not hard
to infer. The shape of the edge will be a strong determining factor –
indeed, magicians have coins that are slightly shaved; the eye cannot
detect the shaving, but the spun coin always comes up heads”. (Diaconis
and Ylvisaker 1985, p. 134; italics in original)

The authors then continue:

“With this experience as a base, a bimodal prior seemed appropriate-spun
coins tend to be biased, but not alway [sic] to heads. No beta prior is bi-
modal of course. A simple class of bimodal priors is given by mixtures of
symmetric beta densities. (…) On reflection, it was decided that tails had
come up more often than heads in the past; further some coins seemed
likely to be symmetric. A final approximation to the prior was taken as

0.50 · B10,20 + 0.20 · B15,15 + 0.30 · B20,10

(Diaconis and Ylvisaker 1985, pp. 134-135; we adjusted the notation for
the equation to be consistent with the remainder of our book; see also
Lee 2012, pp. 69-71)

Figure 27.13 shows how this mixture prior may be specified in the
JASP Learn Bayes module, and Figure 27.14 visualizes the result. The
three-component prior may not appear unusual when viewed as a
joint distribution, that is, component-by-component; this impression
changes when the corresponding marginal distribution is examined,
as shown in Figure 27.15. If someone were to specify a prior distribu-
tion in this form, without revealing the underlying three components,
few Bayesians would presumably believe that this prior lends itself to
conjugate updating.25 25 Another example of this was presented

in Appendix B of Chapter 12.
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Figure 27.13: JASP screenshot of an input panel from the Binomial Testing routine of the
Learn Bayes module. The input panel specifies the three-component prior distribution
proposed by Diaconis and Ylvisaker (1985) for the analysis of the probability that a spun
coin will land heads. See text for details.
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Figure 27.14: The joint three-component prior distribution proposed by Diaconis and
Ylvisaker (1985) for the analysis of the probability that a spun coin will land heads. See
text for details. Figure from the JASP module Learn Bayes.

Diaconis and Ylvisaker (1985) then actually spun a penny 50 times,
obtaining 14 heads and 36 tails. These data drive a knowledge update
that result in a posterior distribution for θ. As shown in the earlier sec-
tion ‘Robust Mixture Priors for Parameter Estimation’, this posterior
distribution is a mixture of the individual beta posterior distributions,
with the mixture weights equal to the posterior probability for each of
the components. Specifically, the posterior distribution equals approxi-
mately

0.94 · B24,56 + 0.06 · B29,51 + 0 · B34,46,

where the posterior weight of ‘0’ for the ‘mostly heads’ component
is due to rounding (its true value is about 0.0018). The posterior beta
components can be obtained directly from the usual updating rule
(i.e., observing s successes and f failures transforms a beta(α, β) prior
distribution to a beta(α + s, β + f) posterior distribution), and the
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Figure 27.15: The marginal three-component prior distribution proposed by Diaconis and
Ylvisaker (1985) for the analysis of the probability that a spun coin will land heads. See
text for details. Figure from the JASP module Learn Bayes.

posterior weights can also be obtained relatively easily (cf. Chapters 12
and 30). The fact that the results are analytic allows the Learn Bayes
module in JASP to obtain the results quickly and without any numerical
error of approximation.
Figure 27.16 provides a visual impression of the joint posterior dis-

tribution; consistent with the numbers in the equation above, the dom-
inance of the ‘mostly tails’ component is clear; the ‘symmetric’ compo-
nent still has a small role to play, but the ‘mostly heads’ component has
essentially flatlined, as its predictions were opposite to what the data
showed.
Finally, Figure 27.17 shows the marginal posterior distribution. In

contrast to the marginal prior distribution, the posterior looks com-
pletely normal, although a keen observer may discern a subtle right-
skew. Two factors combine to ‘normalize’ the mixture posterior: first,
the data cause one of the components to dominate; second, the data
cause all three components to be more similar to one another.
We end this appendix with the conclusion from Diaconis and Ylvisaker:

“The point of the example is that it is pretty easy to be an honest
Bayesian using mixtures of conjugate priors. The computations for
updating are straightforward.” (Diaconis and Ylvisaker 1985, p. 136)
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Figure 27.16: The joint three-component posterior distribution proposed by Diaconis and
Ylvisaker (1985) for the analysis of the probability that a spun coin will land heads, based
on a total of 50 spins, 14 of which showed heads. Figure from the JASP module Learn
Bayes.
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Figure 27.17: The marginal three-component posterior distribution proposed by Diaconis
and Ylvisaker (1985) for the analysis of the probability that a spun coin will land heads,
based on a total of 50 spins, 14 of which showed heads. Figure from the JASP module
Learn Bayes.
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28 Jevons Explains Permutations

Certain it is that life demands incessant novelty, and that nature though it
probably never fails to obey the same fixed laws, yet presents to us an apparently
unlimited series of varied combinations of events.

Jevons, 1874

Chapter Goal

This chapter describes the basic concepts of permutations. One of the
best explanations of permutations was provided by Jevons in his 1874
masterpiece The Principles of Science, and instead of bumbling through
the topic ourselves and withholding from the reader the pleasure of
digesting a superior explanation we decided to extract the most relevant
sections from Jevons, and offer them here. A modern explanation can
be be found for instance in Blitzstein and Hwang (2019).

The Art or Doctrine of Combinations

In the chapter ‘The Variety of Nature, or the Doctrine of Combinations
and Permutations,’ Jevons provides a lively and clear exposition of per-
mutations and combinations. At the start of the chapter, Jevons seeks
to establish the importance of the topic by including a lengthy citation
from De Arte Conjectandi by Jacob Bernoulli (pp. 198-200). In the cited
fragment, Jacob Bernoulli1 first claims that the intuitive assessment of 1Written by Jevons as James Bernouilli.

permutations leads to errors in reasoning:

“the insufficient or imperfect enumeration of parts or causes (…) is the chief,
and almost the only, source of the vast number of erroneous opinions,
and those too very often in matters of great importance, which we are
apt to form on all the subjects we reflect upon, whether they relate to the
knowledge of nature or the merits and motives of human actions.”

Bernoulli continues to argue that the doctrine of combinations af-
fords a cure to this weakness, and therefore:
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“…that art [the doctrine of combinations]…deserves to be considered as most
eminently useful and worthy of our highest esteem and attention. (…)
Nor is this art or doctrine to be considered merely as a branch of the
mathematical sciences. For it has a relation to almost every species of
useful knowledge that the mind of man can be employed upon. It pro-
ceeds indeed upon mathematical principles, in calculating the number of
the combinations of the things proposed: but by the conclusions that are
obtained by it, the sagacity of the natural philosopher, the exactness of
the historian, the skill and judgment of the physician, and the prudence
and foresight of the politician may be assisted; because the business of all
these important professions is but to form reasonable conjectures concerning
the several objects which engage their attention, and all wise conjectures
are the results of a just and careful examination of the several different
effects that may possibly arise from the causes that are capable of produc-
ing them.” James Bernouilli, ‘De Arte Conjectandi,’ translated by Baron
Maseres. London, 1795, pp. 35-36.

Rarely if ever has the theory of combinations and permutations been
introduced more eloquently or more passionately.2 The importance of 2 Perhaps James Bernouilli spent little too

much time on the study of permutations.the topic thus established, Jevons’ first order of business is to establish
some terminology.

Distinction of Combinations and Permutations

“We must at once consider the deep difference which exists between
Combinations and Permutations; a difference involving important logical
principles, and influencing the form of all our mathematical expressions.
In permutation we recognize varieties of order or arrangement, treating
AB as a different group from BA. In combination we take notice only of the
presence or absence of a certain thing, and pay no regard to its place in
order of time or space. Thus the four letters a, e, m, n can form but one
combination, but they occur in language in several permutations, as name,
amen, mean, mane. ” (Jevons 1874/1913, p. 200)

Next, Jevons describes how to compute permutations without restric-
tions.

Unrestricted Permutations

“Permutations of certain things are far more numerous than combina-
tions of those things, for the obvious reason that each distinct thing is
regarded differently according to its place. Thus the letters A, B, C, will
make different permutations according as A stands first, second, or third;
having decided the place of A, there are two places between which we
may choose for B; and then there remains but one place for C. Accord-
ingly the permutations of these letters will be altogether 3 × 2 × 1 or
6 in number. With four things or letters, A, B, C, D, we shall have four
choices of place for the first letter, three for the second, two for the third,
and one for the fourth, so that there will be altogether 4× 3× 2× 1, or 24
permutations. The same simple rule applies in all cases; beginning with
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the whole number of things we multiply at each step by a number de-
creased by a unit, In general language, if n be the number of things in a
combination, the number of permutations is n(n−1)(n−2) · ... ·4 ·3 ·2 ·1.
Thus, if we were to re-arrange the names of the days of the week, the
possible arrangements out of which we should have to choose the new
order, would be no less than 7 · 6 · 5 · 4 · 3 · 2 · 1, or 5040, or, excluding the
existing order, 5039.” (Jevons 1874/1913, p. 201)

Jevons goes on to mention that “the product of all integer numbers,
from unity up to any number n, is the factorial of n.” (p. 202) The
modern notation for this is n!, or ‘n factorial’.

Restricted Permutations

In many cases, however, there are important restrictions on the permu-
tations that are to be distinguished:

“In some questions the number of permutations may be restricted and
reduced by various conditions. Some things in a group may be undis-
tinguishable [sic] from others, so that change of order will produce no
difference. Thus if we were to permutate [sic] the letters of the name
Ann, according to our previous rule, we should obtain 3 × 2 × 1, or 6
orders; but half of these arrangements would be identical with the other
half, because the interchange of the two n’s has no effect. The really dif-
ferent orders will therefore be 3·2·1

1·2 or 3, namely Ann, Nan, Nna. In the
word utility there are two i’s and two t’s, in respect of both of which pairs
the number of permutations must be halved. Thus we obtain 7·6·5·4·3·2·1

1·2·1·2
or 1260, as the number of permutations. The simple rule evidently is that
when some things or letters are undistinguished, proceed in the first place
to calculate all the possible permutations as if all were different, and then
divide by the number of possible permutations of those series of things
which are not distinguished, and of which the permutations have there-
fore been counted in excess. Thus since the word Utilitarianism contains
fourteen letters, of which four are i’s, two a’s, and two t’s, the number of
distinct arrangements will be found by dividing the factorial of 14, by the
factorials of 4, 2, and 2, the result being 908,107,200. From the letters of
the word Mississippi we can get in like manner3 11!

4!×4!×2!
or 34,650 permu- 3Here we use the modern notation for

the factorial instead of that used by
Jevons.

tations, or not one-thousandth part of what we should obtain were all the
letters different.” (Jevons 1874/1913, pp. 203-204)

Calculation of Number of Combinations

Finally, Jevons then describes how many ways there are to select m
units from a total of n:

“Suppose that we wish to determine the number of ways in which we
can select three letters out of the alphabet, without allowing the same
letter to be repeated. At the first choice we can take any one of 26 letters;
at the next step there remain 25 letters, any one of which may be joined
with that already taken; at the third step there will be 24 choices, so that
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apparently the whole number of ways of choosing is 26×25×24. But the
fact that one choice succeeded another has caused us to obtain the same
combinations of letters in different orders; we should get, for instance,
a, p, r at one time, and p, r, a at another, and every three distinct letters
will appear six times over, because three things can be arranged in six
permutations. Thus the true number of combinations will be 24×23×22

1×2×3
,

or 2024.4 4 This is an error that Jevons, in a later
edition, corrected to 26×25×24

1×2×3
, or 2600.It is apparent that we need the doctrine of permutations in order that

we may in many questions counteract the exaggerating effect of successive
selection. If out of a senate of 30 persons we have to choose a committee
of 5, we may choose any of 30 first, any of 29 next, and so on, in fact
there will be 30× 29× 28× 27× 26 selections; but as the actual character
of the members of the committee will not be affected by the accidental
order of their selection, we divide by 1 × 2 × 3 × 4 × 5, and the possible
number of different committees will be 142, 506. (…)

In general algebraic language, we may say that a group of m things
may be chosen out of a total number of n things, in a number of combi-
nations denoted by the formula

n · (n− 1)(n− 2)(n− 3)....(n−m+ 1)

1 · 2 · 3 · 4...m

The extreme importance and significance of this formula seems to have
been first adequately recognised by Pascal, although its discovery is at-
tributed by him to a friend, M. de Ganières.5 We shall find it perpetu- 5 ‘Œuvres Complètes de Pascal’ (1865),

vol. iii. p. 302. Montucla states the
name as De Gruières, ‘Histoire des
Mathématiques,’ vol. iii. p. 389.

ally recurring in questions both of combinations and probability, and
throughout the formulæ of mathematical analysis traces of its influence
will be noticed.” (Jevons 1874/1913, pp. 204-205)

Binomial Likelihood

Given a binomial success parameter θ, what is the probability mass
function of the number of successes s out of n attempts, and the re-
maining f attempts resulting in failure? For instance, given a particular
value of θ we might wish to know the probability of obtaining exactly
6 successes (i.e., s = 6) out of 10 trials (i.e., n = 10, f = 4). Denot-
ing successes by ‘1’ and failures by ‘0’, we could entertain the sequence
(1, 1, 1, 1, 1, 1, 0, 0, 0, 0). For this exact sequence, the probability of ob-
taining it is given by θ6 × (1 − θ)4. But the sequence order is irrelevant,
and other sequences exist that have the same probability, for instance
(0, 0, 0, 0, 1, 1, 1, 1, 1, 1) or (0, 1, 0, 1, 0, 1, 0, 1, 1, 1). How many of these
orderings exist? As explained by Jevons earlier, we start by computing
all permutations, that is, n! = 10! = 3, 628, 800. However, the orderings
of the successes are irrelevant, and there are s! = 6! = 720 of them;
the orderings of the failures are likewise irrelevant, and they number
f ! = 4! = 24. These irrelevant permutations correct the total relevant
permutations to6 6Note that this is the same equation as

given by Jevons above.
(
n

s

)
=

n!

s! f !
=

10!

6! 4!
= 210.
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In other words, there are 210 relevant sequences that consists of 6 suc-
cesses and 4 failures. The probability of finding any single sequence
may be θ6 × (1− θ)4, but there are 210 of them, so the overall probabil-
ity equals 210×θ6× (1−θ)4. In general then, given a particular value of
θ the probability of obtaining exactly s successes out of n trials equals(

n

s

)
θs × (1− θ)(n−s).

Want to Know More?

3 Blitzstein, J. K., & Hwang, J. (2019). Introduction to Probability (2nd
ed.). Taylor & Francis Group.

3 Jevons, W. S. (1874/1913). The Principles of Science: A Treatise on
Logic and Scientific Method. London: MacMillan.





29 Pascal’s Arithmetical Triangle

The Arithmetical Triangle is the most famous of all number patterns.
Apparently a simple listing of the binomial coefficients, it contains the
triangular and pyramidal numbers of ancient Greece, the combinatorial
numbers which arose in the Hindu studies of arrangements and selections, and
(barely concealed) the Fibonacci numbers from medieval Italy. It reveals
patterns which delight the eye, raises questions which tax the number-theorists,
and amongst the coefficients “There are so many relations present that when
someone finds a new identity, there aren’t many people who get excited about it
any more, except the discoverer!” [1]

Edwards, 2019

Reference [1] is to Knuth (1973, pp.
52-53).

Chapter Goal

This chapter describes Pascal’s arithmetical triangle, a simple yet fas-
cinating mathematical construction that has played a key role in the
development of probability theory.

The City Block

You find yourself in a recently constructed city whose roads form a
perfect grid, as illustrated in Figure 29.1.1 Your goal is to travel from 1 This is also called a lattice diagram, see

Edwards (1987/2019, p. 73).the starting position indicated by the blue dot to the end position in-
dicated by the red dot. The shortest path always involves exactly five
moves to the east (‘E’) and three moves to the north (‘N ’), for a total
of eight moves. The order of the moves is irrelevant, that is, any order
will get you to your final position. In Figure 29.1, the journey consists
of the move sequence {E,N,E,E,N,E,E,N}. How many ways can
you travel from the blue position to the red position? In other words,
how many different sequences exist that have exactly five ‘E’ moves and
three ‘N ’ moves? From Chapter 28 we know the answer. Let n = 8 be
the total number of moves, s = 5 equal the number of moves to the
east, and f = 3 equal the number of moves to the north. We then have(

n

s

)
=

n!

s! f !
=

8!

5! 3!
= 56.
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Figure 29.1: A grid city in which the shortest route from the blue dot to the red dot takes
exactly five moves to the east and three moves to the north. There are 56 possible paths.

Figure 29.1 provides a geometric representation of the number of dif-
ferent ways in which two elements (i.e., ‘E’ and ‘N ’) may be ordered.
This representation suggests a more difficult question: suppose we

start at the blue dot, and we take eight random moves east or north,
where will we end up, and with what probability? The associated grid
city is shown in Figure 29.2.

Figure 29.2: A grid city in which each of the orange dots marks the potential end of a
journey that starts at the blue dot and involves eight random moves east or north.

Note that relatively many paths lead to end points in the center of
the city. The end point at the edges, however, can only be reached by a
few paths. For instance, the rightmost orange dot can only be reach by a
single path: {E,E,E,E,E,E,E,E}. This feature is brought out more
clearly by a physical process – the Galton board or quincunx.
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The Galton Board aka the Quincunx

Sir Francis Galton (1822–1911), shown
here at 73 years of age. Photograph taken
by Eveleen Myers (née Tennant).

The English polymath Sir Francis Galton (1822-1911) was brilliant, ener-
getic, and highly influential. Among many other contributions, Galton
coined the phrase ‘nature versus nurture’, he initiated the statistical
study of correlation and regression, he devised the first weather map,
and he founded the field of psychometrics (i.e, the measurement of
individual differences in cognitive ability). His disciple Karl Pearson
–a phenomenally influential statistician himself– wrote a four-volume,
1786-page (!) biography on Galton in which he called him “perhaps the
greatest scientist of the nineteenth century” (Pearson 1930a, p. vi).
Unfortunately for Galton’s legacy, he also invented the word ‘eu-

genics’ and obsessively promoted scientific racism. This is something
that should not be swept under the rug, and for those readers who won-
der ‘but how bad can it really be?’ we have added an appendix that
provides a few characteristic quotations – by Galton, but also by fellow
statisticians and eugenicists Karl Pearson and Ronald Fisher. The reader
should be warned: the fragments in the appendix are abhorrent, callous,
and could, if advocated nowadays, even result in a prison sentence.
For now we leave the topic of eugenics and consider the section in

Galton’s 1889 book Natural Inheritance where he introduces his ‘quin-
cunx’ – the Galton board, illustrated by margin Figure 29.3. The rel-
evant section is titled Mechanical Illustration of the Cause of the Curve of
Frequency and we quote from it liberally:

Figure 29.3: Galton’s original illustration
of his ‘quincunx’ (Galton 1889, p. 63).

“[The apparatus] is a frame glazed in front, leaving a depth of about a
quarter of an inch behind the glass. Strips are placed in the upper part to
act as a funnel. Below the outlet of the funnel stand a succession of rows
of pins stuck squarely into the backboard, and below these again are a
series of vertical compartments. A charge of small shot [i.e., small lead or
steel pellets – EWDM] is inclosed. When the frame is held topsy-turvy,
all the shot runs to the upper end; then, when it is turned back into its
working position, the desired action commences. Lateral strips, shown
in the diagram, have the effect of directing all the shot that had collected
at the upper end of the frame to run into the wide mouth of the funnel.
The shot passes through the funnel and issuing from its narrow end,
scampers deviously down through the pins in a curious and interesting
way; each of them darting a step to the right or left, as the case may be,
every time it strikes a pin. The pins are disposed in a quincunx fashion
[i.e., as five pips on a die: – EWDM], so that every descending shot
strikes against a pin in each successive row. The cascade issuing from
the funnel broadens as it descends, and, at length, every shot finds itself
caught in a compartment immediately after freeing itself from the last
row of pins. The outline of the columns of shot that accumulate in the
successive compartments approximates to the Curve of Frequency (…),
and is closely of the same shape however often the experiment is repeated.
The outline of the columns would become more nearly identical with
the Normal Curve of Frequency, if the rows of pins were much more
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numerous, the shot smaller, and the compartments narrower; also if a
larger quantity of shot was used.

The principle on which the action of the apparatus depends is, that
a number of small and independent accidents befall each shot in its
career. In rare cases, a long run of luck continues to favour the course of
a particular shot towards either outside place, but in the large majority
of instances the number of accidents that cause Deviation to the right,
balance in a greater or less degree those that cause Deviation to the left.
Therefore most of the shot finds its way into the compartments that are
situated near to a perpendicular line drawn from the outlet of the funnel,
and the Frequency with which shots stray to different distances to the
right or left of that line diminishes in a much faster ratio than those
distances increase. This illustrates and explains the reason why mediocrity
is so common.” (Galton 1889, pp. 63-65)

Figure 29.4: The regularities of randomness. Left panel: the Galton board or quincunx; top right panel: the probabilities associated with
each position on the Galton board; bottom right panel: Pascal’s triangle. Each number is the sum of the two parent numbers in the row
above it. The behavior of a single process is random and unpredictable, but the behavior of the group is highly regular.

A modern rendition of the quincunx is shown in the left panel of
Figure 29.4. Instead of a person wandering aimlessly in a grid city we
now consider a falling pallet that, whenever it hits a pin, bounces to
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the left or to the right with equal probability, continuing its downward
journey until it comes to rest in a container at the bottom.
For a pallet to end up in the leftmost container, it needs to have made

five consecutive left turns, meaning that only a single path is possible:
{L,L, L, L, L}. For the pallet to land in the adjacent container, it needs
to have made four left turns and one right turn, which could occur at
any pin; thus, there are a total of five possible paths. In general, the
number of paths to the sth column from the left (starting at s = 0 and
ending at s = 5, where s can also be interpreted as the number of times
the pallet bounced to the right) equals

(
n
s

)
, where n = 5 is the number

of bounces before the pallet lands in a container. For the six containers
in Figure 29.4 this yields {1, 5, 10, 10, 5, 1} possible paths for s = 0, ..., 5.
The total number of paths across all containers is 2n (i.e., every pin row
doubles the number of paths), so that the probability that a pallet will
finish in the sth column from the left equals

(
n
s

)
/2n (i.e., the proportion

of the total number of paths that lead to the sth column). This is echoed
by the top right panel of Figure 29.4.
Consistent with Galton’s description, relatively many paths terminate

at the middle containers, and relatively few paths terminate at contain-
ers toward the edges. As the number of rows increases, the distribution
of pellets across the containers is approximated increasingly well by a
bell-curve, widely known as the Gaussian or normal distribution. This
approximation was a crucial step in the development of statistics, but its
history and derivation are outside of the scope of this appendix.2 2 For a detailed technical account see Tod-

hunter (1865); for an accessible overview
(albeit with a consistent mistake in the
equation for the normal distribution!) see
Stewart (2012, Chapter 7).

The Galton board illustrates several statistical ideas. Firstly, as indi-
cated above, processes that are the result of an accumulation of many
small impacts tend to be normally distributed. Secondly, the behav-
ior of a single pellet may appear haphazard but the ensemble of pellets
shows a highly predictable pattern. Thirdly, a more detailed study of
the Galton board in action reveals that this predictable pattern arises
even when individual pellets behave anomalously:

“(…) consider how the balls bounce around. According to the binomial
model, each time a ball hits a peg, it should cleanly drop either to the left
or to the right. But this is not what happens in our real-world Galton
board. There, the balls bounce around wildly: they hit one another, they
bounce upward, they hop to the side and hit the next peg in the same
row, they ricochet off the walls, they skip several rows; a brief glance at
the demonstration3 should convince anybody that the abstraction offered 3 See the BayesianSpectacles.org blog

post “A Galton board demonstration of
why all statistical models are misspeci-
fied” for a movie featuring 3,000 pellets
traveling downward in slow-motion –
EWDM.

by the binomial model is not warranted – that is, the abstraction is clearly
wrong and the model is misspecified. Nevertheless, the histograms at the
bottom appear to be consistent with the binomial model – the normal
distribution provides a good description of the end result. So there is
considerable value to the use of a parametric model (e.g., the binomial
model, or its normal approximation) even though we can be certain that
the model is dead wrong in the details.” (Wagenmakers, 2018)4 4Quotation taken from the

BayesianSpectacles.org blog post
“A Galton board demonstration of why
all statistical models are misspecified”.

BayesianSpectacles.org
BayesianSpectacles.org
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Pascal’s Triangle

After a long introduction we have finally arrived at “the most famous
of all number patterns”: Pascal’s triangle. The triangle was known long
before the famous French mathematician Blaise Pascal (1623-1662)
wrote Traité du triangle arithmétique, avec quelques autres petits traitez sur
la mesme matière (published in 1665, composed in 1654; see Edwards
1987/2019, p. 58). As noted by Edwards:

“Pascal was, as we shall see, a little forgetful about his sources. Practically
everything in the Traité except the solution to the important “Problem
of Points” will have been known to Mersenne’s circle5 by 1637. It seems 5 Founded in 1635, Marin Mersenne’s

informal Academia Parisiensis was a hub
for mathematical discourse in Europe –
EWDM.

likely that Pascal absorbed most of this as a young man, and then, more
than a decade later, his correspondence with Fermat stimulated him to
compose the Traité, which he did in the space of a few weeks. The evi-
dence is that, with the passage of time, he had lost most of the details
whilst retaining the outline. (…) His novel theme was to view the proper-
ties of the Arithmetical Triangle as pure mathematics, to be demonstrated
from the fundamental addition relation independently of any binomial or
combinatorial application.” (Edwards 1987/2019, p. 58)

The triangle is displayed in the bottom right panel of Figure 29.4. Its
construction is simple: other than the entries ‘1’ that form the triangle
flanks, each number is the sum of the two numbers just above it. By
convention the top number, ‘1’ is considered row n = 0; consider then
row n = 4, with entries {1, 4, 6, 4, 1}. The leftmost ‘4’ arises because
1+ 3 = 4, the center ‘6’ because 3+ 3 = 6, and the rightmost ‘4’ because
3 + 1 = 4. In row n = 5, the leftmost ‘10’ arises because 4 + 6 = 10, and
the rightmost ‘10’ because 6 + 4 = 10. The triangle can be expanded
indefinitely.
A comparison of the top and bottom right panels of Figure 29.4

shows that the path numbers that lead to a particular position on the
Galton board are identical to the entries in Pascal’s triangle. This occurs
because the mathematical method of construction for Pascal’s triangle
is mimicked by the physical action on the Galton board. Consider for
instance a pallet that ended up in the third container from the left, a
position marked as 10/32 in the top right panel of Figure 29.4. This
pellet arrived there either from the left ‘parent path’ (i.e., through the
position marked as 4/16) or from the right ‘parent path’ (i.e., through
the position marked as 6/16). There are no other possibilities. The total
number of pellet paths that lead to a given position is therefore the sum
of the number of paths for its two potential parents.
Each entry in Pascal’s triangle can therefore be given a Galton-board

interpretation as the number of possible paths that lead to it. In turn
this implies that the numbers in the triangle quantify the ways in which
a given number of ‘left’ and ‘right’ movements can be ordered. In other
words, the entry in the nth row and sth column in Pascal’s triangle is
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given by
(
n
s

)
. For instance, the n = 5, s = 2 entry (i.e., lowest row, third

number from the left) equals
(
5
2

)
= 10.

Remarkably, the entries of Pascal’s triangle also provide the coeffi-
cients for the different factors in the binomial expansion of (a + b)n.
For instance, for n = 0 . . . 5 we have:

(a+ b)0 = 1

(a+ b)1 = 1 · a+ 1 · b
(a+ b)2 = 1 · a2 + 2 · ab+ 1 · b2

(a+ b)3 = 1 · a3 + 3 · a2b+ 3 · ab2 + 1 · b3

(a+ b)4 = 1 · a4 + 4 · a3b+ 6 · a2b2 + 4 · ab3 + 1 · b4

(a+ b)5 = 1 · a5 + 5 · a4b+ 10 · a3b2 + 10 · a2b3 + 5 · ab4 + 1 · b5.

The red exponent indicates the row number n, and the blue num-
bers provide the values for the coefficients – identical to the entries
in Pascal’s triangle. The binomial theorem states that (a + b)n =∑n

s=0

(
n
s

)
an−sbs, which of course features the

(
n
s

)
term explicitly.

Laplace explains:

“Suppose that an urn contains a white and b black balls, and that after
one ball has been extracted it is replaced in the urn. What is the proba-
bility that, in n such draws, one will get m white and n − m black balls?
It is clear that the number of possible outcomes or cases on each draw is
a + b. Each outcome of the second draw may be combined with all out-
comes of the first, and so the number of possible outcomes in two draws
will be the square of the binomial a + b {i.e. (a + b)2}. In the expansion
of this square, a2 denotes the number of cases in which two white balls
are drawn, 2ab denotes the number of cases in which one white and one
black ball are drawn, and finally b2 denotes the number of cases in which
two black balls are drawn. Continuing in this way we find in general
that the nth power of the binomial (a + b) {i.e. (a + b)n} denotes the
number of all possible outcomes in n draws, and that, in the expansion
of this expression, the term multiplied by am [see note i below, EWDM]
denotes the number of cases in which m white and n −m black balls are
drawn. Then, on dividing this term by the whole power of the binomial
{i.e. (a+ b)n}, we get the probability of drawing m white and n−m black
balls. The ratio of the numbers a to a + b is the probability of getting
a white ball in one draw, and the ratio of the numbers b to a + b is the
probability of drawing a black ball: if one calls these probabilities p and q,
the probability of getting m white balls in n draws will be the coefficient
of the mth power of p in the expansion of the binomial (p + q)n (notice
that p + q = 1). This remarkable property of the binomial is very useful
in probability theory. [see note ii below – EWDM]” (Laplace 1814/1995,
p. 16)

The translator, Andrew I. Dale, added the following notes:
i.“More correctly, the coefficient of ambn−m.”
ii. “This Pollaczek-Geiringer (see also von Mises [1932, p. 191]) sees as
an example of the solution of the so-called Bernoulli problem, wherein
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the probability ωn(m) that, from an urn containing a white and b black
balls, m white balls are drawn in n draws (with replacement) is

ωn(m) =

(
n

m

)
pmqn−m,

where p = a/(a + b) and q = b/(a + b). The number of cases in which
this result obtains is then (a + b)nωn(m), or

(
n
m

)
ambn−m. Laplace’s

contribution to probability, in connexion [sic] with this matter, was
the limiting form as n → ∞, that is, the exp(−x2) law. De Moivre’s
approximation to the binomial distribution is discussed in Hald [1990,
chap. 24] and Stigler [1986b, pp. 70 − 88], while Laplace’s extension of
de Moivre’s theorem is examined in Hald [op. cit. §24.6].”
As suggested in this chapter’s epigraph, Pascal’s triangle hides many

more mathematical treasures. Exploring these treasures is well beyond
the scope of this book, but guidance is easily found online.

Exercises

1. How can Pascal’s triangle be used to obtain an estimate of π? [hint:
consider the normal approximation to the binomial distribution]

2. A coin is assumed to be fair. It is tossed six times. Scenario A yields
{H,H,H,H,H,H} (i.e., all heads), and scenario B yields {H,T,T,T,H,H}
(i.e., three heads, three tails). Scenario A produces more surprise and
suspicion than scenario B. However, both sequences are equally likely
– under the hypothesis that the coin is fair, the probability for each
sequence is 1/26 = 1/64. What’s going on?

3. Let’s return to the Problem of Points discussed in Chapter 10. Con-
sider a game of chance where player A requires 2 points to win and
player B requires 3 points to win (e.g., a score of 4 − 3 in a race to
6). (a) use the Learn Bayes module to obtain the probability that A
wins the game; (b) how can this probability be obtained using Pascal’s
triangle?

4. Consider again a score of 4 − 3 in a race to 6. In JASP, activate the
Distributions module, navigate to the Discrete distributions and try
to recover the correct result (a) using the binomial distribution; (b)
using the negative binomial distribution.

Want to Know More?

3 Edwards, A. W. F. (1987/2019). Pascal’s Arithmetical Triangle: The
Story of a Mathematical Idea. Mineola, NY: Dover Publications. Es-
sential reading for those who wish to learn more about the history of
Pascal’s triangle.
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3 Kunert, J., Montag, A., & Pöhlmann, S. (2001). The quincunx: His-
tory and mathematics. Statistical Papers, 42, 143–169.

3 Pearson, K. (1914,1924,1930a,1930b). The Life, Letters and Labours
of Francis Galton. Cambridge: Cambridge University Press. A multi-
volume, 1786-page biography written by friend and admirer Karl
Pearson. If the biography was not permeated with eugenics and
scientific racism, it may have been one of the most impressive and
interesting biographies ever composed. A sample fragment: “Civili-
sation has gained nothing from rivalry in destructive warfare; It can
gain enormously from the rivalry of nations in rearing their future
generations from the most efficient of their citizens. Galton was the
first to realise this great truth, to preach it as a moral code, and to lay
the foundations of the new science which it demands of man. In the
centuries to come, when the principles of Eugenics shall be common-
places of social conduct and of politics, men, whatever their race, will
desire to know all that is knowable about one of the greatest, perhaps
the greatest scientist of the nineteenth century.” (Pearson 1930a, p.
vi)

3 The internet offers many excellent resources on Pascal’s triangle. Ex-
ample are https://www.theochem.ru.nl/~pwormer/Knowino/
knowino.org/wiki/Pascal's_triangle.html, https://www.
mathsisfun.com/pascals-triangle.html, and https://www.
mathsisfun.com/algebra/binomial-theorem.html; the rele-
vant Wikipedia pages (e.g., https://en.wikipedia.org/wiki/
Binomial_theorem) are also informative.

Appendix: The Taint of Eugenics

We mentioned earlier that we do not wish to praise the scientific con-
tributions of Sir Francis Galton without openly discussing the scientific
racism that he and his followers advocated. These eugenicists did not
‘merely’ promote scientific racism as an abstract hypothesis, but also en-
couraged the associated political action and its real-world consequences.
Below are a few statements that are certain to make a modern-day

reader recoil. It is likely that a more thorough reading could have un-
earthed quotations that are even more shocking, but the point will be
clear and we can only stomach so much.

The Eugenicism of Sir Francis Galton

Galton was the cousin of Charles Darwin and was greatly influenced by
The Origin of Species. Galton was not only convinced that nature trumps
nurture, but he also believed that some races were genetically superior

https://www.theochem.ru.nl/~pwormer/Knowino/knowino.org/wiki/Pascal's_triangle.html
https://www.theochem.ru.nl/~pwormer/Knowino/knowino.org/wiki/Pascal's_triangle.html
https://www.mathsisfun.com/pascals-triangle.html
https://www.mathsisfun.com/pascals-triangle.html
https://www.mathsisfun.com/algebra/binomial-theorem.html
https://www.mathsisfun.com/algebra/binomial-theorem.html
https://en.wikipedia.org/wiki/Binomial_theorem
https://en.wikipedia.org/wiki/Binomial_theorem
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to others. Galton in fact coined the term ‘eugenics’. For those who
believe that Galton meant well, behold his 1873 letter to the Times:

“Francis Galton (right), aged 87, on the
stoep at Fox Holm, Cobham, with the
statistician Karl Pearson.” (https://en.
wikipedia.org/wiki/Francis_Galton)
Public domain.

“average negroes possess too little intellect, self-reliance and self-control
to make it possible for them to sustain the burden of any respectable
form of civilisation without a large measure of external guidance and
support. The Chinaman is a being of another kind, who is endowed with
a remarkable aptitude for a high material civilisation. (…) one population
continually drives out another. We note how Arab, Tuarick, Fellatah, Ne-
groes of uncounted varieties, Caffre and Hottentot surge and reel to and
fro in the struggle for existence. It is into this free fight among all present
that I wish to see a new competitor introduced—namely the Chinaman.
The gain would be immense to the whole civilised world if he were to
outbreed and finally displace the negro, as completely as the latter has
displaced the aborigines of the West Indies. The magnitude of the gain
may be partly estimated by making the converse supposition –namely
the loss that would ensue if China were somehow to be depopulated and
restocked by negroes.” (Francis Galton, letter to the Times of June 6, 1873,
as cited in Pearson 1924, p. 33).

The Eugenicism of Karl Pearson

Karl Pearson was a highly influential researcher, a brilliant statistician,
and a gifted writer. His book The Grammar of Science is a classic that
features phrases such as the following:

“The field of science is unlimited; its material is endless, every group
of natural phenomena, every phase of social life, every stage of past or
present development is material for science. The unity of all science consists
alone in its method, not in its material. The man who classifies facts of
any kind whatever, who sees their mutual relation and describes their
sequences, is applying the scientific method and is a man of science. The
facts may belong to the past history of mankind, to the social statistics
of our great cities, to the atmosphere of the most distant stars, to the
digestive organs of a worm, or to the life of a scarcely visible bacillus. It
is not the facts themselves which form science, but the method in which
they are dealt with.” (Pearson 1892/1937, p. 16)

Unfortunately, Karl Pearson was completely on board with Galton’s
eugenics agenda.6 Below are three hair-raising quotations.7 The first 6 Egon Pearson –Karl’s son and a

highly influential statistician on his
own account– did not endorse eugenics.
7 Content based partly on the
BayesianSpectacles.org blog post
“Karl Pearson’s worst quotation?”.

one is from Pearson’s 1901 book National life from the standpoint of sci-
ence:

“History shows me one way, and one way only, in which a high state of
civilization has been produced, namely, the struggle of race with race,
and the survival of the physically and mentally fitter race. If you want
to know whether the lower races of man can evolve a higher type, I fear
the only course is to leave them to fight it out among themselves, and
even then the struggle for existence between individual and individual,
between tribe and tribe, may not be supported by that physical selection
due to a particular climate on which probably so much of the Aryan’s
success depended.” (Pearson 1901, pp. 19-20)

https://en.wikipedia.org/wiki/Francis_Galton
https://en.wikipedia.org/wiki/Francis_Galton
BayesianSpectacles.org
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At the time, Pearson certainly wasn’t the only academic who felt this
way, and the Holocaust lay hidden in the future, but such statements
nevertheless have a spine-chilling effect. In his book Pearson continues
in the same style for a couple of pages more, discussing the inferiority
of the negro race and the dangers of cross-racial relationships – “if the
bad stock be raised the good is lowered”. Nausea prevented us from
reading further.
With this background in mind, dear readers, hold on to your hats

for quotation number two. This quotation requires some background,
provided by Wikipedia:

“In The Myth of the Jewish Race Raphael and Jennifer Patai cite Karl Pear-
son’s 1925 opposition (in the first issue of the journal Annals of Eugenics
which he founded) to Jewish immigration into Britain. Pearson alleged
that these immigrants “will develop into a parasitic race. (…) taken on the
average, and regarding both sexes, this alien Jewish population is some-
what inferior physically and mentally to the native population.” (entire
citation: Wikipedia; last quotation: Pearson and Moul 1925, pp. 125-126).

This is nothing short of callous of course. But there is more. We
were attended to a speech from Pearson in 1934.8 Judge for yourself 8We thank David Colquhoun for

bringing this to our attention. For
more references please see the web-
site of Dr. Joe Cain, starting with
https://profjoecain.net/karl-pearson-
praised-hitler-nazi-race-hygiene/.

quotation number three:

“The climax culminated in Galton’s preaching of Eugenics, and his foun-
dation of the Eugenics Professorship. Did I say “culmination”? No, that
lies rather in the future, perhaps with Reichskanzler Hitler and his pro-
posals to regenerate the German people. In Germany a vast experiment is
in hand, and some of you may live to see its results. If it fails it will not
be for want of enthusiasm, but rather because the Germans are only just
starting the study of mathematical statistics in the modern sense!”. (Karl
Pearson, 1934; in Filon et al. 1934, p. 23)

So here we stand. Karl Pearson –brilliant scientist, phenomenal
writer, convinced socialist and freethinker– was about as racist as they
come.

The Eugenicism of Sir Ronald Fisher

Sir Ronald Aylmer Fisher (1890–1962) at
23 years of age. Public domain.

Sir Ronald Aylmer Fisher (1890-1962) was one of the greatest statisti-
cians of all time.9 However, Fisher was also stubborn, belligerent, and

9 Content partly based on the
BayesianSpectacles blog post “This
statement by Sir Ronald Fisher will shock
you”.

a eugenicist. When it comes to shocking remarks, one does not need to
dig deep. We start with a remark from 1948, so after the Holocaust:

“I have no doubt also that the [Nazi] Party sincerely wished to benefit the
German racial stock, especially by the elimination of manifest defectives,
such as those deficient mentally, and I do not doubt that von Verschuer
gave, as I should have done, his support to such a movement.” (Fisher,
1948; for details see Weiss 2010)

Moreover, in a dissenting opinion on the 1950 UNESCO report “The
race question”, Fisher argued that “Available scientific knowledge pro-

BayesianSpectacles
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vides a firm basis for believing that the groups of mankind differ in
their innate capacity for intellectual and emotional development”.10 10 See http://unesdoc.unesco.org/

images/0007/000733/073351eo.pdf.Galton, Pearson, and Fisher were unfortunately not the only promi-
nent statisticians who supported eugenics. For instance, famous economist
and Bayesian John Maynard Keynes still believed, in 1946 (!), that eu-
genics was “the most important, significant and, I would add, genuine
branch of sociology which exists”. Such statements permanent stain
otherwise brilliant academic legacies.

http://unesdoc.unesco.org/images/0007/000733/073351eo.pdf
http://unesdoc.unesco.org/images/0007/000733/073351eo.pdf


30 Statistical Analysis of the Binomial Distribution

[with Quentin F. Gronau and Alexander Ly]

The binomial distribution is the Drosophila of statistics.

EJ and Dora, 2020

Chapter Goal

This chapter presents a brief statistical overview of Bayesian inference
for a binomial chance parameter θ. The contents of this chapter can
be safely skipped by pragmatic readers who care mostly about correct
execution and proper interpretation rather than mathematical detail.

Overview

Howard Raiffa (1924–2016). In their
book “Applied Statistical Decision The-
ory”, Howard Raiffa and Robert Schlaifer
introduced the concept of conjugate prior
distributions. The beta prior for θ is
conjugate to the binomial likelihood,
because their combination produces a
posterior for θ that is also a beta distribu-
tion. Harvard Business School Archives
Photograph Collection.

Below we first concentrate on parameter estimation and derive the
posterior distribution for θ under the alternative hypothesis H1 that
assigns θ a beta(α, β) prior distribution. Next we turn to hypothesis
testing and derive the Bayes factor for the binomial test under various
scenarios.

Posterior Distribution of θ under H1

Here we derive the posterior distribution for θ under the alternative
hypothesis H1 which assigns θ a beta(α, β) prior. As shown in earlier
chapters, after observing s successes out of n attempts (and f = n − s
failures) the posterior distribution of θ is given by:

p(θ | s, f)︸ ︷︷ ︸
Posterior for θ:
beta(α+s,β+f)

∝ p(θ)︸︷︷︸
Prior for θ:
beta(α,β)

× p(s, f | θ)︸ ︷︷ ︸
Probability for s,f

given θ

. (30.1)
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In this chapter we take a closer look at how this result can be ob-
tained. Recall that p(s, f | θ) is the binomial likelihood given by

p(s, f | θ) =
(
n

s

)
θs (1− θ)f , (30.2)

where n = s+ f and
(
n
s

)
is known as the binomial coefficient which gives

the number of ways that s successes and f failures can be arranged in
sequence. Specifically,

(
n
s

)
= n!

s!(n−s)! , where the exclamation mark
denotes the factorial function: k! = k × (k − 1)× (k − 2) . . .× 2× 1.1 1 For details see the earlier chapter

‘Jevons Explains Permutations’.By p(θ) we denote the prior distribution for θ which in our case is a
beta(α, β) distribution:

p(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1 (1− θ)β−1. (30.3)

Here Γ(α+β)
Γ(α)Γ(β) is the normalizing constant of the beta(α, β) distribution

that was omitted in the main text. Γ(x) denotes the gamma function;
for a positive integer k, Γ(k) simplifies to (k − 1)!.2 2 In general, the gamma function interpo-

lates the factorial function and is defined
as Γ(t) =

∫∞
0 xt−1e−xdx. For more

details see https://en.wikipedia.org/
wiki/Gamma_function.

The normalizing constant ensures that the beta distribution inte-
grates to one so that it is a proper probability density function. This
means that we know that

1 =
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

θα−1 (1− θ)β−1dθ︸ ︷︷ ︸
=

Γ(α)Γ(β)
Γ(α+β)

. (30.4)

This integral –known as the Beta-integral, or the Beta function– will
become important later.3 3 The Beta-integral occurs relatively

often. “This standard result should be
learnt if not already known, as it is fre-
quently needed in statistical calculations.”
(Lindley 1965, p. 39)

Returning to the derivation of the posterior distribution, we now
only need to combine the binomial likelihood with the beta prior
distribution, rearrange, and drop the terms that are constant with re-
spect to θ to see that the posterior distribution is proportional to a
beta(α + s, β + f) distribution as mentioned in the earlier chapters:

p(θ | s, f) ∝ Γ(α+ β)

Γ(α)Γ(β)
θα−1 (1− θ)β−1︸ ︷︷ ︸
p(θ)

×
(
n

s

)
θs (1− θ)f︸ ︷︷ ︸
p(s,f |θ)

∝ θα+s−1 (1− θ)β+f−1.

(30.5)

Evidence

To assess the evidence that the data provide for rival hypotheses, we
need to compute their predictive performance. Below we consider three
scenarios: point versus point (i.e., the likelihood ratio), point versus dis-
tribution (i.e., the standard Bayesian hypothesis test), and distribution
versus distribution.

https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Gamma_function
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Case I. Point versus point: The likelihood ratio

As stated in earlier chapters, the Bayes factor is defined as

BF10 =
p(s, f | H1)

p(s, f | H0)
. (30.6)

The probability of the data given the point null hypothesis H0 is simply
the binomial likelihood where we insert the test value θ0 for θ. Hence,

p(s, f | H0) =

(
n

s

)
θs0 (1− θ0)f . (30.7)

Similarly, when H1 is defined as a rival point value θ1, we have

p(s, f | H1) =

(
n

s

)
θs1 (1− θ1)f . (30.8)

In the case of two point hypotheses, the Bayes factor BF10 is known as
the likelihood ratio LR10. Dividing the probabilities that H1 : θ = θ1

and H0 : θ = θ0 assign to the observed data we obtain

LR10 =

[
θ1
θ0

]s
×

[
1− θ1
1− θ0

]f
, (30.9)

such that the occurrence of any single success multiplies the likelihood
ratio by θ1/θ0, whereas the occurrence of any single failure multiplies the
likelihood ratio by (1−θ1)/(1−θ0). For a demonstration see Chapter 7.

Case II. Point versus distribution: The standard hypothesis test

Andrew Gelman (1965–). A frequent
blogger and arguably the world’s most
influential statistician, Andrew Gelman
is not known for mincing words. A
footnote to a paper that we have co-
authored with him reads: “Andrew
Gelman wishes to state that he hates
Bayes factors”. In contrast, we love Bayes
factors; throughout this book we will use
concrete examples to demonstrate their
worth.

In this subsection we consider three scenarios of increasing general-
ity: the simplest scenario features a test between the null hypothesis
H0 : θ = 1/2 versus an alternative hypothesis H1 that assigns θ a uniform
prior distribution; the intermediate scenario features a test between
the null hypothesis H0 : θ = 1/2 against an alternative hypothesis H1

that assigns θ a beta(α, β) prior distribution; the most general scenario
features a test between a null hypothesis H0 : θ = θ0 (where θ0 corre-
sponds to any test value in the interval from 0 to 1) versus an alternative
hypothesis H1 that assigns θ a beta(α, β) prior distribution.
Now we derive the Bayes factor for the three scenarios. It is easiest

to start with the most general case, that is, the Bayes factor for test-
ing whether θ = θ0 where the alternative hypothesis H1 specifies a
beta(α, β) prior distribution for θ; afterwards, we will outline the sim-
plifications that can be made for the other two cases.
In the previous subsection we defined the Bayes factor and gave the

probability of the data under a point null hypothesis H0 : θ = θ0. In
order to obtain the probability of the data under the alternative hy-
pothesis H1 : θ ∼ beta(α, β), we use the law of total probability, as
described in Chapter 3, ‘The Rules of Probability’. Lindley called this
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theorem an extension of the conversation. “Let E1 and E2 be two events
which are exclusive and exhaustive, and let A be any event. Then (…)
p(A) = p(A |E1)p(E1) + p(A |E2)p(E2).” (Lindley 1985, p. 39). Apply-
ing the law of total probability, we obtain

p(s, f | H1) =

∫ 1

0

p(s, f | θ,H1) p(θ | H1)dθ

=

∫ 1

0

(
n

s

)
θs (1− θ)f︸ ︷︷ ︸

p(s,f |θ,H1)

Γ(α+ β)

Γ(α)Γ(β)
θα−1 (1− θ)β−1︸ ︷︷ ︸
p(θ|H1)

dθ.

(30.10)

Here p(s, f | θ,H1) is simply the binomial likelihood and p(θ |H1) de-
notes the beta prior distribution for θ under H1.
Next, we use our knowledge about the integral (as shown in Equa-

tion 30.4) to simplify the expression for p(s, f | H1) as follows:

p(s, f | H1) =

(
n

s

)
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

θα+s−1 (1− θ)β+f−1dθ

=

(
n

s

)
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ s)Γ(β + f)

Γ(α+ β + n)
.

(30.11)

Hence, the Bayes factor for testing the hypothesis H0 : θ = θ0 where θ0
corresponds to any test value in the interval [0,1] against an alternative
hypothesis H1 that specifies a beta(α, β) prior distribution for θ is given
by:

BF10 =
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ s)Γ(β + f)

Γ(α+ β + n)

1

θs0 (1− θ0)f
. (30.12)

The Bayes factor for testing the hypothesis H0 : θ = 1/2 against an
alternative hypothesis H1 that specifies a beta(α, β) prior distribution
for θ is obtained by setting θ0 = 1/2 in Equation 30.12, resulting in:

BF10 =
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ s)Γ(β + f)

Γ(α+ β + n)
2n. (30.13)

The Bayes factor for testing the hypothesis H0 : θ = 1/2 against an
alternative hypothesis H1 that specifies a uniform prior distribution for
θ is obtained by setting the two parameters α and β of the beta prior
distribution equal to 1. For positive integer k we replace Γ(k) by (k−1)!

and obtain the following Bayes factor:

BF10 =
s!f !

(n+ 1)!
2n. (30.14)

Case III. Distribution versus distribution: Ly’s limit

In Chapter 12, ‘The Pancake Puzzle’, we pitted against one another sev-
eral forecasters who each quantified their prior beliefs about θ by means
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of a beta distribution. Let θ1 ∼ beta(α1, β1) be the prior distribution for
forecaster 1, and θ2 ∼ beta(α2, β2) the prior distribution for forecaster 2.
The Bayes factor for forecaster 1 over forecaster 2 is then

BF12 =
B(α1 + s, β1 + f)

B(α2 + s, β2 + f)

B(α2, β2)

B(α1, β1)
, (30.15)

where B is the beta integral encountered earlier. We may wonder what
happens to the evidence when the data increase in size (i.e., n → ∞)
but the sample proportion s/n stays the same and equals a true value
θ⋆. In other words, s = θ⋆n and n → ∞. Intuitively, as the data
accumulate, the two beta distributions converge to a highly similar
posterior distribution, and from that point onward the models will
make virtually identical predictions. This suggests that there is a bound
on the evidence that can be obtained when the rival hypothesis both
allow θ to vary across the same range (cf. Chapter 13). The specific limit
is:

lim
n→∞

BF12(s, n) = lim
n→∞

B(α1 + s, β1 + f)

B(α2 + s, β2 + f)

B(α2, β2)

B(α1, β1)

= θα1−α2(1− θ)β1−β2
B(α2, β2)

B(α1, β1)
,

(30.16)

as follows from Stirling’s approximation to the factorial: log n! = (n +
1
2 ) log n− n+ 1

2 log 2π + 1
12n −O

(
1
n3

)
.

Ly’s limit can also be given a visual interpretation (cf. Ly and Wa-
genmakers 2022; Morey and Rouder 2011, pp. 411-412; see also Jeffreys
1961, p. 367; Jeffreys 1973, p. 39). Specifically, the limit equals the ratio
of the prior ordinates at the true value θ⋆, that is,

lim
n→∞

BF12(s, n) =
p(θ⋆ | beta(α1, β1))

p(θ⋆ | beta(α2, β2))
. (30.17)

An exception to this rule occurs when all parameters (i.e., α1, β1, α2, β2)
are 2 or larger and θ⋆ = 1 or θ⋆ = 0, that is, only successes or only
failures are observed. Without loss of generality we consider the case
of θ⋆ = 1. Then the posterior for θ equals θ1 ∼ beta(α1 + s, β1) under
forecaster 1 and θ2 ∼ beta(α2 + s, β2) under forecaster 2. The data ‘s’
affect the α parameter but not the β parameter. Consequently, a differ-
ence in the β parameters leads the Bayes factor to increase indefinitely:
if β1 < β2, then BF12 → ∞ as s = n → ∞; if β1 > β2, then BF21 → ∞
as s = n → ∞; only if β1 = β2 is there a limit on the Bayes factor. For
example, consider the case where s = n = 1, 000, 000. If forecaster 1
specifies α1 = 2, β1 = 3 and forecaster 2 specifies α2 = 2, β2 = 4 then
BF12 = 200, 001 (this keeps increasing as s = n grows). When forecaster
2 specifies α2 = 2, β2 = 2, however, then BF21 = 250, 001 (again,
this keeps increasing as s = n grows). And when forecaster 2 specifies
α2 = 3, β2 = 3 then BF21 = 2.5 (which does not increase as s = n

grows).



538 bayesian inference from the ground up

Exercises

1. Ly’s limit equals the ratio of the prior ordinates at the true value θ⋆.
Use the Savage-Dickey density ratio to argue why this must be the
case.

Want to Know More?

3 Ly, A., & Wagenmakers, E.-J. (2022). Bayes factors for peri-null hy-
potheses. TEST, 31, 1121–1142.



31 Recommended Readings

[Edwards et al., 1963] proposed that experimenters use Bayesian statistics (…)
[this] was a complete flop, since the experimenters already had their statistics.

Gigerenzer et al., 1989

Chapter Goal

This chapter presents a lightly annotated list of Bayesian books and
articles that we find particularly insightful or inspiring. The selection is
heavily biased towards the inclusion of works that can be understood by
those without a degree in mathematical statistics.1 1 If your institution does not carry access

to a particular scientific article, you may
be tempted to visit the illegal website
“Sci-Hub”. In our opinion, Sci-Hub is
righting a moral wrong. Their adage
is “to remove all barriers in the way of
science”.

Recommendations

We start our reading list with an article that itself presents an annotated
reading list:

3 Etz, A., Gronau, Q. F., Dablander, F., Edelsbrunner, P. A., & Barib-
ault, B. (2018). How to become a Bayesian in eight easy steps: An
annotated reading list. Psychonomic Bulletin & Review, 25, 219-234.
All of Alexander Etz’s articles on Bayesian inference are exceptionally
clear and we recommend beginning Bayesians browse his blog posts
at https://alexanderetz.com/understanding-bayes/.

For a historical introduction we suggest the following two works:

3 Howie, D. (2002). Interpreting Probability: Controversies and Develop-
ments in the Early Twentieth Century. Cambridge: Cambridge Univer-
sity Press. An in-depth overview of the debate between the Bayesian
Harold Jeffreys and the frequentist Ronald Fisher. Some background
knowledge of statistics is required to understand the finer details.

3 McGrayne, S. B. (2011). The Theory that Would not Die: How Bayes’
Rule Cracked the Enigma Code, Hunted Down Russian Submarines,
and Emerged Triumphant from Two Centuries of Controversy. New

https://alexanderetz.com/understanding-bayes/
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Haven, CT: Yale University Press. The title says it all. Highly recom-
mended.

For a discussion of foundational issues our list of recommended
readings is relatively long:

3 Edwards, W., Lindman, H. & Savage, L. J. (1963). Bayesian statistical
inference for psychological research. Psychological Review, 70, 193-242.
A classic article that is even more relevant today than when it was
first published. Unfortunately a full understanding of the article does
require a background in statistics. Consider skipping the first sections
and persist – it is worth it.

3 O’Hagan, A. (2004). Dicing with the unknown. Significance, 1, 132-
133. O’Hagan explains the difference between aleatory uncertainty
(due to randomness) and epistemic uncertainty (due to lack of knowl-
edge). Highly recommended.

Anthony O’Hagan (1948–). “Every
statistician needs to understand the
difference between the frequentist
and Bayesian theories of statistics, and
every practising statistician must (at
least implicitly) choose between them.
And whether something is unknown or
unknowable, whether its uncertainty
is due to fundamentally unpredictable
randomness or to potentially resolvable
lack of knowledge, turns out to lie at the
heart of the debate”.

3 Eagle, A. (Ed.) (2011). Philosophy of Probability: Contemporary
Readings. New York: Routledge. All you ever wanted to know about
probability, and much, much more.

3 Dienes, Z. (2008). Understanding Psychology as a Science: An Intro-
duction to Scientific and Statistical Inference. New York: Palgrave
Macmillan. An easy-to-understand introduction to inference that
summarizes the differences between the various schools of statistics.
No knowledge of mathematical statistics is required.

3 Royall, R. M. (1997). Statistical Evidence: A Likelihood Paradigm.
London: Chapman & Hall. Similar in spirit to the Dienes book, this
book requires a little more knowledge of statistics to be properly
understood.

3 Lindley, D. V. (2000). The philosophy of statistics. The Statistician,
49, 293-337. The general rule is to read anything that Lindley has
written. Appreciation of the content does require background knowl-
edge.

3 Lindley, D. V. (1993). The analysis of experimental data: The appre-
ciation of tea and wine. Teaching Statistics, 15, 22-25. Whenever
students ask us for accessible articles on Bayesian versus frequentist
statistics, this one tops our list.

3 Pek, J., & and Van Zandt, T. (2020). Frequentist and Bayesian ap-
proaches to data analysis: Evaluation and estimation. Psychology
Learning & Teaching, 19, 21-35. “This article reviews frequentist and
Bayesian approaches such that teachers can promote less well-known
statistical perspectives to encourage statistical thinking. Within the



recommended readings 541

frequentist and Bayesian approaches, we highlight important dis-
tinctions between statistical evaluation versus estimation using an
example on the facial feedback hypothesis.” (p. 21)

3 Lindley, D. V. (2004). That wretched prior. Significance, 1, 85-87.
“Objectivity is merely subjectivity when nearly everyone agrees” (p.
87).

Jim Berger (1950–).

3 Berger, J. O., & Wolpert, R. L. (1988). The Likelihood Principle (2nd
edn.). Hayward, CA: Institute of Mathematical Statistics. The con-
tents of this book is as terrific as its typesetting is terrible. Does
require a solid background in mathematical statistics.

3 Berger, J. O., & Berry, D. A. (1988). Statistical analysis and the il-
lusion of objectivity. American Scientist, 76, 159-165. An accessible
article on the inherent subjectivity of statistical analysis.

3 Bayarri, M. J., & Berger, J. O. (2013). Hypothesis testing and model
uncertainty. In Damien, P., Dellaportas, P., Polson, N. G., & Stephens,
D. A. (Eds.), Bayesian Theory and Applications, pp. 361-400. Oxford:
Oxford University Press. When we interviewed Jim Berger in 2017,
we asked “If you could give an applied researcher (say in biology or
psychology) a single one of your papers to read, which one would
that be, and why?” Berger then pointed to this book chapter2 and 2Unfortunately, the chapter is difficult to

find online.explained: “This was written to explain the key issues in testing
and model uncertainty, using the best approaches and examples
I had seen or developed over many years. So I think it is a good
introduction to these issues for someone who actually cares.”3 3 The complete interview is at https:

//jasp-stats.org/2017/07/27/
jimberger/.3 Rosenkrantz, R. D. (1977). Inference, Method and Decision. Dor-

drecht: Reidel.

3 Rouder, J. N., Morey, R. D., Verhagen, A. J., Province, J. M., & Wa-
genmakers, E.-J. (2016). Is there a free lunch in inference? Topics in
Cognitive Science, 8, 520-547. The answer is ‘no’.

3 Etz, A., Haaf, J. M., Rouder, J. N., & Vandekerckhove, J. (2018).
Bayesian inference and testing any hypothesis you can specify. Ad-
vances in Methods and Practices in Psychological Science, 1, 281–295.

3 Howson, C., & Urbach, P. (2006). Scientific Reasoning: The Bayesian
Approach (3rd edn.). Chicago, IL: Open Court. An informative and
entertaining introduction to Bayesian reasoning. Highly recom-
mended.

3 Wagenmakers, E.-J. (2007). A practical solution to the pervasive
problems of p values. Psychonomic Bulletin & Review, 14, 779-804.
Summarizes the statistical problems with p values as indicated in

https://jasp-stats.org/2017/07/27/jimberger/
https://jasp-stats.org/2017/07/27/jimberger/
https://jasp-stats.org/2017/07/27/jimberger/
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Berger and Wolpert (1988) and proposes the BIC (Bayesian Informa-
tion Criterion; an approximation to the Bayes factor hypothesis test)
as a solution.

3 Wagenmakers, E.–J., Marsman, M., Jamil, T., Ly, A., Verhagen, A. J.,
Love, J., Selker, R., Gronau, Q. F., Šmíra, M., Epskamp, S., Matzke,
D., Rouder, J. N., & Morey, R. D. (2018). Bayesian inference for
psychology. Part I: Theoretical advantages and practical ramifications.
Psychonomic Bulletin & Review, 25, 35-57. An update to the 2007
paper, with a role for JASP.

3 Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagen-
makers, E.-J. (2016). The fallacy of placing confidence in confidence
intervals. Psychonomic Bulletin & Review, 23, 103-123. A confidence
interval may be even more difficult to interpret than a p value.

Richard D. Morey (1978–). “ confidence
intervals should not be used as modern
proponents suggest”.

For an accessible introduction to Bayesian methods more generally
we recommend:

3 Lindley, D. V. (1985). Making Decisions (2nd edn.). London: Wiley.
Simple, straightforward, and compelling. A must-read.

3 Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in model-
ing cognition: A Bayesian approach. Psychonomic Bulletin & Review,
4, 79-95. A breakthrough article for psychology, explaining how
Bayesian model selection balances the conflicting demands of parsi-
mony and goodness-of-fit.

3 Lindley, D. V. (2006). Understanding Uncertainty. Hoboken: Wiley.
If every student had to read this book, the world would be a better
place.

3 Bolstad, W. M. (2007). Introduction to Bayesian Statistics (2nd edn.).
Hoboken, NJ: Wiley. This is a real introduction, not a pretend one.

3 Albert, J. (2009). Bayesian Computation with R (2nd ed.). Dordrecht,
The Netherlands: Springer. This introductory text is supported by the
R package ‘LearnBayes’ (not to be confused with the eponymous JASP
module).

3 Johnson, A. A., Ott, M. Q., & Dogucu, M. (2022). Bayes Rules! An
Introduction to Applied Bayesian Modeling. Boca Raton, FL: CRC
Press. Beautifully typeset and freely available at https://www.
bayesrulesbook.com/ (!), this is the key textbook that our col-
leagues at the Psychological Methods Unit prefer to teach students
the basics of modern Bayesian statistics.

3 Lee, M. D., & Wagenmakers, E.–J. (2013). Bayesian Cognitive Mod-
eling: A Practical Course. Cambridge: Cambridge University Press. A
hands-on book with many examples.

The cover of Bayesian Cognitive Mod-
eling, featuring “red” by lego-artist
Nathan Sawaya (for more examples see
http://www.brickartist.com/).

https://www.bayesrulesbook.com/
https://www.bayesrulesbook.com/
http://www.brickartist.com/
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3 Gelman, A., & Hill, J. (2014). Data Analysis Using Regression and
Multilevel/Hierarchical Models. Cambridge: Cambridge University
Press. The standard introductory text to hierarchical modeling. It
is still worth reading after pouring a cup of coffee over it and then
leaving it outside in the rain for a night. Robust stuff.

3 Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A.,
& Rubin, D. B. (2014). Bayesian Data Analysis (3rd edn.). Boca
Raton, FL: Chapman & Hall/CRC. A modern-day 650+ page classic
on Bayesian parameter estimation.

3 Kruschke, J. K. (2015). Doing Bayesian Data Analysis: A Tutorial
with R, JAGS, and Stan (2nd edn.). Academic Press/Elsevier. Many
students find John Kruschke’s style appealing and helpful. Consistent
with this conjecture, the first student who borrowed the book from
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3.0 license (https://creativecommons.org/licenses/by-sa/3.0/).
No changes were made. 415

Figure “D12”: Photo by Eric-Jan Wagenmakers, March 2024. 422

Figure 23.2: Figure created using R, courtesy of Johnny van Doorn.
Adjusted from the figure presented in van Doorn et al. (2021) 423

Surprise Lost is Confidence Gained

Figure 24.1: Image by Viktor Beekman, taken from https://www.
bayesianspectacles.org under a CC-BY license (https://creativecommons.
org/licenses/by/4.0/legalcode). 434

Figure 24.2: Figure created using R. 436

Figure 24.3: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 437

Diaconis’s Wobbly Coin

Figure “Photo Diaconis”: Photo taken from https://en.wikipedia.
org/wiki/Persi_Diaconis under a CC BY-SA 3.0 license (https:
//creativecommons.org/licenses/by-sa/3.0/). No changes were
made. 441

Figure 25.1: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 447

Figure 25.2: Figure generated by the JASP module ‘Summary Statistics’,
available at https://jasp-stats.org/. 448

Figure 25.3: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 449

Figure 25.4: Figure generated by the JASP module ‘Summary Statistics’,
available at https://jasp-stats.org/. 450

Figure 25.5: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 451

Figure 25.6: Figure generated by the JASP module ‘Summary Statistics’,
available at https://jasp-stats.org/. 452

Figure 25.7: Figure generated by the JASP module ‘Summary Statistics’,
available at https://jasp-stats.org/. 455

Figure 25.8: Figure generated by the JASP module ‘Summary Statistics’,
available at https://jasp-stats.org/. 456

Figure 25.9: Figure generated by the JASP module ‘Summary Statistics’,
available at https://jasp-stats.org/. 457

Figure 25.10: Figure generated by the JASP module ‘Summary Statis-
tics’, available at https://jasp-stats.org/. 458
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Figure 25.11: Figure generated by the JASP module ‘Summary Statis-
tics’, available at https://jasp-stats.org/. 459

Figure 25.12: Figure generated by the JASP module ‘Summary Statis-
tics’, available at https://jasp-stats.org/. 460

The Coherence of Evidence Accumulation

Figure 26.1: Figure generated by the JASP module ‘Summary Statistics’,
available at https://jasp-stats.org/. 467

Figure 26.2: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 468

Figure 26.3: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 469

Figure 26.4: Figure generated by the JASP module ‘Summary Statistics’,
available at https://jasp-stats.org/. 470

Figure 26.5: Figure created using TikZ. 471

Figure 26.6: Figure created using TikZ. 473

Figure 26.7: Figure created using TikZ. 473

Figure 26.8: Figure created using TikZ. 474

Figure 26.9: Figure created using TikZ. 476

Senn’s Stubborn Mule

Figure 27.1: Figure adapted from the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. The drawings are taken from the
work of Buffon. 484

Figure 27.2: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 488

Figure 27.3: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 489

Figure 27.4: Screenshot taken from the JASP module ‘Learn Bayes’,
available at https://jasp-stats.org/. 492

Figure 27.5: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 493

Figure 27.6: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 494

Figure 27.7: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 496

Figure 27.8: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 498

Figure 27.9: Figure created using R. 503
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Figure 27.10: Screenshot taken from the JASP module ‘Learn Bayes’,
available at https://jasp-stats.org/. 506

Figure 27.11: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 506

Figure 27.12: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 507

Figure 27.13: Screenshot taken from the JASP module ‘Learn Bayes’,
available at https://jasp-stats.org/. 509

Figure 27.14: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 509

Figure 27.15: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 510

Figure 27.16: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 511

Figure 27.17: Figure generated by the JASP module ‘Learn Bayes’, avail-
able at https://jasp-stats.org/. 511

Postlude: Common Sense Expressed in Numbers

Figure “Today’s Posterior is Tomorrow’s Prior”: Image by Viktor Beek-
man, taken from https://www.bayesianspectacles.org under a
CC-BY license (https://creativecommons.org/licenses/by/4.0/
legalcode). ??

Figure “Surprise Lost is Credibility Gained”: Image by Viktor Beekman,
taken from https://www.bayesianspectacles.org under a CC-BY li-
cense (https://creativecommons.org/licenses/by/4.0/legalcode).
??

Figure “Vagueness Leads Nowhere”: Image by Viktor Beekman, taken
from https://www.bayesianspectacles.org under a CC-BY license
(https://creativecommons.org/licenses/by/4.0/legalcode).
??

Jevons Explains Permutations

This chapter does not contain any figures.

Pascal’s Arithmetical Triangle

Figure 29.1: Figure created using TikZ. 522

Figure 29.2: Figure created using TikZ. 522

Figure “Sir Francis Galton”: Photograph taken by Eveleen Myers (née
Tennant). Image taken from https://www.npg.org.uk/collections/
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search/portrait/mw127193 under a CC-PD license (https://creativecommons.
org/publicdomain/mark/1.0/). 523

Figure 29.3: Original illustration of Galton’s ‘quincunx’ (Galton 1889, p.
63), image extracted from https://galton.org/books/natural-inheritance/
pdf/galton-nat-inh-1up-clean.pdf under a CC-PD license (https:
//creativecommons.org/publicdomain/mark/1.0/). 523

Figure 29.4: Image by Viktor Beekman, taken from https://www.
bayesianspectacles.org under a CC-BY license (https://creativecommons.
org/licenses/by/4.0/legalcode). 524

Figure “Pearson and Galton”: Image taken from https://en.wikipedia.
org/wiki/Francis_Galton#/media/File:Karl_Pearson;_Sir_
Francis_Galton.jpg under a CC-PD license (https://creativecommons.
org/publicdomain/mark/1.0/). 530

Figure “Ronald Aylmer Fisher”: Image taken from https://en.wikipedia.
org/wiki/Ronald_Fisher#/media/File:Youngronaldfisher2.JPG
under a CC-PD license (https://creativecommons.org/publicdomain/
mark/1.0/). 531

Statistical Analysis of the Binomial Distribution

Figure “Howard Raiffa”: Harvard Business School Archives Photograph
Collection. Baker Library. Harvard Business School (olvwork376291).
Reprinted with permission. 533

Figure “Andrew Gelman”: Image by Schutz, taken from https://en.
wikipedia.org/wiki/Andrew_Gelman#/media/File:Andrew_Gelman_
2012.jpg under a CC-BY-SA license (https://creativecommons.org/
licenses/by-sa/3.0/). 535

Recommended Reading on Bayesian Inference

Figure “Tony O’Hagan”: Reprinted with permission from Dr. O’Hagan.
540

Figure “Jim Berger”: Reprinted with permission from Dr. Berger.
541

Figure “Richard Morey”: Reprinted with permission from Dr. Morey.
542

Figure “Cover Bayesian Cognitive Modeling” 542

Figure “Jeff Rouder”: Reprinted with permission from Dr. Rouder.
543
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